spacer
spacer

PDBsum entry 1jwp

Go to PDB code: 
protein ligands links
Hydrolase PDB id
1jwp

 

 

 

 

Loading ...

 
JSmol PyMol  
Contents
Protein chain
263 a.a. *
Ligands
PO4
Waters ×291
* Residue conservation analysis
PDB id:
1jwp
Name: Hydrolase
Title: Structure of m182t mutant of tem-1 beta-lactamase
Structure: Beta-lactamase tem. Chain: a. Fragment: tem-1. Engineered: yes. Mutation: yes
Source: Escherichia coli. Organism_taxid: 562. Gene: bla. Expressed in: escherichia coli. Expression_system_taxid: 562.
Resolution:
1.75Å     R-factor:   0.186     R-free:   0.220
Authors: X.Wang,G.Minasov,B.K.Shoichet
Key ref:
X.Wang et al. (2002). Evolution of an antibiotic resistance enzyme constrained by stability and activity trade-offs. J Mol Biol, 320, 85-95. PubMed id: 12079336 DOI: 10.1016/S0022-2836(02)00400-X
Date:
04-Sep-01     Release date:   05-Jun-02    
PROCHECK
Go to PROCHECK summary
 Headers
 References

Protein chain
Pfam   ArchSchema ?
P62593  (BLAT_ECOLX) -  Beta-lactamase TEM from Escherichia coli
Seq:
Struc:
286 a.a.
263 a.a.*
Key:    PfamA domain  Secondary structure  CATH domain
* PDB and UniProt seqs differ at 1 residue position (black cross)

 Enzyme reactions 
   Enzyme class: E.C.3.5.2.6  - beta-lactamase.
[IntEnz]   [ExPASy]   [KEGG]   [BRENDA]

      Pathway:
Penicillin Biosynthesis and Metabolism
      Reaction: a beta-lactam + H2O = a substituted beta-amino acid
      Cofactor: Zn(2+)

 

 
DOI no: 10.1016/S0022-2836(02)00400-X J Mol Biol 320:85-95 (2002)
PubMed id: 12079336  
 
 
Evolution of an antibiotic resistance enzyme constrained by stability and activity trade-offs.
X.Wang, G.Minasov, B.K.Shoichet.
 
  ABSTRACT  
 
Pressured by antibiotic use, resistance enzymes have been evolving new activities. Does such evolution have a cost? To investigate this question at the molecular level, clinically isolated mutants of the beta-lactamase TEM-1 were studied. When purified, mutant enzymes had increased activity against cephalosporin antibiotics but lost both thermodynamic stability and kinetic activity against their ancestral targets, penicillins. The X-ray crystallographic structures of three mutant enzymes were determined. These structures suggest that activity gain and stability loss is related to an enlarged active site cavity in the mutant enzymes. In several clinically isolated mutant enzymes, a secondary substitution is observed far from the active site (Met182-->Thr). This substitution had little effect on enzyme activity but restored stability lost by substitutions near the active site. This regained stability conferred an advantage in vivo. This pattern of stability loss and restoration may be common in the evolution of new enzyme activity.
 
  Selected figure(s)  
 
Figure 3.
Figure 3. Comparing the in vivo stabilities of TEM-52 (E104K/M182T/G238S, left) and TEM-15 (E104K/G238S, right) at (a) 42 °C and (b) RT. Plates are representative of five independent assays for each mutant. The two top disks on each plate are CAZ and CTX from left to right, and the bottom disk is AM.
Figure 5.
Figure 5. A stereo view of the enlarged active sites of (a) G238A and (b) TEM-64 (E104K/R164S/M182T). (a) Superposition of the G238A (carbon atoms colored orange) and WT (magenta, PDB 1XPB[39.]) crystal structures (rms is 0.24 Å for all C^a atoms). A broken line indicates the putative steric clash (distance 2.96 Å) between the C^b atom of Ala238 and the carbonyl oxygen atom of Asn170 that would occur in WT. For G238A, carbon, nitrogen, and oxygen atoms are colored yellow, blue, and red, respectively. The catalytic water molecule in WT (magenta) and G238A (cyan) is shown. (b) Superposition of the C^a atom of TEM-64 (blue) and penicillin-bound TEM-1 E166N (orange, PDB 1FQG[33.]) crystal structures (rms is 0.85 Å for all C^a atoms). The penicillin G acyl-adduct is shown to identify the active site. The carbon atoms in penicillin G are colored green, nitrogen atoms blue, oxygen atoms red, and the sulfur atom yellow.
 
  The above figures are reprinted by permission from Elsevier: J Mol Biol (2002, 320, 85-95) copyright 2002.  
  Figures were selected by an automated process.  

Literature references that cite this PDB file's key reference

  PubMed id Reference
21504394 J.L.Myers, and S.E.Hensley (2011).
Oseltamivir-resistant influenza viruses get by with a little help from permissive mutations.
  Expert Rev Anti Infect Ther, 9, 385-388.  
20446918 D.Rodriguez-Larrea, R.Perez-Jimenez, I.Sanchez-Romero, A.Delgado-Delgado, J.M.Fernandez, and J.M.Sanchez-Ruiz (2010).
Role of conservative mutations in protein multi-property adaptation.
  Biochem J, 429, 243-249.  
20522774 J.D.Bloom, L.I.Gong, and D.Baltimore (2010).
Permissive secondary mutations enable the evolution of influenza oseltamivir resistance.
  Science, 328, 1272-1275.  
20634811 M.Soskine, and D.S.Tawfik (2010).
Mutational effects and the evolution of new protein functions.
  Nat Rev Genet, 11, 572-582.  
20235827 O.Khersonsky, and D.S.Tawfik (2010).
Enzyme promiscuity: a mechanistic and evolutionary perspective.
  Annu Rev Biochem, 79, 471-505.  
20479772 R.C.MacLean, A.R.Hall, G.G.Perron, and A.Buckling (2010).
The population genetics of antibiotic resistance: integrating molecular mechanisms and treatment contexts.
  Nat Rev Genet, 11, 405-414.  
  20660109 T.A.Williams, and M.A.Fares (2010).
The effect of chaperonin buffering on protein evolution.
  Genome Biol Evol, 2, 609-619.  
19913034 V.L.Thomas, A.C.McReynolds, and B.K.Shoichet (2010).
Structural bases for stability-function tradeoffs in antibiotic resistance.
  J Mol Biol, 396, 47-59.
PDB codes: 3iwi 3iwo 3iwq 3ixb 3ixd 3ixg 3ixh
19966226 C.J.Jackson, J.L.Foo, N.Tokuriki, L.Afriat, P.D.Carr, H.K.Kim, G.Schenk, D.S.Tawfik, and D.L.Ollis (2009).
Conformational sampling, catalysis, and evolution of the bacterial phosphotriesterase.
  Proc Natl Acad Sci U S A, 106, 21631-21636.
PDB codes: 3a3w 3a3x 3a4j
19338387 C.Montanier, V.A.Money, V.M.Pires, J.E.Flint, B.A.Pinheiro, A.Goyal, J.A.Prates, A.Izumi, H.Stålbrand, C.Morland, A.Cartmell, K.Kolenova, E.Topakas, E.J.Dodson, D.N.Bolam, G.J.Davies, C.M.Fontes, and H.J.Gilbert (2009).
The active site of a carbohydrate esterase displays divergent catalytic and noncatalytic binding functions.
  PLoS Biol, 7, e71.
PDB codes: 2w9x 2waa 2wab 2wao
19587242 E.R.Lozovsky, T.Chookajorn, K.M.Brown, M.Imwong, P.J.Shaw, S.Kamchonwongpaisan, D.E.Neafsey, D.M.Weinreich, and D.L.Hartl (2009).
Stepwise acquisition of pyrimethamine resistance in the malaria parasite.
  Proc Natl Acad Sci U S A, 106, 12025-12030.  
19528653 J.D.Bloom, and F.H.Arnold (2009).
In the light of directed evolution: pathways of adaptive protein evolution.
  Proc Natl Acad Sci U S A, 106, 9995.  
19502357 J.Paramesvaran, E.G.Hibbert, A.J.Russell, and P.A.Dalby (2009).
Distributions of enzyme residues yielding mutants with improved substrate specificities from two different directed evolution strategies.
  Protein Eng Des Sel, 22, 401-411.  
19749752 K.B.Levin, O.Dym, S.Albeck, S.Magdassi, A.H.Keeble, C.Kleanthous, and D.S.Tawfik (2009).
Following evolutionary paths to protein-protein interactions with high affinity and selectivity.
  Nat Struct Mol Biol, 16, 1049-1055.
PDB code: 3gjn
19602543 K.M.Brown, M.A.Depristo, D.M.Weinreich, and D.L.Hartl (2009).
Temporal constraints on the incorporation of regulatory mutants in evolutionary pathways.
  Mol Biol Evol, 26, 2455-2462.  
19494908 N.Tokuriki, and D.S.Tawfik (2009).
Chaperonin overexpression promotes genetic variation and enzyme evolution.
  Nature, 459, 668-673.  
19935669 P.A.Romero, and F.H.Arnold (2009).
Exploring protein fitness landscapes by directed evolution.
  Nat Rev Mol Cell Biol, 10, 866-876.  
18822298 D.C.Marciano, J.M.Pennington, X.Wang, J.Wang, Y.Chen, V.L.Thomas, B.K.Shoichet, and T.Palzkill (2008).
Genetic and structural characterization of an L201P global suppressor substitution in TEM-1 beta-lactamase.
  J Mol Biol, 384, 151-164.
PDB code: 3cmz
18195065 F.Bös, and J.Pleiss (2008).
Conserved water molecules stabilize the Omega-loop in class A beta-lactamases.
  Antimicrob Agents Chemother, 52, 1072-1079.  
18154529 M.G.Page (2008).
Extended-spectrum beta-lactamases: structure and kinetic mechanism.
  Clin Microbiol Infect, 14, 63-74.  
18154525 M.Gniadkowski (2008).
Evolution of extended-spectrum beta-lactamases by mutation.
  Clin Microbiol Infect, 14, 11-32.  
18160520 M.Perilli, G.Celenza, F.De Santis, C.Pellegrini, C.Forcella, G.M.Rossolini, S.Stefani, and G.Amicosante (2008).
E240V substitution increases catalytic efficiency toward ceftazidime in a new natural TEM-type extended-spectrum beta-lactamase, TEM-149, from Enterobacter aerogenes and Serratia marcescens clinical isolates.
  Antimicrob Agents Chemother, 52, 915-919.  
18463696 N.Tokuriki, F.Stricher, L.Serrano, and D.S.Tawfik (2008).
How protein stability and new functions trade off.
  PLoS Comput Biol, 4, e1000002.  
18931667 R.D.Gupta, and D.S.Tawfik (2008).
Directed enzyme evolution via small and effective neutral drift libraries.
  Nat Methods, 5, 939-942.  
18283101 R.M.Kelly, H.Leemhuis, L.Gätjen, and L.Dijkhuizen (2008).
Evolution toward small molecule inhibitor resistance affects native enzyme function and stability, generating acarbose-insensitive cyclodextrin glucanotransferase variants.
  J Biol Chem, 283, 10727-10734.  
18687656 S.Bershtein, and D.S.Tawfik (2008).
Ohno's model revisited: measuring the frequency of potentially adaptive mutations under various mutational drifts.
  Mol Biol Evol, 25, 2311-2318.  
19020677 S.Martí, J.Andrés, V.Moliner, E.Silla, I.Tuñón, and J.Bertrán (2008).
Computational design of biological catalysts.
  Chem Soc Rev, 37, 2634-2643.  
17264073 H.Takahashi, M.Arai, T.Takenawa, H.Sota, Q.H.Xie, and M.Iwakura (2007).
Stabilization of hyperactive dihydrofolate reductase by cyanocysteine-mediated backbone cyclization.
  J Biol Chem, 282, 9420-9429.  
17640347 J.D.Bloom, Z.Lu, D.Chen, A.Raval, O.S.Venturelli, and F.H.Arnold (2007).
Evolution favors protein mutational robustness in sufficiently large populations.
  BMC Biol, 5, 29.  
17600829 N.Doucet, and J.N.Pelletier (2007).
Simulated annealing exploration of an active-site tyrosine in TEM-1 beta-lactamase suggests the existence of alternate conformations.
  Proteins, 69, 340-348.  
18049465 S.G.Peisajovich, and D.S.Tawfik (2007).
Protein engineers turned evolutionists.
  Nat Methods, 4, 991-994.  
16982784 C.R.Bethel, A.M.Hujer, K.M.Hujer, J.M.Thomson, M.W.Ruszczycky, V.E.Anderson, M.Pusztai-Carey, M.Taracila, M.S.Helfand, and R.A.Bonomo (2006).
Role of Asp104 in the SHV beta-lactamase.
  Antimicrob Agents Chemother, 50, 4124-4131.  
16601193 D.M.Weinreich, N.F.Delaney, M.A.Depristo, and D.L.Hartl (2006).
Darwinian evolution can follow only very few mutational paths to fitter proteins.
  Science, 312, 111-114.  
17661642 G.M.Rossolini, and J.D.Docquier (2006).
New beta-lactamases: a paradigm for the rapid response of bacterial evolution in the clinical setting.
  Future Microbiol, 1, 295-308.  
16581913 J.D.Bloom, S.T.Labthavikul, C.R.Otey, and F.H.Arnold (2006).
Protein stability promotes evolvability.
  Proc Natl Acad Sci U S A, 103, 5869-5874.  
16713575 R.Couñago, S.Chen, and Y.Shamoo (2006).
In vivo molecular evolution reveals biophysical origins of organismal fitness.
  Mol Cell, 22, 441-449.
PDB code: 2eu8
15897323 D.D.Jones (2005).
Triplet nucleotide removal at random positions in a target gene: the tolerance of TEM-1 beta-lactamase to an amino acid deletion.
  Nucleic Acids Res, 33, e80.  
16251281 F.Robin, J.Delmas, C.Chanal, D.Sirot, J.Sirot, and R.Bonnet (2005).
TEM-109 (CMT-5), a natural complex mutant of TEM-1 beta-lactamase combining the amino acid substitutions of TEM-6 and TEM-33 (IRT-5).
  Antimicrob Agents Chemother, 49, 4443-4447.  
15644440 J.D.Bloom, J.J.Silberg, C.O.Wilke, D.A.Drummond, C.Adami, and F.H.Arnold (2005).
Thermodynamic prediction of protein neutrality.
  Proc Natl Acad Sci U S A, 102, 606-611.  
16189109 J.Delmas, F.Robin, F.Bittar, C.Chanal, and R.Bonnet (2005).
Unexpected enzyme TEM-126: role of mutation Asp179Glu.
  Antimicrob Agents Chemother, 49, 4280-4287.  
16074985 M.A.DePristo, D.M.Weinreich, and D.L.Hartl (2005).
Missense meanderings in sequence space: a biophysical view of protein evolution.
  Nat Rev Genet, 6, 678-687.  
16239478 M.Lunzer, S.P.Miller, R.Felsheim, and A.M.Dean (2005).
The biochemical architecture of an ancient adaptive landscape.
  Science, 310, 499-501.  
16172409 P.E.Tomatis, R.M.Rasia, L.Segovia, and A.J.Vila (2005).
Mimicking natural evolution in metallo-beta-lactamases through second-shell ligand mutations.
  Proc Natl Acad Sci U S A, 102, 13761-13766.  
16081654 V.K.Dubey, J.Lee, and M.Blaber (2005).
Redesigning symmetry-related "mini-core" regions of FGF-1 to increase primary structure symmetry: thermodynamic and functional consequences of structural symmetry.
  Protein Sci, 14, 2315-2323.  
15981999 V.L.Thomas, D.Golemi-Kotra, C.Kim, S.B.Vakulenko, S.Mobashery, and B.K.Shoichet (2005).
Structural consequences of the inhibitor-resistant Ser130Gly substitution in TEM beta-lactamase.
  Biochemistry, 44, 9330-9338.
PDB code: 1yt4
15826180 Y.Chen, B.Shoichet, and R.Bonnet (2005).
Structure, function, and inhibition along the reaction coordinate of CTX-M beta-lactamases.
  J Am Chem Soc, 127, 5423-5434.
PDB codes: 1yly 1ylz 1ym1 1yms 1ymx
14747576 E.V.Makeyev, and D.H.Bamford (2004).
Evolutionary potential of an RNA virus.
  J Virol, 78, 2114-2120.  
15650379 I.Olesen, H.Hasman, and F.M.Aarestrup (2004).
Prevalence of beta-lactamases among ampicillin-resistant Escherichia coli and Salmonella isolated from food animals in Denmark.
  Microb Drug Resist, 10, 334-340.  
15111394 J.D.Bloom, C.O.Wilke, F.H.Arnold, and C.Adami (2004).
Stability and the evolvability of function in a model protein.
  Biophys J, 86, 2758-2764.  
12221102 T.Shimamura, A.Ibuka, S.Fushinobu, T.Wakagi, M.Ishiguro, Y.Ishii, and H.Matsuzawa (2002).
Acyl-intermediate structures of the extended-spectrum class A beta-lactamase, Toho-1, in complex with cefotaxime, cephalothin, and benzylpenicillin.
  J Biol Chem, 277, 46601-46608.
PDB codes: 1iyo 1iyp 1iyq
12058046 X.Wang, G.Minasov, and B.K.Shoichet (2002).
The structural bases of antibiotic resistance in the clinically derived mutant beta-lactamases TEM-30, TEM-32, and TEM-34.
  J Biol Chem, 277, 32149-32156.
PDB codes: 1lhy 1li0 1li9
The most recent references are shown first. Citation data come partly from CiteXplore and partly from an automated harvesting procedure. Note that this is likely to be only a partial list as not all journals are covered by either method. However, we are continually building up the citation data so more and more references will be included with time. Where a reference describes a PDB structure, the PDB codes are shown on the right.

 

spacer

spacer