spacer
spacer

PDBsum entry 1kog

Go to PDB code: 
protein dna_rna ligands metals Protein-protein interface(s) links
Ligase/RNA PDB id
1kog

 

 

 

 

Loading ...

 
JSmol PyMol  
Contents
Protein chains
(+ 2 more) 401 a.a. *
DNA/RNA
Ligands
TSB ×8
Metals
_ZN ×8
Waters ×170
* Residue conservation analysis
PDB id:
1kog
Name: Ligase/RNA
Title: Crystal structure of e. Coli threonyl-tRNA synthetase interacting with the essential domain of its mRNA operator
Structure: Threonyl-tRNA synthetase mRNA. Chain: i, j, k, l, m, n, o, p. Engineered: yes. Mutation: yes. Other_details: domain d2 of the trs mRNA operator from e.Coli (nucleotides -49 to -13). Threonyl-tRNA synthetase. Chain: a, b, c, d, e, f, g, h. Fragment: catalytic and anticodon binding domains (residues 242 to
Source: Synthetic: yes. Other_details: this is the natural sequence of domain d2 of the trs mRNA operator from e. Coli, covering residues -49 to -13 (69 to 105 in the present coordinate file) of e.Coli trs mRNA, except for the first 3 base pairs. It was synthesized in vitro by t7 transcription.. Escherichia coli. Organism_taxid: 562. Expressed in: escherichia coli.
Biol. unit: Tetramer (from PDB file)
Resolution:
3.50Å     R-factor:   0.251     R-free:   0.287
Authors: A.Torres-Larrios,A.C.Dock-Bregeon,P.Romby,B.Rees,R.Sankaranarayanan, J.Caillet,M.Springer,C.Ehresmann,B.Ehresmann,D.Moras
Key ref:
A.Torres-Larios et al. (2002). Structural basis of translational control by Escherichia coli threonyl tRNA synthetase. Nat Struct Biol, 9, 343-347. PubMed id: 11953757
Date:
20-Dec-01     Release date:   26-Apr-02    
PROCHECK
Go to PROCHECK summary
 Headers
 References

Protein chains
Pfam   ArchSchema ?
P0A8M3  (SYT_ECOLI) -  Threonine--tRNA ligase from Escherichia coli (strain K12)
Seq:
Struc:
 
Seq:
Struc:
642 a.a.
401 a.a.
Key:    PfamA domain  Secondary structure  CATH domain

DNA/RNA chains
  G-G-C-G-U-A-U-G-U-G-A-U-C-U-U-U-C-G-U-G-U-G-G-G-U-C-A-C-C-A-C-U-G-C-G-C-C 37 bases
  G-G-C-G-U-A-U-G-U-G-A-U-C-U-U-U-C-G-U-G-U-G-G-G-U-C-A-C-C-A-C-U-G-C-G-C-C 37 bases
  G-G-C-G-U-A-U-G-U-G-A-U-C-U-U-U-C-G-U-G-U-G-G-G-U-C-A-C-C-A-C-U-G-C-G-C-C 37 bases
  G-G-C-G-U-A-U-G-U-G-A-U-C-U-U-U-C-G-U-G-U-G-G-G-U-C-A-C-C-A-C-U-G-C-G-C-C 37 bases
  G-G-C-G-U-A-U-G-U-G-A-U-C-U-U-U-C-G-U-G-U-G-G-G-U-C-A-C-C-A-C-U-G-C-G-C-C 37 bases
  G-G-C-G-U-A-U-G-U-G-A-U-C-U-U-U-C-G-U-G-U-G-G-G-U-C-A-C-C-A-C-U-G-C-G-C-C 37 bases
  G-G-C-G-U-A-U-G-U-G-A-U-C-U-U-U-C-G-U-G-U-G-G-G-U-C-A-C-C-A-C-U-G-C-G-C-C 37 bases
  G-G-C-G-U-A-U-G-U-G-A-U-C-U-U-U-C-G-U-G-U-G-G-G-U-C-A-C-C-A-C-U-G-C-G-C-C 37 bases

 Enzyme reactions 
   Enzyme class: E.C.6.1.1.3  - threonine--tRNA ligase.
[IntEnz]   [ExPASy]   [KEGG]   [BRENDA]
      Reaction: tRNA(Thr) + L-threonine + ATP = L-threonyl-tRNA(Thr) + AMP + diphosphate + H+
tRNA(Thr)
+ L-threonine
+ ATP
=
L-threonyl-tRNA(Thr)
Bound ligand (Het Group name = TSB)
matches with 55.88% similarity
+ AMP
+ diphosphate
+ H(+)
Molecule diagrams generated from .mol files obtained from the KEGG ftp site

 

 
    reference    
 
 
Nat Struct Biol 9:343-347 (2002)
PubMed id: 11953757  
 
 
Structural basis of translational control by Escherichia coli threonyl tRNA synthetase.
A.Torres-Larios, A.C.Dock-Bregeon, P.Romby, B.Rees, R.Sankaranarayanan, J.Caillet, M.Springer, C.Ehresmann, B.Ehresmann, D.Moras.
 
  ABSTRACT  
 
Escherichia coli threonyl-tRNA synthetase (ThrRS) represses the translation of its own messenger RNA by binding to an operator located upstream of the initiation codon. The crystal structure of the complex between the core of ThrRS and the essential domain of the operator shows that the mRNA uses the recognition mode of the tRNA anticodon loop to initiate binding. The final positioning of the operator, upon which the control mechanism is based, relies on a characteristic RNA motif adapted to the enzyme surface. The finding of other thrS operators that have this conserved motif leads to a generalization of this regulatory mechanism to a subset of Gram-negative bacteria.
 

Literature references that cite this PDB file's key reference

  PubMed id Reference
20696653 C.Zhong, H.Tang, and S.Zhang (2010).
RNAMotifScan: automatic identification of RNA structural motifs using secondary structural alignment.
  Nucleic Acids Res, 38, e176.  
19385727 P.Babitzke, C.S.Baker, and T.Romeo (2009).
Regulation of translation initiation by RNA binding proteins.
  Annu Rev Microbiol, 63, 27-44.  
18522650 C.D.Hausmann, and M.Ibba (2008).
Aminoacyl-tRNA synthetase complexes: molecular multitasking revealed.
  FEMS Microbiol Rev, 32, 705-721.  
18363797 E.E.Regulski, R.H.Moy, Z.Weinberg, J.E.Barrick, Z.Yao, W.L.Ruzzo, and R.R.Breaker (2008).
A widespread riboswitch candidate that controls bacterial genes involved in molybdenum cofactor and tungsten cofactor metabolism.
  Mol Microbiol, 68, 918-932.  
  18678934 R.Arreola, A.Vega-Miranda, A.Gómez-Puyou, R.Pérez-Montfort, E.Merino-Pérez, and A.Torres-Larios (2008).
Expression, purification and preliminary X-ray diffraction studies of the transcriptional factor PyrR from Bacillus halodurans.
  Acta Crystallogr Sect F Struct Biol Cryst Commun, 64, 692-696.  
  18931432 S.Shimizu, E.C.Juan, Y.I.Miyashita, Y.Sato, M.M.Hoque, K.Suzuki, M.Yogiashi, M.Tsunoda, A.C.Dock-Bregeon, D.Moras, T.Sekiguchi, and A.Takénaka (2008).
Crystallization and preliminary crystallographic studies of putative threonyl-tRNA synthetases from Aeropyrum pernix and Sulfolobus tokodaii.
  Acta Crystallogr Sect F Struct Biol Cryst Commun, 64, 903-910.  
17644600 J.Caillet, M.Graffe, F.Eyermann, P.Romby, and M.Springer (2007).
Mutations in residues involved in zinc binding in the catalytic site of Escherichia coli threonyl-tRNA synthetase confer a dominant lethal phenotype.
  J Bacteriol, 189, 6839-6848.  
16707260 R.T.Batey (2006).
Structures of regulatory elements in mRNAs.
  Curr Opin Struct Biol, 16, 299-306.  
16724112 X.L.Yang, F.J.Otero, K.L.Ewalt, J.Liu, M.A.Swairjo, C.Köhrer, U.L.RajBhandary, R.J.Skene, D.E.McRee, and P.Schimmel (2006).
Two conformations of a crystalline human tRNA synthetase-tRNA complex: implications for protein synthesis.
  EMBO J, 25, 2919-2929.
PDB code: 2azx
15860776 A.Lescoute, N.B.Leontis, C.Massire, and E.Westhof (2005).
Recurrent structural RNA motifs, Isostericity Matrices and sequence alignments.
  Nucleic Acids Res, 33, 2395-2409.  
15802605 L.Jenner, P.Romby, B.Rees, C.Schulze-Briese, M.Springer, C.Ehresmann, B.Ehresmann, D.Moras, G.Yusupova, and M.Yusupov (2005).
Translational operator of mRNA on the ribosome: how repressor proteins exclude ribosome binding.
  Science, 308, 120-123.
PDB codes: 1yl3 1yl4
15079065 K.Beebe, E.Merriman, L.Ribas De Pouplana, and P.Schimmel (2004).
A domain for editing by an archaebacterial tRNA synthetase.
  Proc Natl Acad Sci U S A, 101, 5958-5963.  
15039361 N.Kim, E.A.Marcus, Y.Wen, D.L.Weeks, D.R.Scott, H.C.Jung, I.S.Song, and G.Sachs (2004).
Genes of Helicobacter pylori regulated by attachment to AGS cells.
  Infect Immun, 72, 2358-2368.  
12581659 A.R.Ferré-D'Amaré (2003).
RNA-modifying enzymes.
  Curr Opin Struct Biol, 13, 49-55.  
12682022 A.Serganov, A.Polonskaia, B.Ehresmann, C.Ehresmann, and D.J.Patel (2003).
Ribosomal protein S15 represses its own translation via adaptation of an rRNA-like fold within its mRNA.
  EMBO J, 22, 1898-1908.  
12581352 J.Caillet, T.Nogueira, B.Masquida, F.Winter, M.Graffe, A.C.Dock-Brégeon, A.Torres-Larios, R.Sankaranarayanan, E.Westhof, B.Ehresmann, C.Ehresmann, P.Romby, and M.Springer (2003).
The modular structure of Escherichia coli threonyl-tRNA synthetase as both an enzyme and a regulator of gene expression.
  Mol Microbiol, 47, 961-974.  
12831880 N.B.Leontis, and E.Westhof (2003).
Analysis of RNA motifs.
  Curr Opin Struct Biol, 13, 300-308.  
12787346 P.J.Schlax, and D.J.Worhunsky (2003).
Translational repression mechanisms in prokaryotes.
  Mol Microbiol, 48, 1157-1169.  
12615010 P.Romby, and M.Springer (2003).
Bacterial translational control at atomic resolution.
  Trends Genet, 19, 155-161.  
12738792 U.Stelzl, J.M.Zengel, M.Tovbina, M.Walker, K.H.Nierhaus, L.Lindahl, and D.J.Patel (2003).
RNA-structural mimicry in Escherichia coli ribosomal protein L4-dependent regulation of the S10 operon.
  J Biol Chem, 278, 28237-28245.  
The most recent references are shown first. Citation data come partly from CiteXplore and partly from an automated harvesting procedure. Note that this is likely to be only a partial list as not all journals are covered by either method. However, we are continually building up the citation data so more and more references will be included with time. Where a reference describes a PDB structure, the PDB code is shown on the right.

 

spacer

spacer