spacer
spacer

PDBsum entry 1kme

Go to PDB code: 
protein ligands Protein-protein interface(s) links
Membrane protein PDB id
1kme

 

 

 

 

Loading ...

 
JSmol PyMol  
Contents
Protein chains
227 a.a. *
Ligands
RET ×2
SQU ×2
BGC ×2
Waters ×122
* Residue conservation analysis
PDB id:
1kme
Name: Membrane protein
Title: Crystal structure of bacteriorhodopsin crystallized from bicelles
Structure: Bacteriorhodopsin. Chain: a, b. Fragment: residues 14-244. Synonym: br
Source: Halobacterium salinarum. Organism_taxid: 2242
Resolution:
2.00Å     R-factor:   0.263     R-free:   0.275
Authors: S.Faham,J.U.Bowie
Key ref:
S.Faham and J.U.Bowie (2002). Bicelle crystallization: a new method for crystallizing membrane proteins yields a monomeric bacteriorhodopsin structure. J Mol Biol, 316, 1-6. PubMed id: 11829498 DOI: 10.1006/jmbi.2001.5295
Date:
14-Dec-01     Release date:   13-Feb-02    
PROCHECK
Go to PROCHECK summary
 Headers
 References

Protein chains
Pfam   ArchSchema ?
P02945  (BACR_HALSA) -  Bacteriorhodopsin from Halobacterium salinarum (strain ATCC 700922 / JCM 11081 / NRC-1)
Seq:
Struc:
262 a.a.
227 a.a.
Key:    PfamA domain  Secondary structure  CATH domain

 

 
DOI no: 10.1006/jmbi.2001.5295 J Mol Biol 316:1-6 (2002)
PubMed id: 11829498  
 
 
Bicelle crystallization: a new method for crystallizing membrane proteins yields a monomeric bacteriorhodopsin structure.
S.Faham, J.U.Bowie.
 
  ABSTRACT  
 
Obtaining crystals of membrane proteins that diffract to high resolution remains a major stumbling block in structure determination. Here we present a new method for crystallizing membrane proteins from a bicelle forming lipid/detergent mixture. The method is flexible and simple to use. As a test case, bacteriorhodopsin (bR) from Halobacterium salinarum was crystallized from a bicellar solution, yielding a new bR crystal form. The crystals belong to space group P2(1) with unit cell dimensions of a=45.0 A, b=108.9 A, c=55.9 A, beta=113.58 degrees and a dimeric asymmetric unit. The structure was solved by molecular replacement and refined at 2.0 A resolution. In all previous bR structures the protein is organized as a parallel trimer, but in the crystals grown from bicelles, the individual bR subunits are arranged in an antiparallel fashion.
 
  Selected figure(s)  
 
Figure 1.
Figure 1. Bicelle crystallization method. (a) Outline of the method. (b) Crystals of bR grown from bicelle forming lipid/detergent mixture. Purple membrane was purified as described by Oesterhelt & Steckenius.[29] Purple membrane was suspended in water to a bR concentration of vert, similar 10 mg/ml and was mixed in a 4:1 ratio with a 40% (3:1) DMPC/Chapso bicellar solution, making a vert, similar 8.0 mg/ml bR/8% bicelles mixture. Reconstitution and homogenization of the protein into the bicelles was achieved simply by repeated pipeting of the solution. Crystals were grown using the hanging, or sitting drop method and all solutions were kept on ice prior to mixing to keep the bicelle mixtures fluid. The crystallization drops contained 6 µl of protein/bicelle solution with 2.5 µl of well solution and 1 µl of 2.5% b-octylglucoside (OG) solution. The well solution contained 3.2 M NaPO[4] (pH 3.5). The crystal trays were then placed in a 37°C incubator to allow the bicelles to gel. Diamond-shaped crystals grew within a few days to two weeks. The addition of OG was not required for crystal growth; however, larger crystals were obtained in its presence.
Figure 3.
Figure 3. The packing interfaces in the bicelle crystals. (a) Top view of a layer. (b) Side view of a layer. Helices A and B (red) and helices C and D (blue), provide the main contributions to interface I. Helices E and F (green) provide the main contributions to interface II. Figure 2 and Figure 3 were prepared using the program MOLSCRIPT. [30]
 
  The above figures are reprinted by permission from Elsevier: J Mol Biol (2002, 316, 1-6) copyright 2002.  
  Figures were selected by the author.  

Literature references that cite this PDB file's key reference

  PubMed id Reference
22245965 H.Wang, J.Elferich, and E.Gouaux (2012).
Structures of LeuT in bicelles define conformation and substrate binding in a membrane-like context.
  Nat Struct Mol Biol, 19, 212-219.
PDB codes: 3usg 3usi 3usj 3usk 3usl 3usm 3uso 3usp
21414670 B.K.Kobilka (2011).
Structural insights into adrenergic receptor function and pharmacology.
  Trends Pharmacol Sci, 32, 213-218.  
21183976 C.V.Kulkarni, W.Wachter, G.Iglesias-Salto, S.Engelskirchen, and S.Ahualli (2011).
Monoolein: a magic lipid?
  Phys Chem Chem Phys, 13, 3004-3021.  
21743477 J.Payandeh, T.Scheuer, N.Zheng, and W.A.Catterall (2011).
The crystal structure of a voltage-gated sodium channel.
  Nature, 475, 353-358.
PDB codes: 3rvy 3rvz 3rw0
20025250 D.J.Kissick, E.J.Gualtieri, G.J.Simpson, and V.Cherezov (2010).
Nonlinear optical imaging of integral membrane protein crystals in lipidic mesophases.
  Anal Chem, 82, 491-497.  
20307193 J.L.Popot (2010).
Amphipols, nanodiscs, and fluorinated surfactants: three nonconventional approaches to studying membrane proteins in aqueous solutions.
  Annu Rev Biochem, 79, 737-775.  
20667175 K.R.Vinothkumar, and R.Henderson (2010).
Structures of membrane proteins.
  Q Rev Biophys, 43, 65.  
20057046 V.Borshchevskiy, R.Efremov, E.Moiseeva, G.Büldt, and V.Gordeliy (2010).
Overcoming merohedral twinning in crystals of bacteriorhodopsin grown in lipidic mesophase.
  Acta Crystallogr D Biol Crystallogr, 66, 26-32.  
19248817 A.Diller, C.Loudet, F.Aussenac, G.Raffard, S.Fournier, M.Laguerre, A.Grélard, S.J.Opella, F.M.Marassi, and E.J.Dufourc (2009).
Bicelles: A natural 'molecular goniometer' for structural, dynamical and topological studies of molecules in membranes.
  Biochimie, 91, 744-751.  
19458711 D.M.Rosenbaum, S.G.Rasmussen, and B.K.Kobilka (2009).
The structure and function of G-protein-coupled receptors.
  Nature, 459, 356-363.  
  20161395 H.J.Kim, S.C.Howell, W.D.Van Horn, Y.H.Jeon, and C.R.Sanders (2009).
Recent Advances in the Application of Solution NMR Spectroscopy to Multi-Span Integral Membrane Proteins.
  Prog Nucl Magn Reson Spectrosc, 55, 335-360.  
19390528 M.Caffrey, and V.Cherezov (2009).
Crystallizing membrane proteins using lipidic mesophases.
  Nat Protoc, 4, 706-731.  
19416061 S.Raunser, and T.Walz (2009).
Electron crystallography as a technique to study the structure on membrane proteins in a lipidic environment.
  Annu Rev Biophys, 38, 89.  
19536805 T.M.Blois, and J.U.Bowie (2009).
G-protein-coupled receptor structures were not built in a day.
  Protein Sci, 18, 1335-1342.  
19360018 Z.E.Newby, J.D.O'Connell, F.Gruswitz, F.A.Hays, W.E.Harries, I.M.Harwood, J.D.Ho, J.K.Lee, D.F.Savage, L.J.Miercke, and R.M.Stroud (2009).
A general protocol for the crystallization of membrane proteins for X-ray structural investigation.
  Nat Protoc, 4, 619-637.  
18409194 E.Lescot, J.Sopkova-de Oliveira Santos, N.Colloc'h, J.Rodrigo, I.Milazzo-Segalas, R.Bureau, and S.Rault (2008).
Three-dimensional model of the human urotensin-II receptor: docking of human urotensin-II and nonpeptide antagonists in the binding site and comparison with an antagonist pharmacophore model.
  Proteins, 73, 173-184.  
18922772 H.Luecke, B.Schobert, J.Stagno, E.S.Imasheva, J.M.Wang, S.P.Balashov, and J.K.Lanyi (2008).
Crystallographic structure of xanthorhodopsin, the light-driven proton pump with a dual chromophore.
  Proc Natl Acad Sci U S A, 105, 16561-16565.
PDB code: 3ddl
  18484707 H.Stahlberg, and T.Walz (2008).
Molecular electron microscopy: state of the art and current challenges.
  ACS Chem Biol, 3, 268-281.  
18500332 N.H.Joh, A.Min, S.Faham, J.P.Whitelegge, D.Yang, V.L.Woods, and J.U.Bowie (2008).
Modest stabilization by most hydrogen-bonded side-chain interactions in membrane proteins.
  Nature, 453, 1266-1270.
PDB codes: 3coc 3cod
17932686 R.K.Hite, T.Gonen, S.C.Harrison, and T.Walz (2008).
Interactions of lipids with aquaporin-0 and other membrane proteins.
  Pflugers Arch, 456, 651-661.  
18988731 R.Ujwal, D.Cascio, J.P.Colletier, S.Faham, J.Zhang, L.Toro, P.Ping, and J.Abramson (2008).
The crystal structure of mouse VDAC1 at 2.3 A resolution reveals mechanistic insights into metabolite gating.
  Proc Natl Acad Sci U S A, 105, 17742-17747.
PDB code: 3emn
19073922 S.Törnroth-Horsefield, and R.Neutze (2008).
Opening and closing the metabolite gate.
  Proc Natl Acad Sci U S A, 105, 19565-19566.  
18957321 W.I.Weis, and B.K.Kobilka (2008).
Structural insights into G-protein-coupled receptor activation.
  Curr Opin Struct Biol, 18, 734-740.  
17521566 D.L.Minor (2007).
The neurobiologist's guide to structural biology: a primer on why macromolecular structure matters and how to evaluate structural data.
  Neuron, 54, 511-533.  
17952055 S.G.Rasmussen, H.J.Choi, D.M.Rosenbaum, T.S.Kobilka, F.S.Thian, P.C.Edwards, M.Burghammer, V.R.Ratnala, R.Sanishvili, R.F.Fischetti, G.F.Schertler, W.I.Weis, and B.K.Kobilka (2007).
Crystal structure of the human beta2 adrenergic G-protein-coupled receptor.
  Nature, 450, 383-387.
PDB codes: 2r4r 2r4s
16836758 D.Casciari, M.Seeber, and F.Fanelli (2006).
Quaternary structure predictions of transmembrane proteins starting from the monomer: a docking-based approach.
  BMC Bioinformatics, 7, 340.  
16964530 H.L.Frericks, D.H.Zhou, L.L.Yap, R.B.Gennis, and C.M.Rienstra (2006).
Magic-angle spinning solid-state NMR of a 144 kDa membrane protein complex: E. coli cytochrome bo3 oxidase.
  J Biomol NMR, 36, 55-71.  
16731567 R.Efremov, V.I.Gordeliy, J.Heberle, and G.Büldt (2006).
Time-resolved microspectroscopy on a single crystal of bacteriorhodopsin reveals lattice-induced differences in the photocycle kinetics.
  Biophys J, 91, 1441-1451.  
  16946459 T.P.Roosild, S.Castronovo, and S.Choe (2006).
Structure of anti-FLAG M2 Fab domain and its use in the stabilization of engineered membrane proteins.
  Acta Crystallogr Sect F Struct Biol Cryst Commun, 62, 835-839.
PDB code: 2g60
16838301 Y.Park, and V.Helms (2006).
How strongly do sequence conservation patterns and empirical scales correlate with exposure patterns of transmembrane helices of membrane proteins?
  Biopolymers, 83, 389-399.  
16247786 E.Kloppmann, T.Becker, and G.M.Ullmann (2005).
Electrostatic potential at the retinal of three archaeal rhodopsins: implications for their different absorption spectra.
  Proteins, 61, 953-965.  
16021408 J.Katsaras, T.A.Harroun, J.Pencer, and M.P.Nieh (2005).
"Bicellar" lipid mixtures as used in biochemical and biophysical studies.
  Naturwissenschaften, 92, 355-366.  
15821169 L.S.Sanii, A.W.Schill, C.E.Moran, and M.A.El-Sayed (2005).
The protonation-deprotonation kinetics of the protonated Schiff base in bicelle bacteriorhodopsin crystals.
  Biophys J, 89, 444-451.  
16097857 L.S.Sanii, and M.A.El-Sayed (2005).
Partial dehydration of the retinal binding pocket and proof for photochemical deprotonation of the retinal Schiff base in bicelle bacteriorhodopsin crystals.
  Photochem Photobiol, 81, 1356-1360.  
15652249 P.Nollert (2005).
Membrane protein crystallization in amphiphile phases: practical and theoretical considerations.
  Prog Biophys Mol Biol, 88, 339-357.  
15689517 S.Faham, G.L.Boulting, E.A.Massey, S.Yohannan, D.Yang, and J.U.Bowie (2005).
Crystallization of bacteriorhodopsin from bicelle formulations at room temperature.
  Protein Sci, 14, 836-840.
PDB code: 1xji
15971205 V.P.Jaakola, M.Rehn, M.Moeller, U.Alexiev, A.Goldman, and G.J.Turner (2005).
G-protein-coupled receptor domain overexpression in Halobacterium salinarum: long-range transmembrane interactions in heptahelical membrane proteins.
  Proteins, 60, 412-423.  
15340167 A.L.Lomize, I.D.Pogozheva, and H.I.Mosberg (2004).
Quantification of helix-helix binding affinities in micelles and lipid bilayers.
  Protein Sci, 13, 2600-2612.  
15185363 C.R.Sanders, A.Kuhn Hoffmann, D.N.Gray, M.H.Keyes, and C.D.Ellis (2004).
French swimwear for membrane proteins.
  Chembiochem, 5, 423-426.  
15059248 P.Walian, T.A.Cross, and B.K.Jap (2004).
Structural genomics of membrane proteins.
  Genome Biol, 5, 215.  
15339801 R.Efremov, R.Moukhametzianov, G.Büldt, and V.Gordeliy (2004).
Physical detwinning of hemihedrally twinned hexagonal crystals of bacteriorhodopsin.
  Biophys J, 87, 3608-3613.  
14732697 S.Yohannan, S.Faham, D.Yang, J.P.Whitelegge, and J.U.Bowie (2004).
The evolution of transmembrane helix kinks and the structural diversity of G protein-coupled receptors.
  Proc Natl Acad Sci U S A, 101, 959-963.
PDB codes: 1q5i 1q5j
15388926 V.Cherezov, A.Peddi, L.Muthusubramaniam, Y.F.Zheng, and M.Caffrey (2004).
A robotic system for crystallizing membrane and soluble proteins in lipidic mesophases.
  Acta Crystallogr D Biol Crystallogr, 60, 1795-1807.  
12702760 H.Zhang, G.Kurisu, J.L.Smith, and W.A.Cramer (2003).
A defined protein-detergent-lipid complex for crystallization of integral membrane proteins: The cytochrome b6f complex of oxygenic photosynthesis.
  Proc Natl Acad Sci U S A, 100, 5160-5163.  
12598369 J.P.Cartailler, and H.Luecke (2003).
X-ray crystallographic analysis of lipid-protein interactions in the bacteriorhodopsin purple membrane.
  Annu Rev Biophys Biomol Struct, 32, 285-310.  
12610211 J.Wang, Z.A.Luthey-Schulten, and K.S.Suslick (2003).
Is the olfactory receptor a metalloprotein?
  Proc Natl Acad Sci U S A, 100, 3035-3039.  
14581210 L.E.Fisher, D.M.Engelman, and J.N.Sturgis (2003).
Effect of detergents on the association of the glycophorin a transmembrane helix.
  Biophys J, 85, 3097-3105.  
12539259 S.Rouhani, M.T.Facciotti, G.Woodcock, V.Cheung, C.Cunningham, D.Nguyen, B.Rad, C.T.Lin, C.S.Lunde, and R.M.Glaeser (2002).
Crystallization of membrane proteins from media composed of connected-bilayer gels.
  Biopolymers, 66, 300-316.  
The most recent references are shown first. Citation data come partly from CiteXplore and partly from an automated harvesting procedure. Note that this is likely to be only a partial list as not all journals are covered by either method. However, we are continually building up the citation data so more and more references will be included with time. Where a reference describes a PDB structure, the PDB codes are shown on the right.

 

spacer

spacer