spacer
spacer

PDBsum entry 1k6f

Go to PDB code: 
protein Protein-protein interface(s) links
Structural protein PDB id
1k6f

 

 

 

 

Loading ...

 
JSmol PyMol  
Contents
Protein chains
(+ 0 more) 29 a.a.
Waters ×352
PDB id:
1k6f
Name: Structural protein
Title: Crystal structure of the collagen triple helix model [(pro-pro-gly) 10]3
Structure: Collagen triple helix. Chain: a, b, c, d, e, f. Engineered: yes
Source: Synthetic: yes. Other_details: the protein was chemically synthesized.
Biol. unit: Trimer (from PQS)
Resolution:
1.30Å     R-factor:   0.226     R-free:   0.297
Authors: R.Berisio,L.Vitagliano,L.Mazzarella,A.Zagari
Key ref:
R.Berisio et al. (2002). Crystal structure of the collagen triple helix model [(Pro-Pro-Gly)(10)](3). Protein Sci, 11, 262-270. PubMed id: 11790836 DOI: 10.1110/ps.32602
Date:
16-Oct-01     Release date:   30-Jan-02    
PROCHECK
Go to PROCHECK summary
 Headers
 References

Protein chains
Pfam   ArchSchema ?
Q80BK4  (Q80BK4_SHV2) -  Saimiri transformation-associated protein from Saimiriine herpesvirus 2
Seq:
Struc:
99 a.a.
29 a.a.
Key:    PfamA domain  Secondary structure

 Enzyme reactions 
   Enzyme class: E.C.?
[IntEnz]   [ExPASy]   [KEGG]   [BRENDA]

 

 
DOI no: 10.1110/ps.32602 Protein Sci 11:262-270 (2002)
PubMed id: 11790836  
 
 
Crystal structure of the collagen triple helix model [(Pro-Pro-Gly)(10)](3).
R.Berisio, L.Vitagliano, L.Mazzarella, A.Zagari.
 
  ABSTRACT  
 
The first report of the full-length structure of the collagen-like polypeptide [(Pro-Pro-Gly)(10)](3) is given. This structure was obtained from crystals grown in a microgravity environment, which diffracted up to 1.3 A, using synchrotron radiation. The final model, which was refined to an R(factor) of 0.18, is the highest-resolution description of a collagen triple helix reported to date. This structure provides clues regarding a series of aspects related to collagen triple helix structure and assembly. The strict dependence of proline puckering on the position inside the Pro-Pro-Gly triplets and the correlation between backbone and side chain dihedral angles support the propensity-based mechanism of triple helix stabilization/destabilization induced by hydroxyproline. Furthermore, the analysis of [(Pro-Pro-Gly)(10)](3) packing, which is governed by electrostatic interactions, suggests that charges may act as locking features in the axial organization of triple helices in the collagen fibrils.
 
  Selected figure(s)  
 
Figure 1.
Fig. 1. (A) Organization of the [(Pro-Pro-Gly)[10][3] triple helices in the ac plane. Chains are colored with a ramping code from blue (N-termini) to red (C-termini). The two molecules in the asymmetric unit are the top-center (molecule 1) and the bottom-center (molecule 2) molecules. (B) Average model obtained in the subcell approximation (Vitagliano et al. 2001a) in the ac` plane. The c` corresponds to a ninth of the full-length c axis. (C) Electron density map (2Fo-Fc), extended to the whole unit cell, contoured at 2.0 . (D) Omit map (Fo-Fc) of a representative triplet contoured at 3.5 .
Figure 3.
Fig. 3. Distribution of water molecules as a function of their distance from the nearest protein atom.
 
  The above figures are reprinted by permission from the Protein Society: Protein Sci (2002, 11, 262-270) copyright 2002.  
  Figures were selected by an automated process.  

Literature references that cite this PDB file's key reference

  PubMed id Reference
21387339 A.Tuer, S.Krouglov, R.Cisek, D.Tokarz, and V.Barzda (2011).
Three-dimensional visualization of the first hyperpolarizability tensor.
  J Comput Chem, 32, 1128-1134.  
21280022 T.Suehiro, T.Tada, T.Waku, N.Tanaka, C.Hongo, S.Yamamoto, A.Nakahira, and C.Kojima (2011).
Temperature-dependent higher order structures of the (Pro-Pro-Gly)(10) -modified dendrimer.
  Biopolymers, 95, 270-277.  
20676409 J.A.Fallas, L.E.O'Leary, and J.D.Hartgerink (2010).
Synthetic collagen mimics: self-assembly of homotrimers, heterotrimers and higher order structures.
  Chem Soc Rev, 39, 3510-3527.  
20057053 K.Okuyama, T.Morimoto, H.Narita, T.Kawaguchi, K.Mizuno, H.P.Bächinger, G.Wu, and K.Noguchi (2010).
Two crystal modifications of (Pro-Pro-Gly)4-Hyp-Hyp-Gly-(Pro-Pro-Gly)4 reveal the puckering preference of Hyp(X) in the Hyp(X):Hyp(Y) and Hyp(X):Pro(Y) stacking pairs in collagen helices.
  Acta Crystallogr D Biol Crystallogr, 66, 88-96.
PDB codes: 3a08 3a19
20080719 M.D.Shoulders, K.A.Satyshur, K.T.Forest, and R.T.Raines (2010).
Stereoelectronic and steric effects in side chains preorganize a protein main chain.
  Proc Natl Acad Sci U S A, 107, 559-564.
PDB code: 3ipn
20385845 V.Nucciotti, C.Stringari, L.Sacconi, F.Vanzi, L.Fusi, M.Linari, G.Piazzesi, V.Lombardi, and F.S.Pavone (2010).
Probing myosin structural conformation in vivo by second-harmonic generation microscopy.
  Proc Natl Acad Sci U S A, 107, 7763-7768.  
19625247 J.A.Fallas, V.Gauba, and J.D.Hartgerink (2009).
Solution structure of an ABC collagen heterotrimer reveals a single-register helix stabilized by electrostatic interactions.
  J Biol Chem, 284, 26851-26859.
PDB code: 2klw
19137577 K.Okuyama, C.Hongo, G.Wu, K.Mizuno, K.Noguchi, S.Ebisuzaki, Y.Tanaka, N.Nishino, and H.P.Bächinger (2009).
High-resolution structures of collagen-like peptides [(Pro-Pro-Gly)(4)-Xaa-Yaa-Gly-(Pro-Pro-Gly)(4)]: Implications for triple-helix hydration and Hyp(X) puckering.
  Biopolymers, 91, 361-372.
PDB codes: 2d3f 2d3h
19046125 L.M.Haupert, and G.J.Simpson (2009).
Chirality in nonlinear optics.
  Annu Rev Phys Chem, 60, 345-365.  
19344236 M.D.Shoulders, and R.T.Raines (2009).
Collagen structure and stability.
  Annu Rev Biochem, 78, 929-958.  
19208618 S.T.Philominathan, T.Koide, K.Hamada, H.Yasui, S.Seifert, O.Matsushita, and J.Sakon (2009).
Unidirectional binding of clostridial collagenase to triple helical substrates.
  J Biol Chem, 284, 10868-10876.  
19451653 Y.Li, B.Brodsky, and J.Baum (2009).
NMR conformational and dynamic consequences of a gly to ser substitution in an osteogenesis imperfecta collagen model peptide.
  J Biol Chem, 284, 20660-20667.  
18384148 K.M.Ravikumar, and W.Hwang (2008).
Region-specific role of water in collagen unwinding and assembly.
  Proteins, 72, 1320-1332.  
17260393 G.D.Fullerton, and A.Rahal (2007).
Collagen structure: the molecular source of the tendon magic angle effect.
  J Magn Reson Imaging, 25, 345-361.  
17373653 K.Okuyama, H.Narita, T.Kawaguchi, K.Noguchi, Y.Tanaka, and N.Nishino (2007).
Unique side chain conformation of a Leu residue in a triple-helical structure.
  Biopolymers, 86, 212-221.
PDB codes: 2drt 2drx
17550251 M.A.Bryan, J.W.Brauner, G.Anderle, C.R.Flach, B.Brodsky, and R.Mendelsohn (2007).
FTIR studies of collagen model peptides: complementary experimental and simulation approaches to conformation and unfolding.
  J Am Chem Soc, 129, 7877-7884.  
16518844 K.Okuyama, G.Wu, N.Jiravanichanun, C.Hongo, and K.Noguchi (2006).
Helical twists of collagen model peptides.
  Biopolymers, 84, 421-432.  
16206128 K.Okuyama, X.Xu, M.Iguchi, and K.Noguchi (2006).
Revision of collagen molecular structure.
  Biopolymers, 84, 181-191.  
16273514 N.Jiravanichanun, N.Nishino, and K.Okuyama (2006).
Conformation of alloHyp in the Y position in the host-guest peptide with the pro-pro-gly sequence: implication of the destabilization of (Pro-alloHyp-Gly)10.
  Biopolymers, 81, 225-233.  
17009283 U.Kusebauch, S.A.Cadamuro, H.J.Musiol, M.O.Lenz, J.Wachtveitl, L.Moroder, and C.Renner (2006).
Photocontrolled folding and unfolding of a collagen triple helix.
  Angew Chem Int Ed Engl, 45, 7015-7018.  
15674975 A.E.Aliev (2005).
Solid-state NMR studies of collagen-based parchments and gelatin.
  Biopolymers, 77, 230-245.  
15558658 C.L.Jenkins, A.I.McCloskey, I.A.Guzei, E.S.Eberhardt, and R.T.Raines (2005).
O-acylation of hydroxyproline residues: effect on peptide-bond isomerization and collagen stability.
  Biopolymers, 80, 1-8.  
16131762 R.Willaert, I.Zegers, L.Wyns, and M.Sleutel (2005).
Protein crystallization in hydrogel beads.
  Acta Crystallogr D Biol Crystallogr, 61, 1280-1288.  
15824897 S.Vesentini, C.F.Fitié, F.M.Montevecchi, and A.Redaelli (2005).
Molecular assessment of the elastic properties of collagen-like homotrimer sequences.
  Biomech Model Mechanobiol, 3, 224-234.  
14695516 D.Barth, A.G.Milbradt, C.Renner, and L.Moroder (2004).
A (4R)- or a (4S)-fluoroproline residue in position Xaa of the (Xaa-Yaa-Gly) collagen repeat severely affects triple-helix formation.
  Chembiochem, 5, 79-86.  
14696182 J.P.Malone, A.George, and A.Veis (2004).
Type I collagen N-telopeptides adopt an ordered structure when docked to their helix receptor during fibrillogenesis.
  Proteins, 54, 206-215.  
15386273 K.Okuyama, C.Hongo, R.Fukushima, G.Wu, H.Narita, K.Noguchi, Y.Tanaka, and N.Nishino (2004).
Crystal structures of collagen model peptides with Pro-Hyp-Gly repeating sequence at 1.26 A resolution: implications for proline ring puckering.
  Biopolymers, 76, 367-377.
PDB codes: 1v4f 1v6q 1v7h
15048771 R.Berisio, V.Granata, L.Vitagliano, and A.Zagari (2004).
Characterization of collagen-like heterotrimers: implications for triple-helix stability.
  Biopolymers, 73, 682-688.  
12777759 A.E.Miele, L.Federici, G.Sciara, F.Draghi, M.Brunori, and B.Vallone (2003).
Analysis of the effect of microgravity on protein crystal quality: the case of a myoglobin triple mutant.
  Acta Crystallogr D Biol Crystallogr, 59, 982-988.
PDB codes: 1n9f 1n9h 1n9i 1n9x 1naz
12743029 H.Feinberg, J.C.Uitdehaag, J.M.Davies, R.Wallis, K.Drickamer, and W.I.Weis (2003).
Crystal structure of the CUB1-EGF-CUB2 region of mannose-binding protein associated serine protease-2.
  EMBO J, 22, 2348-2359.
PDB code: 1nt0
12706050 J.Slager, and A.J.Domb (2003).
Biopolymer stereocomplexes.
  Adv Drug Deliv Rev, 55, 549-583.  
12623021 J.Stetefeld, S.Frank, M.Jenny, T.Schulthess, R.A.Kammerer, S.Boudko, R.Landwehr, K.Okuyama, and J.Engel (2003).
Collagen stabilization at atomic level: crystal structure of designed (GlyProPro)10foldon.
  Structure, 11, 339-346.
PDB code: 1nay
12524302 K.V.Simon-Lukasik, A.V.Persikov, B.Brodsky, J.A.Ramshaw, W.R.Laws, J.B.Alexander Ross, and R.D.Ludescher (2003).
Fluorescence determination of tryptophan side-chain accessibility and dynamics in triple-helical collagen-like peptides.
  Biophys J, 84, 501-508.  
12381857 J.K.Rainey, and M.C.Goh (2002).
A statistically derived parameterization for the collagen triple-helix.
  Protein Sci, 11, 2748-2754.  
The most recent references are shown first. Citation data come partly from CiteXplore and partly from an automated harvesting procedure. Note that this is likely to be only a partial list as not all journals are covered by either method. However, we are continually building up the citation data so more and more references will be included with time. Where a reference describes a PDB structure, the PDB codes are shown on the right.

 

spacer

spacer