 |
PDBsum entry 1kpp
|
|
|
|
 |
Contents |
 |
|
|
|
|
|
|
|
* Residue conservation analysis
|
|
|
|
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
|
|
|
| |
|
DOI no:
|
EMBO J
21:2397-2406
(2002)
|
|
PubMed id:
|
|
|
|
|
| |
|
Structure and functional interactions of the Tsg101 UEV domain.
|
|
O.Pornillos,
S.L.Alam,
R.L.Rich,
D.G.Myszka,
D.R.Davis,
W.I.Sundquist.
|
|
|
|
| |
ABSTRACT
|
|
|
| |
|
Human Tsg101 plays key roles in HIV budding and in cellular vacuolar protein
sorting (VPS). In performing these functions, Tsg101 binds both ubiquitin (Ub)
and the PTAP tetrapeptide 'late domain' motif located within the viral Gag
protein. These interactions are mediated by the N-terminal domain of Tsg101,
which belongs to the catalytically inactive ubiquitin E2 variant (UEV) family.
We now report the structure of Tsg101 UEV and chemical shift mapping of the Ub
and PTAP binding sites. Tsg101 UEV resembles canonical E2 ubiquitin conjugating
enzymes, but has an additional N-terminal helix, an extended beta-hairpin that
links strands 1 and 2, and lacks the two C-terminal helices normally found in E2
enzymes. PTAP-containing peptides bind in a hydrophobic cleft exposed by the
absence of the C-terminal helices, whereas ubiquitin binds in a novel site
surrounding the beta-hairpin. These studies provide a structural framework for
understanding how Tsg101 mediates the protein-protein interactions required for
HIV budding and VPS.
|
|
|
|
|
| |
Selected figure(s)
|
|
|
| |
 |
 |
|
 |
|
 |
Figure 3.
Figure 3 Chemical shift mapping of the PTAP binding site on
Tsg101 UEV. (A) Overlay of the ^1H/^15N-HSQC spectra of Tsg101
UEV in the absence (gray) or presence of the 1.0 molar
equivalent of PTAP peptide (red). The lower panels show an
expansion of the boxed region with an additional titration point
indicating that the Tsg101 UEV/PTAP complex is in slow exchange.
(B) Biosensor binding of Tsg101 UEV to immobilized full-length
p6 (upper left panel and closed circles) and PTAP peptide to
immobilized Tsg101 UEV (lower left panel and open circles). The
near superimposition of the two curves demonstrates that Tsg101
UEV binds p6 and the PTAP peptide with the same affinity.
|
 |
Figure 6.
Figure 6 Comparison of the ubiquitin binding site (blue
residues) on Tsg101 UEV (yellow) with models for the two
distinct ubiquitin binding sites (purple) on the Ubc13/Mms2
heterodimer (gray) (VanDemark et al., 2001). To create the
figure, Tsg101 UEV was superimposed on either the Ubc13 E2 (A)
or the Mms2 UEV (B) subunits of the Ubc13/Mms2 heterodimer. The
figure illustrates the fact that the Ub binding surface on
Tsg101 is distinct from previously characterized Ub binding
sites on either E2 or UEV domains, but does roughly correspond
to the Mms2 binding site on Ubc13.
|
 |
|
|
|
| |
The above figures are
reprinted
from an Open Access publication published by Macmillan Publishers Ltd:
EMBO J
(2002,
21,
2397-2406)
copyright 2002.
|
|
| |
Figures were
selected
by an automated process.
|
|
|
|
|
 |
 |
|
 |
 |
 |
 |
 |
 |
 |
 |
 |
|
Literature references that cite this PDB file's key reference
|
|
 |
| |
PubMed id
|
 |
Reference
|
 |
|
|
|
 |
J.Votteler,
L.Neumann,
S.Hahn,
F.Hahn,
P.Rauch,
K.Schmidt,
N.Studtrucker,
S.M.Solbak,
T.Fossen,
P.Henklein,
D.E.Ott,
G.Holland,
N.Bannert,
and
U.Schubert
(2011).
Highly conserved serine residue 40 in HIV-1 p6 regulates capsid processing and virus core assembly.
|
| |
Retrovirology,
8,
11.
|
 |
|
|
|
|
 |
A.Pincetic,
Z.Kuang,
E.J.Seo,
and
J.Leis
(2010).
The interferon-induced gene ISG15 blocks retrovirus release from cells late in the budding process.
|
| |
J Virol,
84,
4725-4736.
|
 |
|
|
|
|
 |
C.S.Adamson,
and
E.O.Freed
(2010).
Novel approaches to inhibiting HIV-1 replication.
|
| |
Antiviral Res,
85,
119-141.
|
 |
|
|
|
|
 |
I.Roxrud,
H.Stenmark,
and
L.Malerød
(2010).
ESCRT & Co.
|
| |
Biol Cell,
102,
293-318.
|
 |
|
|
|
|
 |
M.Carducci,
L.Licata,
D.Peluso,
L.Castagnoli,
and
G.Cesareni
(2010).
Enriching the viral-host interactomes with interactions mediated by SH3 domains.
|
| |
Amino Acids,
38,
1541-1547.
|
 |
|
|
|
|
 |
M.Zhadina,
and
P.D.Bieniasz
(2010).
Functional interchangeability of late domains, late domain cofactors and ubiquitin in viral budding.
|
| |
PLoS Pathog,
6,
e1001153.
|
 |
|
|
|
|
 |
P.Sette,
J.A.Jadwin,
V.Dussupt,
N.F.Bello,
and
F.Bouamr
(2010).
The ESCRT-associated protein Alix recruits the ubiquitin ligase Nedd4-1 to facilitate HIV-1 release through the LYPXnL L domain motif.
|
| |
J Virol,
84,
8181-8192.
|
 |
|
|
|
|
 |
S.Vardhana,
K.Choudhuri,
R.Varma,
and
M.L.Dustin
(2010).
Essential role of ubiquitin and TSG101 protein in formation and function of the central supramolecular activation cluster.
|
| |
Immunity,
32,
531-540.
|
 |
|
|
|
|
 |
Y.J.Im,
L.Kuo,
X.Ren,
P.V.Burgos,
X.Z.Zhao,
F.Liu,
T.R.Burke,
J.S.Bonifacino,
E.O.Freed,
and
J.H.Hurley
(2010).
Crystallographic and functional analysis of the ESCRT-I /HIV-1 Gag PTAP interaction.
|
| |
Structure,
18,
1536-1547.
|
 |
|
PDB codes:
|
 |
|
|
|
|
|
 |
A.Calistri,
C.Salata,
C.Parolin,
and
G.Palù
(2009).
Role of multivesicular bodies and their components in the egress of enveloped RNA viruses.
|
| |
Rev Med Virol,
19,
31-45.
|
 |
|
|
|
|
 |
A.Schlundt,
J.Sticht,
K.Piotukh,
D.Kosslick,
N.Jahnke,
S.Keller,
M.Schuemann,
E.Krause,
and
C.Freund
(2009).
Proline-rich sequence recognition: II. Proteomics analysis of Tsg101 ubiquitin-E2-like variant (UEV) interactions.
|
| |
Mol Cell Proteomics,
8,
2474-2486.
|
 |
|
|
|
|
 |
B.J.Killian,
J.Y.Kravitz,
S.Somani,
P.Dasgupta,
Y.P.Pang,
and
M.K.Gilson
(2009).
Configurational entropy in protein-peptide binding: computational study of Tsg101 ubiquitin E2 variant domain with an HIV-derived PTAP nonapeptide.
|
| |
J Mol Biol,
389,
315-335.
|
 |
|
|
|
|
 |
H.Marjuki,
U.Wernery,
H.L.Yen,
J.Franks,
P.Seiler,
D.Walker,
S.Krauss,
and
R.G.Webster
(2009).
Isolation of highly pathogenic avian influenza H5N1 virus from Saker falcons (Falco cherrug) in the Middle East.
|
| |
Adv Virol,
2009,
1.
|
 |
|
|
|
|
 |
J.Kapitán,
D.Gallo,
N.Goasdoué,
M.Nicaise,
M.Desmadril,
L.Hecht,
G.Leclercq,
L.D.Barron,
and
Y.Jacquot
(2009).
Identification of a human estrogen receptor alpha-derived antiestrogenic peptide that adopts a polyproline II conformation.
|
| |
J Pept Sci,
15,
455-464.
|
 |
|
|
|
|
 |
Q.L.Aoh,
A.M.Castle,
C.H.Hubbard,
O.Katsumata,
and
J.D.Castle
(2009).
SCAMP3 negatively regulates epidermal growth factor receptor degradation and promotes receptor recycling.
|
| |
Mol Biol Cell,
20,
1816-1832.
|
 |
|
|
|
|
 |
R.N.Harty
(2009).
No exit: targeting the budding process to inhibit filovirus replication.
|
| |
Antiviral Res,
81,
189-197.
|
 |
|
|
|
|
 |
S.B.Shields,
A.J.Oestreich,
S.Winistorfer,
D.Nguyen,
J.A.Payne,
D.J.Katzmann,
and
R.Piper
(2009).
ESCRT ubiquitin-binding domains function cooperatively during MVB cargo sorting.
|
| |
J Cell Biol,
185,
213-224.
|
 |
|
|
|
|
 |
S.Moutel,
O.Vielemeyer,
H.Jin,
S.Divoux,
P.Benaroch,
and
F.Perez
(2009).
Fully in vitro selection of recombinant antibodies.
|
| |
Biotechnol J,
4,
38-43.
|
 |
|
|
|
|
 |
Y.Zwang,
and
Y.Yarden
(2009).
Systems biology of growth factor-induced receptor endocytosis.
|
| |
Traffic,
10,
349-363.
|
 |
|
|
|
|
 |
A.Joshi,
U.Munshi,
S.D.Ablan,
K.Nagashima,
and
E.O.Freed
(2008).
Functional replacement of a retroviral late domain by ubiquitin fusion.
|
| |
Traffic,
9,
1972-1983.
|
 |
|
|
|
|
 |
B.G.Luttge,
M.Shehu-Xhilaga,
D.G.Demirov,
C.S.Adamson,
F.Soheilian,
K.Nagashima,
A.G.Stephen,
R.J.Fisher,
and
E.O.Freed
(2008).
Molecular characterization of feline immunodeficiency virus budding.
|
| |
J Virol,
82,
2106-2119.
|
 |
|
|
|
|
 |
B.McDonald,
and
J.Martin-Serrano
(2008).
Regulation of Tsg101 Expression by the Steadiness Box: A Role of Tsg101-associated Ligase.
|
| |
Mol Biol Cell,
19,
754-763.
|
 |
|
|
|
|
 |
C.Lazert,
N.Chazal,
L.Briant,
D.Gerlier,
and
J.C.Cortay
(2008).
Refined study of the interaction between HIV-1 p6 late domain and ALIX.
|
| |
Retrovirology,
5,
39.
|
 |
|
|
|
|
 |
F.Liu,
A.G.Stephen,
A.A.Waheed,
M.J.Aman,
E.O.Freed,
R.J.Fisher,
and
T.R.Burke
(2008).
SAR by oxime-containing peptide libraries: application to Tsg101 ligand optimization.
|
| |
Chembiochem,
9,
2000-2004.
|
 |
|
|
|
|
 |
H.Y.Chung,
E.Morita,
U.von Schwedler,
B.Müller,
H.G.Kräusslich,
and
W.I.Sundquist
(2008).
NEDD4L overexpression rescues the release and infectivity of human immunodeficiency virus type 1 constructs lacking PTAP and YPXL late domains.
|
| |
J Virol,
82,
4884-4897.
|
 |
|
|
|
|
 |
M.R.Hobbs,
B.B.Jones,
B.E.Otterud,
M.Leppert,
and
J.D.Kriesel
(2008).
Identification of a herpes simplex labialis susceptibility region on human chromosome 21.
|
| |
J Infect Dis,
197,
340-346.
|
 |
|
|
|
|
 |
Q.Zhai,
R.D.Fisher,
H.Y.Chung,
D.G.Myszka,
W.I.Sundquist,
and
C.P.Hill
(2008).
Structural and functional studies of ALIX interactions with YPX(n)L late domains of HIV-1 and EIAV.
|
| |
Nat Struct Mol Biol,
15,
43-49.
|
 |
|
PDB codes:
|
 |
|
|
|
|
|
 |
T.Falguières,
P.P.Luyet,
C.Bissig,
C.C.Scott,
M.C.Velluz,
and
J.Gruenberg
(2008).
In vitro budding of intralumenal vesicles into late endosomes is regulated by Alix and Tsg101.
|
| |
Mol Biol Cell,
19,
4942-4955.
|
 |
|
|
|
|
 |
A.Calistri,
P.Sette,
C.Salata,
E.Cancellotti,
C.Forghieri,
A.Comin,
H.Göttlinger,
G.Campadelli-Fiume,
G.Palù,
and
C.Parolin
(2007).
Intracellular trafficking and maturation of herpes simplex virus type 1 gB and virus egress require functional biogenesis of multivesicular bodies.
|
| |
J Virol,
81,
11468-11478.
|
 |
|
|
|
|
 |
H.H.Chua,
H.H.Lee,
S.S.Chang,
C.C.Lu,
T.H.Yeh,
T.Y.Hsu,
T.H.Cheng,
J.T.Cheng,
M.R.Chen,
and
C.H.Tsai
(2007).
Role of the TSG101 gene in Epstein-Barr virus late gene transcription.
|
| |
J Virol,
81,
2459-2471.
|
 |
|
|
|
|
 |
J.G.Carlton,
and
J.Martin-Serrano
(2007).
Parallels between cytokinesis and retroviral budding: a role for the ESCRT machinery.
|
| |
Science,
316,
1908-1912.
|
 |
|
|
|
|
 |
J.H.Holtzman,
K.Woronowicz,
D.Golemi-Kotra,
and
A.Schepartz
(2007).
Miniature protein ligands for EVH1 domains: interplay between affinity, specificity, and cell motility.
|
| |
Biochemistry,
46,
13541-13553.
|
 |
|
|
|
|
 |
J.Wang,
W.Hu,
S.Cai,
B.Lee,
J.Song,
and
Y.Chen
(2007).
The intrinsic affinity between E2 and the Cys domain of E1 in ubiquitin-like modifications.
|
| |
Mol Cell,
27,
228-237.
|
 |
|
PDB code:
|
 |
|
|
|
|
|
 |
M.Curtiss,
C.Jones,
and
M.Babst
(2007).
Efficient cargo sorting by ESCRT-I and the subsequent release of ESCRT-I from multivesicular bodies requires the subunit Mvb12.
|
| |
Mol Biol Cell,
18,
636-645.
|
 |
|
|
|
|
 |
R.L.Williams,
and
S.Urbé
(2007).
The emerging shape of the ESCRT machinery.
|
| |
Nat Rev Mol Cell Biol,
8,
355-368.
|
 |
|
|
|
|
 |
Y.Chen
(2007).
The enzymes in ubiquitin-like post-translational modifications.
|
| |
Biosci Trends,
1,
16-25.
|
 |
|
|
|
|
 |
Y.Yamada,
N.N.Suzuki,
T.Hanada,
Y.Ichimura,
H.Kumeta,
Y.Fujioka,
Y.Ohsumi,
and
F.Inagaki
(2007).
The crystal structure of Atg3, an autophagy-related ubiquitin carrier protein (E2) enzyme that mediates Atg8 lipidation.
|
| |
J Biol Chem,
282,
8036-8043.
|
 |
|
PDB code:
|
 |
|
|
|
|
|
 |
A.A.Bashirova,
G.Bleiber,
Y.Qi,
H.Hutcheson,
T.Yamashita,
R.C.Johnson,
J.Cheng,
G.Alter,
J.J.Goedert,
S.Buchbinder,
K.Hoots,
D.Vlahov,
M.May,
F.Maldarelli,
L.Jacobson,
S.J.O'brien,
A.Telenti,
and
M.Carrington
(2006).
Consistent effects of TSG101 genetic variability on multiple outcomes of exposure to human immunodeficiency virus type 1.
|
| |
J Virol,
80,
6757-6763.
|
 |
|
|
|
|
 |
A.Palencia,
J.C.Martinez,
P.L.Mateo,
I.Luque,
and
A.Camara-Artigas
(2006).
Structure of human TSG101 UEV domain.
|
| |
Acta Crystallogr D Biol Crystallogr,
62,
458-464.
|
 |
|
PDB code:
|
 |
|
|
|
|
|
 |
J.E.Mullally,
T.Chernova,
and
K.D.Wilkinson
(2006).
Doa1 is a Cdc48 adapter that possesses a novel ubiquitin binding domain.
|
| |
Mol Cell Biol,
26,
822-830.
|
 |
|
|
|
|
 |
L.Penengo,
M.Mapelli,
A.G.Murachelli,
S.Confalonieri,
L.Magri,
A.Musacchio,
P.P.Di Fiore,
S.Polo,
and
T.R.Schneider
(2006).
Crystal structure of the ubiquitin binding domains of rabex-5 reveals two modes of interaction with ubiquitin.
|
| |
Cell,
124,
1183-1195.
|
 |
|
PDB codes:
|
 |
|
|
|
|
|
 |
M.J.Lewis,
L.F.Saltibus,
D.D.Hau,
W.Xiao,
and
L.Spyracopoulos
(2006).
Structural basis for non-covalent interaction between ubiquitin and the ubiquitin conjugating enzyme variant human MMS2.
|
| |
J Biomol NMR,
34,
89.
|
 |
|
PDB code:
|
 |
|
|
|
|
|
 |
M.M.Kofler,
and
C.Freund
(2006).
The GYF domain.
|
| |
FEBS J,
273,
245-256.
|
 |
|
|
|
|
 |
M.Surjit,
R.Oberoi,
R.Kumar,
and
S.K.Lal
(2006).
Enhanced alpha1 microglobulin secretion from Hepatitis E virus ORF3-expressing human hepatoma cells is mediated by the tumor susceptibility gene 101.
|
| |
J Biol Chem,
281,
8135-8142.
|
 |
|
|
|
|
 |
P.Bellare,
A.K.Kutach,
A.K.Rines,
C.Guthrie,
and
E.J.Sontheimer
(2006).
Ubiquitin binding by a variant Jab1/MPN domain in the essential pre-mRNA splicing factor Prp8p.
|
| |
RNA,
12,
292-302.
|
 |
|
|
|
|
 |
S.F.Yu,
S.W.Eastman,
and
M.L.Linial
(2006).
Foamy virus capsid assembly occurs at a pericentriolar region through a cytoplasmic targeting/retention signal in Gag.
|
| |
Traffic,
7,
966-977.
|
 |
|
|
|
|
 |
Y.G.Chang,
A.X.Song,
Y.G.Gao,
Y.H.Shi,
X.J.Lin,
X.T.Cao,
D.H.Lin,
and
H.Y.Hu
(2006).
Solution structure of the ubiquitin-associated domain of human BMSC-UbP and its complex with ubiquitin.
|
| |
Protein Sci,
15,
1248-1259.
|
 |
|
PDB codes:
|
 |
|
|
|
|
|
 |
C.Gurer,
L.Berthoux,
and
J.Luban
(2005).
Covalent modification of human immunodeficiency virus type 1 p6 by SUMO-1.
|
| |
J Virol,
79,
910-917.
|
 |
|
|
|
|
 |
C.Tsui,
A.Raguraj,
and
C.M.Pickart
(2005).
Ubiquitin binding site of the ubiquitin E2 variant (UEV) protein Mms2 is required for DNA damage tolerance in the yeast RAD6 pathway.
|
| |
J Biol Chem,
280,
19829-19835.
|
 |
|
|
|
|
 |
G.M.Saifi,
K.Szigeti,
W.Wiszniewski,
M.E.Shy,
K.Krajewski,
I.Hausmanowa-Petrusewicz,
A.Kochanski,
S.Reeser,
P.Mancias,
I.Butler,
and
J.R.Lupski
(2005).
SIMPLE mutations in Charcot-Marie-Tooth disease and the potential role of its protein product in protein degradation.
|
| |
Hum Mutat,
25,
372-383.
|
 |
|
|
|
|
 |
G.Medina,
Y.Zhang,
Y.Tang,
E.Gottwein,
M.L.Vana,
F.Bouamr,
J.Leis,
and
C.A.Carter
(2005).
The functionally exchangeable L domains in RSV and HIV-1 Gag direct particle release through pathways linked by Tsg101.
|
| |
Traffic,
6,
880-894.
|
 |
|
|
|
|
 |
J.Yasuda
(2005).
[HIV budding and Tsg101]
|
| |
Uirusu,
55,
281-286.
|
 |
|
|
|
|
 |
L.Hicke,
H.L.Schubert,
and
C.P.Hill
(2005).
Ubiquitin-binding domains.
|
| |
Nat Rev Mol Cell Biol,
6,
610-621.
|
 |
|
|
|
|
 |
L.J.Ball,
R.Kühne,
J.Schneider-Mergener,
and
H.Oschkinat
(2005).
Recognition of Proline-Rich Motifs by Protein-Protein-Interaction Domains.
|
| |
Angew Chem Int Ed Engl,
44,
2852-2869.
|
 |
|
|
|
|
 |
P.P.Klinger,
and
U.Schubert
(2005).
The ubiquitin-proteasome system in HIV replication: potential targets for antiretroviral therapy.
|
| |
Expert Rev Anti Infect Ther,
3,
61-79.
|
 |
|
|
|
|
 |
R.Farràs,
G.Bossis,
E.Andermarcher,
I.Jariel-Encontre,
and
M.Piechaczyk
(2005).
Mechanisms of delivery of ubiquitylated proteins to the proteasome: new target for anti-cancer therapy?
|
| |
Crit Rev Oncol Hematol,
54,
31-51.
|
 |
|
|
|
|
 |
R.Puertollano
(2005).
Interactions of TOM1L1 with the multivesicular body sorting machinery.
|
| |
J Biol Chem,
280,
9258-9264.
|
 |
|
|
|
|
 |
T.Fossen,
V.Wray,
K.Bruns,
J.Rachmat,
P.Henklein,
U.Tessmer,
A.Maczurek,
P.Klinger,
and
U.Schubert
(2005).
Solution structure of the human immunodeficiency virus type 1 p6 protein.
|
| |
J Biol Chem,
280,
42515-42527.
|
 |
|
PDB code:
|
 |
|
|
|
|
|
 |
T.Irie,
and
R.N.Harty
(2005).
L-domain flanking sequences are important for host interactions and efficient budding of vesicular stomatitis virus recombinants.
|
| |
J Virol,
79,
12617-12622.
|
 |
|
|
|
|
 |
T.Slagsvold,
R.Aasland,
S.Hirano,
K.G.Bache,
C.Raiborg,
D.Trambaiolo,
S.Wakatsuki,
and
H.Stenmark
(2005).
Eap45 in mammalian ESCRT-II binds ubiquitin via a phosphoinositide-interacting GLUE domain.
|
| |
J Biol Chem,
280,
19600-19606.
|
 |
|
|
|
|
 |
A.K.Wernimont,
and
W.Weissenhorn
(2004).
Crystal structure of subunit VPS25 of the endosomal trafficking complex ESCRT-II.
|
| |
BMC Struct Biol,
4,
10.
|
 |
|
PDB code:
|
 |
|
|
|
|
|
 |
E.Morita,
and
W.I.Sundquist
(2004).
Retrovirus budding.
|
| |
Annu Rev Cell Dev Biol,
20,
395-425.
|
 |
|
|
|
|
 |
H.Teo,
D.B.Veprintsev,
and
R.L.Williams
(2004).
Structural insights into endosomal sorting complex required for transport (ESCRT-I) recognition of ubiquitinated proteins.
|
| |
J Biol Chem,
279,
28689-28696.
|
 |
|
PDB code:
|
 |
|
|
|
|
|
 |
I.Amit,
L.Yakir,
M.Katz,
Y.Zwang,
M.D.Marmor,
A.Citri,
K.Shtiegman,
I.Alroy,
S.Tuvia,
Y.Reiss,
E.Roubini,
M.Cohen,
R.Wides,
E.Bacharach,
U.Schubert,
and
Y.Yarden
(2004).
Tal, a Tsg101-specific E3 ubiquitin ligase, regulates receptor endocytosis and retrovirus budding.
|
| |
Genes Dev,
18,
1737-1752.
|
 |
|
|
|
|
 |
J.L.Spidel,
R.C.Craven,
C.B.Wilson,
A.Patnaik,
H.Wang,
L.M.Mansky,
and
J.W.Wills
(2004).
Lysines close to the Rous sarcoma virus late domain critical for budding.
|
| |
J Virol,
78,
10606-10616.
|
 |
|
|
|
|
 |
K.Bowers,
J.Lottridge,
S.B.Helliwell,
L.M.Goldthwaite,
J.P.Luzio,
and
T.H.Stevens
(2004).
Protein-protein interactions of ESCRT complexes in the yeast Saccharomyces cerevisiae.
|
| |
Traffic,
5,
194-210.
|
 |
|
|
|
|
 |
M.Boes,
A.Cuvillier,
and
H.Ploegh
(2004).
Membrane specializations and endosome maturation in dendritic cells and B cells.
|
| |
Trends Cell Biol,
14,
175-183.
|
 |
|
|
|
|
 |
M.D.Stuchell,
J.E.Garrus,
B.Müller,
K.M.Stray,
S.Ghaffarian,
R.McKinnon,
H.G.Kräusslich,
S.G.Morham,
and
W.I.Sundquist
(2004).
The human endosomal sorting complex required for transport (ESCRT-I) and its role in HIV-1 budding.
|
| |
J Biol Chem,
279,
36059-36071.
|
 |
|
|
|
|
 |
M.Shehu-Xhilaga,
S.Ablan,
D.G.Demirov,
C.Chen,
R.C.Montelaro,
and
E.O.Freed
(2004).
Late domain-dependent inhibition of equine infectious anemia virus budding.
|
| |
J Virol,
78,
724-732.
|
 |
|
|
|
|
 |
N.Luhtala,
and
G.Odorizzi
(2004).
Bro1 coordinates deubiquitination in the multivesicular body pathway by recruiting Doa4 to endosomes.
|
| |
J Cell Biol,
166,
717-729.
|
 |
|
|
|
|
 |
T.D.Mueller,
M.Kamionka,
and
J.Feigon
(2004).
Specificity of the interaction between ubiquitin-associated domains and ubiquitin.
|
| |
J Biol Chem,
279,
11926-11936.
|
 |
|
|
|
|
 |
T.Irie,
J.M.Licata,
H.R.Jayakar,
M.A.Whitt,
P.Bell,
and
R.N.Harty
(2004).
Functional analysis of late-budding domain activity associated with the PSAP motif within the vesicular stomatitis virus M protein.
|
| |
J Virol,
78,
7823-7827.
|
 |
|
|
|
|
 |
W.I.Sundquist,
H.L.Schubert,
B.N.Kelly,
G.C.Hill,
J.M.Holton,
and
C.P.Hill
(2004).
Ubiquitin recognition by the human TSG101 protein.
|
| |
Mol Cell,
13,
783-789.
|
 |
|
PDB code:
|
 |
|
|
|
|
|
 |
Y.C.Liu
(2004).
Ubiquitin ligases and the immune response.
|
| |
Annu Rev Immunol,
22,
81.
|
 |
|
|
|
|
 |
A.Amara,
and
D.R.Littman
(2003).
After Hrs with HIV.
|
| |
J Cell Biol,
162,
371-375.
|
 |
|
|
|
|
 |
A.Goff,
L.S.Ehrlich,
S.N.Cohen,
and
C.A.Carter
(2003).
Tsg101 control of human immunodeficiency virus type 1 Gag trafficking and release.
|
| |
J Virol,
77,
9173-9182.
|
 |
|
|
|
|
 |
A.P.VanDemark,
and
C.P.Hill
(2003).
Two-stepping with E1.
|
| |
Nat Struct Biol,
10,
244-246.
|
 |
|
|
|
|
 |
B.Wang,
S.L.Alam,
H.H.Meyer,
M.Payne,
T.L.Stemmler,
D.R.Davis,
and
W.I.Sundquist
(2003).
Structure and ubiquitin interactions of the conserved zinc finger domain of Npl4.
|
| |
J Biol Chem,
278,
20225-20234.
|
 |
|
PDB code:
|
 |
|
|
|
|
|
 |
C.Raiborg,
T.E.Rusten,
and
H.Stenmark
(2003).
Protein sorting into multivesicular endosomes.
|
| |
Curr Opin Cell Biol,
15,
446-455.
|
 |
|
|
|
|
 |
D.J.Katzmann,
C.J.Stefan,
M.Babst,
and
S.D.Emr
(2003).
Vps27 recruits ESCRT machinery to endosomes during MVB sorting.
|
| |
J Cell Biol,
162,
413-423.
|
 |
|
|
|
|
 |
E.O.Freed
(2003).
The HIV-TSG101 interface: recent advances in a budding field.
|
| |
Trends Microbiol,
11,
56-59.
|
 |
|
|
|
|
 |
G.Prag,
S.Misra,
E.A.Jones,
R.Ghirlando,
B.A.Davies,
B.F.Horazdovsky,
and
J.H.Hurley
(2003).
Mechanism of ubiquitin recognition by the CUE domain of Vps9p.
|
| |
Cell,
113,
609-620.
|
 |
|
PDB codes:
|
 |
|
|
|
|
|
 |
J.D.Schnell,
and
L.Hicke
(2003).
Non-traditional functions of ubiquitin and ubiquitin-binding proteins.
|
| |
J Biol Chem,
278,
35857-35860.
|
 |
|
|
|
|
 |
J.M.Licata,
M.Simpson-Holley,
N.T.Wright,
Z.Han,
J.Paragas,
and
R.N.Harty
(2003).
Overlapping motifs (PTAP and PPEY) within the Ebola virus VP40 protein function independently as late budding domains: involvement of host proteins TSG101 and VPS-4.
|
| |
J Virol,
77,
1812-1819.
|
 |
|
|
|
|
 |
J.S.Bonifacino,
and
L.M.Traub
(2003).
Signals for sorting of transmembrane proteins to endosomes and lysosomes.
|
| |
Annu Rev Biochem,
72,
395-447.
|
 |
|
|
|
|
 |
J.Yasuda,
M.Nakao,
Y.Kawaoka,
and
H.Shida
(2003).
Nedd4 regulates egress of Ebola virus-like particles from host cells.
|
| |
J Virol,
77,
9987-9992.
|
 |
|
|
|
|
 |
K.G.Bache,
A.Brech,
A.Mehlum,
and
H.Stenmark
(2003).
Hrs regulates multivesicular body formation via ESCRT recruitment to endosomes.
|
| |
J Cell Biol,
162,
435-442.
|
 |
|
|
|
|
 |
L.Hicke,
and
R.Dunn
(2003).
Regulation of membrane protein transport by ubiquitin and ubiquitin-binding proteins.
|
| |
Annu Rev Cell Dev Biol,
19,
141-172.
|
 |
|
|
|
|
 |
M.Zhang,
S.Thurig,
M.Tsirigotis,
P.K.Wong,
K.R.Reuhl,
and
D.A.Gray
(2003).
Effects of mutant ubiquitin on ts1 retrovirus-mediated neuropathology.
|
| |
J Virol,
77,
7193-7201.
|
 |
|
|
|
|
 |
O.Pornillos,
D.S.Higginson,
K.M.Stray,
R.D.Fisher,
J.E.Garrus,
M.Payne,
G.P.He,
H.E.Wang,
S.G.Morham,
and
W.I.Sundquist
(2003).
HIV Gag mimics the Tsg101-recruiting activity of the human Hrs protein.
|
| |
J Cell Biol,
162,
425-434.
|
 |
|
|
|
|
 |
P.P.Di Fiore,
S.Polo,
and
K.Hofmann
(2003).
When ubiquitin meets ubiquitin receptors: a signalling connection.
|
| |
Nat Rev Mol Cell Biol,
4,
491-497.
|
 |
|
|
|
|
 |
P.S.Bilodeau,
S.C.Winistorfer,
W.R.Kearney,
A.D.Robertson,
and
R.C.Piper
(2003).
Vps27-Hse1 and ESCRT-I complexes cooperate to increase efficiency of sorting ubiquitinated proteins at the endosome.
|
| |
J Cell Biol,
163,
237-243.
|
 |
|
|
|
|
 |
Q.Lu,
L.W.Hope,
M.Brasch,
C.Reinhard,
and
S.N.Cohen
(2003).
TSG101 interaction with HRS mediates endosomal trafficking and receptor down-regulation.
|
| |
Proc Natl Acad Sci U S A,
100,
7626-7631.
|
 |
|
|
|
|
 |
R.D.Fisher,
B.Wang,
S.L.Alam,
D.S.Higginson,
H.Robinson,
W.I.Sundquist,
and
C.P.Hill
(2003).
Structure and ubiquitin binding of the ubiquitin-interacting motif.
|
| |
J Biol Chem,
278,
28976-28984.
|
 |
|
PDB code:
|
 |
|
|
|
|
|
 |
R.Goila-Gaur,
D.G.Demirov,
J.M.Orenstein,
A.Ono,
and
E.O.Freed
(2003).
Defects in human immunodeficiency virus budding and endosomal sorting induced by TSG101 overexpression.
|
| |
J Virol,
77,
6507-6519.
|
 |
|
|
|
|
 |
R.L.Rich,
and
D.G.Myszka
(2003).
A survey of the year 2002 commercial optical biosensor literature.
|
| |
J Mol Recognit,
16,
351-382.
|
 |
|
|
|
|
 |
R.L.Rich,
and
D.G.Myszka
(2003).
Spying on HIV with SPR.
|
| |
Trends Microbiol,
11,
124-133.
|
 |
|
|
|
|
 |
S.Blanco,
and
P.A.Lazo
(2003).
Human TSG101 does not replace Saccharomyces cerevisiae VPS23 role in the quality control of plasma membrane proteins.
|
| |
FEMS Microbiol Lett,
221,
151-154.
|
 |
|
|
|
|
 |
S.McKenna,
T.Moraes,
L.Pastushok,
C.Ptak,
W.Xiao,
L.Spyracopoulos,
and
M.J.Ellison
(2003).
An NMR-based model of the ubiquitin-bound human ubiquitin conjugation complex Mms2.Ubc13. The structural basis for lysine 63 chain catalysis.
|
| |
J Biol Chem,
278,
13151-13158.
|
 |
|
|
|
|
 |
U.K.von Schwedler,
M.Stuchell,
B.Müller,
D.M.Ward,
H.Y.Chung,
E.Morita,
H.E.Wang,
T.Davis,
G.P.He,
D.M.Cimbora,
A.Scott,
H.G.Kräusslich,
J.Kaplan,
S.G.Morham,
and
W.I.Sundquist
(2003).
The protein network of HIV budding.
|
| |
Cell,
114,
701-713.
|
 |
|
|
|
|
 |
Y.G.Kuznetsov,
J.G.Victoria,
W.E.Robinson,
and
A.McPherson
(2003).
Atomic force microscopy investigation of human immunodeficiency virus (HIV) and HIV-infected lymphocytes.
|
| |
J Virol,
77,
11896-11909.
|
 |
|
|
|
|
 |
D.J.Katzmann,
G.Odorizzi,
and
S.D.Emr
(2002).
Receptor downregulation and multivesicular-body sorting.
|
| |
Nat Rev Mol Cell Biol,
3,
893-905.
|
 |
|
|
|
|
 |
K.P.Bencsath,
M.S.Podgorski,
V.R.Pagala,
C.A.Slaughter,
and
B.A.Schulman
(2002).
Identification of a multifunctional binding site on Ubc9p required for Smt3p conjugation.
|
| |
J Biol Chem,
277,
47938-47945.
|
 |
|
|
|
|
 |
O.Pornillos,
J.E.Garrus,
and
W.I.Sundquist
(2002).
Mechanisms of enveloped RNA virus budding.
|
| |
Trends Cell Biol,
12,
569-579.
|
 |
|
|
|
|
 |
O.Pornillos,
S.L.Alam,
D.R.Davis,
and
W.I.Sundquist
(2002).
Structure of the Tsg101 UEV domain in complex with the PTAP motif of the HIV-1 p6 protein.
|
| |
Nat Struct Biol,
9,
812-817.
|
 |
|
PDB codes:
|
 |
|
|
 |
 |
|
The most recent references are shown first.
Citation data come partly from CiteXplore and partly
from an automated harvesting procedure. Note that this is likely to be
only a partial list as not all journals are covered by
either method. However, we are continually building up the citation data
so more and more references will be included with time.
Where a reference describes a PDB structure, the PDB
codes are
shown on the right.
|
');
}
}
 |