|
|
|
|
 |
Contents |
 |
|
|
|
|
|
|
|
|
|
|
|
* Residue conservation analysis
|
|
|
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
|
|
|
| |
|
DOI no:
|
Proc Natl Acad Sci U S A
98:11181-11186
(2001)
|
|
PubMed id:
|
|
|
|
|
| |
|
X-ray structures of H5 avian and H9 swine influenza virus hemagglutinins bound to avian and human receptor analogs.
|
|
Y.Ha,
D.J.Stevens,
J.J.Skehel,
D.C.Wiley.
|
|
|
|
| |
ABSTRACT
|
|
|
| |
|
The three-dimensional structures of avian H5 and swine H9 influenza
hemagglutinins (HAs) from viruses closely related to those that caused outbreaks
of human disease in Hong Kong in 1997 and 1999 were determined bound to avian
and human cell receptor analogs. Emerging influenza pandemics have been
accompanied by the evolution of receptor-binding specificity from the preference
of avian viruses for sialic acid receptors in alpha2,3 linkage to the preference
of human viruses for alpha2,6 linkages. The four new structures show that HA
binding sites specific for human receptors appear to be wider than those
preferring avian receptors and how avian and human receptors are distinguished
by atomic contacts at the glycosidic linkage. alpha2,3-Linked sialosides bind
the avian HA in a trans conformation to form an alpha2,3 linkage-specific motif,
made by the glycosidic oxygen and 4-OH of the penultimate galactose, that is
complementary to the hydrogen-bonding capacity of Gln-226, an avian-specific
residue. alpha2,6-Linked sialosides bind in a cis conformation, exposing the
glycosidic oxygen to solution and nonpolar atoms of the receptor to Leu-226, a
human-specific residue. The new structures are compared with previously reported
crystal structures of HA/sialoside complexes of the H3 subtype that caused the
1968 Hong Kong Influenza virus pandemic and analyzed in relation to HA sequences
of all 15 subtypes and to receptor affinity data to make clearer how
receptor-binding sites of HAs from avian viruses evolve as the virus adapts to
humans.
|
|
|
|
|
| |
Selected figure(s)
|
|
|
| |
 |
 |
|
 |
|
 |
Figure 3.
Fig. 3. Atomic interactions between H5, H9, and H3 HAs
and sialosides. (a) Potential hydrogen bonds (dashed red)
between LSTc and the swine H9 HA. (b) Comparison of the binding
of LSTc ( 2,6) with
the 1999 swine H9 (red) and 1968 human H3 (blue) subtype HA.
Purple circles, common contacts; blue, H3 contacts; red, H9
contacts. (c) Comparison of the binding of LSTa ( 2,3) with
the 1997 avian H5 (green), 1999 swine H9 (red), and 1968 human
H3 (blue) subtype HAs. Purple circles, common contacts; blue, H3
contacts; green, H5 contacts; red, H9 contacts.
|
 |
Figure 4.
Fig. 4. Swine H9 and human H3 HA binding sites preferring
2,6
linkages are wider than avian H5 preferring 2,3. The H9
swine (gray), H3 human (green), and H5 avian (white) 226/228
loops are superimposed, showing that the H5 avian 220s loop
(Gln-226/Gly-228) is closer to the opposing 130s loop than the
H9 swine (Leu-226/Gly-228) or H3 human (Leu-226/Ser-228).
Contact between Ala-138 and the lower methyl group of Leu-226
requires a more "open" site. The glycosidic oxygen of sialic
acid (atom colors) is labeled with an asterisk. A water molecule
(red sphere) mediates interactions between the amide group of
Gly-228 and the 8- and 9-OHs of sialic acid in H9 swine and H5
avian HAs. The hydroxyl group of Ser-228 "replaces" the water
molecule to form a hydrogen bond with 9-OH in the H3 human HA.
|
 |
|
|
| |
Figures were
selected
by an automated process.
|
|
|
|
|
 |
 |
|
 |
 |
 |
 |
 |
 |
 |
 |
 |
|
Literature references that cite this PDB file's key reference
|
|
 |
| |
PubMed id
|
 |
Reference
|
 |
|
|
|
 |
M.Imai,
T.Watanabe,
M.Hatta,
S.C.Das,
M.Ozawa,
K.Shinya,
G.Zhong,
A.Hanson,
H.Katsura,
S.Watanabe,
C.Li,
E.Kawakami,
S.Yamada,
M.Kiso,
Y.Suzuki,
E.A.Maher,
G.Neumann,
and
Y.Kawaoka
(2012).
Experimental adaptation of an influenza H5 HA confers respiratory droplet transmission to a reassortant H5 HA/H1N1 virus in ferrets.
|
| |
Nature,
486,
420-428.
|
 |
|
|
|
|
 |
A.Hessel,
M.Schwendinger,
G.W.Holzer,
K.K.Orlinger,
S.Coulibaly,
H.Savidis-Dacho,
M.L.Zips,
B.A.Crowe,
T.R.Kreil,
H.J.Ehrlich,
P.N.Barrett,
and
F.G.Falkner
(2011).
Vectors Based on Modified Vaccinia Ankara Expressing Influenza H5N1 Hemagglutinin Induce Substantial Cross-Clade Protective Immunity.
|
| |
PLoS One,
6,
e16247.
|
 |
|
|
|
|
 |
C.Tosh,
H.V.Murugkar,
S.Nagarajan,
S.Tripathi,
M.Katare,
R.Jain,
R.Khandia,
Z.Syed,
P.Behera,
S.Patil,
D.D.Kulkarni,
and
S.C.Dubey
(2011).
Emergence of amantadine-resistant avian influenza H5N1 virus in India.
|
| |
Virus Genes,
42,
10-15.
|
 |
|
|
|
|
 |
D.L.Tran,
K.Kim,
J.Y.Choi,
H.D.Paik,
S.W.Choi,
J.Y.Ma,
S.S.Kim,
S.J.Ahn,
and
Y.B.Kim
(2011).
Genome sequence analysis of H5N1 influenza a virus isolated from a vietnamese in 2007.
|
| |
J Microbiol,
49,
274-279.
|
 |
|
|
|
|
 |
E.Miyagawa,
H.Kogaki,
Y.Uchida,
N.Fujii,
T.Shirakawa,
Y.Sakoda,
and
H.Kida
(2011).
Development of a novel rapid immunochromatographic test specific for the H5 influenza virus.
|
| |
J Virol Methods,
173,
213-219.
|
 |
|
|
|
|
 |
J.L.Wasilenko,
A.M.Arafa,
A.A.Selim,
M.K.Hassan,
M.M.Aly,
A.Ali,
S.Nassif,
E.Elebiary,
A.Balish,
A.Klimov,
D.L.Suarez,
D.E.Swayne,
and
M.J.Pantin-Jackwood
(2011).
Pathogenicity of two Egyptian H5N1 highly pathogenic avian influenza viruses in domestic ducks.
|
| |
Arch Virol,
156,
37-51.
|
 |
|
|
|
|
 |
S.Gohrbandt,
J.Veits,
J.Hundt,
J.Bogs,
A.Breithaupt,
J.P.Teifke,
S.Weber,
T.C.Mettenleiter,
and
J.Stech
(2011).
Amino acids adjacent to the haemagglutinin cleavage site are relevant for virulence of avian influenza viruses of subtype H5.
|
| |
J Gen Virol,
92,
51-59.
|
 |
|
|
|
|
 |
S.Ubol,
A.Suksatu,
N.Modhiran,
C.Sangma,
A.Thitithanyanont,
M.Fukuda,
and
T.Juthayothin
(2011).
Intra-host diversities of the receptor-binding domain of stork faeces-derived avian H5N1 viruses and its significance as predicted by molecular dynamic simulation.
|
| |
J Gen Virol,
92,
307-314.
|
 |
|
|
|
|
 |
A.M.Butt,
S.Siddique,
M.Idrees,
and
Y.Tong
(2010).
Avian influenza A (H9N2): computational molecular analysis and phylogenetic characterization of viral surface proteins isolated between 1997 and 2009 from the human population.
|
| |
Virol J,
7,
319.
|
 |
|
|
|
|
 |
A.R.Homayounimehr,
H.Dadras,
A.Shoushtari,
and
S.A.Pourbakhsh
(2010).
Sequence and phylogenetic analysis of the haemagglutinin genes of H9N2 avian influenza viruses isolated from commercial chickens in Iran.
|
| |
Trop Anim Health Prod,
42,
1291-1297.
|
 |
|
|
|
|
 |
D.A.Boltz,
B.Douangngeun,
P.Phommachanh,
S.Sinthasak,
R.Mondry,
C.Obert,
P.Seiler,
R.Keating,
Y.Suzuki,
H.Hiramatsu,
E.A.Govorkova,
and
R.G.Webster
(2010).
Emergence of H5N1 avian influenza viruses with reduced sensitivity to neuraminidase inhibitors and novel reassortants in Lao People's Democratic Republic.
|
| |
J Gen Virol,
91,
949-959.
|
 |
|
|
|
|
 |
H.Ge,
Y.F.Wang,
J.Xu,
Q.Gu,
H.B.Liu,
P.G.Xiao,
J.Zhou,
Y.Liu,
Z.Yang,
and
H.Su
(2010).
Anti-influenza agents from Traditional Chinese Medicine.
|
| |
Nat Prod Rep,
27,
1758-1780.
|
 |
|
|
|
|
 |
H.L.Ferreira,
B.Lambrecht,
S.van Borm,
L.Torrieri-Dramard,
D.Klatzmann,
B.Bellier,
and
T.van den Berg
(2010).
Identification of a dominant epitope in the hemagglutinin of an Asian highly pathogenic avian influenza H5N1 clade 1 virus by selection of escape mutants.
|
| |
Avian Dis,
54,
565-571.
|
 |
|
|
|
|
 |
H.R.Kim,
Y.J.Lee,
K.K.Lee,
J.K.Oem,
S.H.Kim,
M.H.Lee,
O.S.Lee,
and
C.K.Park
(2010).
Genetic relatedness of H6 subtype avian influenza viruses isolated from wild birds and domestic ducks in Korea and their pathogenicity in animals.
|
| |
J Gen Virol,
91,
208-219.
|
 |
|
|
|
|
 |
I.A.Rudneva,
A.A.Kushch,
O.V.Masalova,
T.A.Timofeeva,
R.R.Klimova,
A.A.Shilov,
A.V.Ignatieva,
P.S.Krylov,
and
N.V.Kaverin
(2010).
Antigenic epitopes in the hemagglutinin of Qinghai-type influenza H5N1 virus.
|
| |
Viral Immunol,
23,
181-187.
|
 |
|
|
|
|
 |
K.Smietanka,
A.Fusaro,
K.Domanska-Blicharz,
A.Salviato,
I.Monne,
W.G.Dundon,
G.Cattoli,
and
Z.Minta
(2010).
Full-length genome sequencing of the Polish HPAI H5N1 viruses suggests separate introductions in 2006 and 2007.
|
| |
Avian Dis,
54,
335-339.
|
 |
|
|
|
|
 |
K.Viswanathan,
A.Chandrasekaran,
A.Srinivasan,
R.Raman,
V.Sasisekharan,
and
R.Sasisekharan
(2010).
Glycans as receptors for influenza pathogenesis.
|
| |
Glycoconj J,
27,
561-570.
|
 |
|
|
|
|
 |
L.Sahini,
A.Tempczyk-Russell,
and
R.Agarwal
(2010).
Large-scale sequence analysis of hemagglutinin of influenza A virus identifies conserved regions suitable for targeting an anti-viral response.
|
| |
PLoS One,
5,
e9268.
|
 |
|
|
|
|
 |
S.J.Gamblin,
and
J.J.Skehel
(2010).
Influenza hemagglutinin and neuraminidase membrane glycoproteins.
|
| |
J Biol Chem,
285,
28403-28409.
|
 |
|
|
|
|
 |
T.Goletić,
A.Gagić,
E.Residbegović,
A.Kustura,
A.Kavazović,
V.Savić,
T.Harder,
E.Starick,
and
S.Prasović
(2010).
Highly pathogenic avian influenza virus subtype H5N1 in mute swans (Cygnus olor) in Central Bosnia.
|
| |
Avian Dis,
54,
496-501.
|
 |
|
|
|
|
 |
D.Liu,
X.Liu,
J.Yan,
W.J.Liu,
and
G.F.Gao
(2009).
Interspecies transmission and host restriction of avian H5N1 influenza virus.
|
| |
Sci China C Life Sci,
52,
428-438.
|
 |
|
|
|
|
 |
D.M.Tscherne,
and
A.García-Sastre
(2009).
Recent strategies to identify broadly neutralizing antibodies against influenza A virus.
|
| |
F1000 Biol Rep,
1,
0.
|
 |
|
|
|
|
 |
D.Xu,
E.I.Newhouse,
R.E.Amaro,
H.C.Pao,
L.S.Cheng,
P.R.Markwick,
J.A.McCammon,
W.W.Li,
and
P.W.Arzberger
(2009).
Distinct glycan topology for avian and human sialopentasaccharide receptor analogues upon binding different hemagglutinins: a molecular dynamics perspective.
|
| |
J Mol Biol,
387,
465-491.
|
 |
|
|
|
|
 |
E.I.Newhouse,
D.Xu,
P.R.Markwick,
R.E.Amaro,
H.C.Pao,
K.J.Wu,
M.Alam,
J.A.McCammon,
and
W.W.Li
(2009).
Mechanism of glycan receptor recognition and specificity switch for avian, swine, and human adapted influenza virus hemagglutinins: a molecular dynamics perspective.
|
| |
J Am Chem Soc,
131,
17430-17442.
|
 |
|
|
|
|
 |
G.J.Smith,
D.Vijaykrishna,
T.M.Ellis,
K.C.Dyrting,
Y.H.Leung,
J.Bahl,
C.W.Wong,
H.Kai,
M.K.Chow,
L.Duan,
A.S.Chan,
L.J.Zhang,
H.Chen,
G.S.Luk,
J.S.Peiris,
and
Y.Guan
(2009).
Characterization of avian influenza viruses A (H5N1) from wild birds, Hong Kong, 2004-2008.
|
| |
Emerg Infect Dis,
15,
402-407.
|
 |
|
|
|
|
 |
G.K.Goh,
A.K.Dunker,
and
V.N.Uversky
(2009).
Protein intrinsic disorder and influenza virulence: the 1918 H1N1 and H5N1 viruses.
|
| |
Virol J,
6,
69.
|
 |
|
|
|
|
 |
J.Abraham,
J.A.Kwong,
C.G.Albariño,
J.G.Lu,
S.R.Radoshitzky,
J.Salazar-Bravo,
M.Farzan,
C.F.Spiropoulou,
and
H.Choe
(2009).
Host-species transferrin receptor 1 orthologs are cellular receptors for nonpathogenic new world clade B arenaviruses.
|
| |
PLoS Pathog,
5,
e1000358.
|
 |
|
|
|
|
 |
J.Liu,
D.J.Stevens,
L.F.Haire,
P.A.Walker,
P.J.Coombs,
R.J.Russell,
S.J.Gamblin,
and
J.J.Skehel
(2009).
Structures of receptor complexes formed by hemagglutinins from the Asian Influenza pandemic of 1957.
|
| |
Proc Natl Acad Sci U S A,
106,
17175-17180.
|
 |
|
PDB codes:
|
 |
|
|
|
|
|
 |
M.Iqbal,
T.Yaqub,
K.Reddy,
and
J.W.McCauley
(2009).
Novel genotypes of H9N2 influenza A viruses isolated from poultry in Pakistan containing NS genes similar to highly pathogenic H7N3 and H5N1 viruses.
|
| |
PLoS One,
4,
e5788.
|
 |
|
|
|
|
 |
M.L.Reed,
H.L.Yen,
R.M.DuBois,
O.A.Bridges,
R.Salomon,
R.G.Webster,
and
C.J.Russell
(2009).
Amino acid residues in the fusion peptide pocket regulate the pH of activation of the H5N1 influenza virus hemagglutinin protein.
|
| |
J Virol,
83,
3568-3580.
|
 |
|
|
|
|
 |
P.Das,
J.Li,
A.K.Royyuru,
and
R.Zhou
(2009).
Free energy simulations reveal a double mutant avian H5N1 virus hemagglutinin with altered receptor binding specificity.
|
| |
J Comput Chem,
30,
1654-1663.
|
 |
|
|
|
|
 |
P.M.Kasson,
and
V.S.Pande
(2009).
Combining mutual information with structural analysis to screen for functionally important residues in influenza hemagglutinin.
|
| |
Pac Symp Biocomput,
(),
492-503.
|
 |
|
|
|
|
 |
S.J.Jadhao,
D.C.Nguyen,
T.M.Uyeki,
M.Shaw,
T.Maines,
T.Rowe,
C.Smith,
L.P.Huynh,
H.K.Nghiem,
D.H.Nguyen,
H.K.Nguyen,
H.H.Nguyen,
L.T.Hoang,
T.Nguyen,
L.S.Phuong,
A.Klimov,
T.M.Tumpey,
N.J.Cox,
R.O.Donis,
Y.Matsuoka,
and
J.M.Katz
(2009).
Genetic analysis of avian influenza A viruses isolated from domestic waterfowl in live-bird markets of Hanoi, Vietnam, preceding fatal H5N1 human infections in 2004.
|
| |
Arch Virol,
154,
1249-1261.
|
 |
|
|
|
|
 |
S.J.Lycett,
M.J.Ward,
F.I.Lewis,
A.F.Poon,
S.L.Kosakovsky Pond,
and
A.J.Brown
(2009).
Detection of mammalian virulence determinants in highly pathogenic avian influenza H5N1 viruses: multivariate analysis of published data.
|
| |
J Virol,
83,
9901-9910.
|
 |
|
|
|
|
 |
U.Neu,
T.Stehle,
and
W.J.Atwood
(2009).
The Polyomaviridae: Contributions of virus structure to our understanding of virus receptors and infectious entry.
|
| |
Virology,
384,
389-399.
|
 |
|
|
|
|
 |
W.Zou,
Z.Yu,
H.Zhou,
J.Tu,
and
M.Jin
(2009).
Genetic characterization of an H5N1 avian influenza virus with neurovirulence in ducks.
|
| |
Virus Genes,
38,
263-268.
|
 |
|
|
|
|
 |
X.Cheng,
M.Eisenbraun,
Q.Xu,
H.Zhou,
D.Kulkarni,
K.Subbarao,
G.Kemble,
and
H.Jin
(2009).
H5N1 vaccine-specific B cell responses in ferrets primed with live attenuated seasonal influenza vaccines.
|
| |
PLoS ONE,
4,
e4436.
|
 |
|
|
|
|
 |
X.Qi,
X.Li,
P.Rider,
W.Fan,
H.Gu,
L.Xu,
Y.Yang,
S.Lu,
H.Wang,
and
F.Liu
(2009).
Molecular characterization of highly pathogenic H5N1 avian influenza A viruses isolated from raccoon dogs in China.
|
| |
PLoS ONE,
4,
e4682.
|
 |
|
|
|
|
 |
A.A.Owoade,
N.A.Gerloff,
M.F.Ducatez,
J.O.Taiwo,
J.R.Kremer,
and
C.P.Muller
(2008).
Replacement of sublineages of avian influenza (H5N1) by reassortments, sub-Saharan Africa.
|
| |
Emerg Infect Dis,
14,
1731-1735.
|
 |
|
|
|
|
 |
A.Chandrasekaran,
A.Srinivasan,
R.Raman,
K.Viswanathan,
S.Raguram,
T.M.Tumpey,
V.Sasisekharan,
and
R.Sasisekharan
(2008).
Glycan topology determines human adaptation of avian H5N1 virus hemagglutinin.
|
| |
Nat Biotechnol,
26,
107-113.
|
 |
|
|
|
|
 |
A.Kongchanagul,
O.Suptawiwat,
P.Kanrai,
M.Uiprasertkul,
P.Puthavathana,
and
P.Auewarakul
(2008).
Positive selection at the receptor-binding site of haemagglutinin H5 in viral sequences derived from human tissues.
|
| |
J Gen Virol,
89,
1805-1810.
|
 |
|
|
|
|
 |
A.S.Gambaryan,
A.B.Tuzikov,
G.V.Pazynina,
J.A.Desheva,
N.V.Bovin,
M.N.Matrosovich,
and
A.I.Klimov
(2008).
6-sulfo sialyl Lewis X is the common receptor determinant recognized by H5, H6, H7 and H9 influenza viruses of terrestrial poultry.
|
| |
Virol J,
5,
85.
|
 |
|
|
|
|
 |
A.S.Lipatov,
Y.K.Kwon,
L.V.Sarmento,
K.M.Lager,
E.Spackman,
D.L.Suarez,
and
D.E.Swayne
(2008).
Domestic pigs have low susceptibility to H5N1 highly pathogenic avian influenza viruses.
|
| |
PLoS Pathog,
4,
e1000102.
|
 |
|
|
|
|
 |
C.A.Bewley
(2008).
Illuminating the switch in influenza viruses.
|
| |
Nat Biotechnol,
26,
60-62.
|
 |
|
|
|
|
 |
J.G.Choi,
Y.J.Lee,
Y.J.Kim,
E.K.Lee,
O.M.Jeong,
H.W.Sung,
J.H.Kim,
and
J.H.Kwon
(2008).
An inactivated vaccine to control the current H9N2 low pathogenic avian influenza in Korea.
|
| |
J Vet Sci,
9,
67-74.
|
 |
|
|
|
|
 |
J.Meisner,
K.J.Szretter,
K.C.Bradley,
W.A.Langley,
Z.N.Li,
B.J.Lee,
S.Thoennes,
J.Martin,
J.J.Skehel,
R.J.Russell,
J.M.Katz,
and
D.A.Steinhauer
(2008).
Infectivity studies of influenza virus hemagglutinin receptor binding site mutants in mice.
|
| |
J Virol,
82,
5079-5083.
|
 |
|
|
|
|
 |
J.Stevens,
O.Blixt,
L.M.Chen,
R.O.Donis,
J.C.Paulson,
and
I.A.Wilson
(2008).
Recent avian H5N1 viruses exhibit increased propensity for acquiring human receptor specificity.
|
| |
J Mol Biol,
381,
1382-1394.
|
 |
|
|
|
|
 |
J.Wang,
D.Vijaykrishna,
L.Duan,
J.Bahl,
J.X.Zhang,
R.G.Webster,
J.S.Peiris,
H.Chen,
G.J.Smith,
and
Y.Guan
(2008).
Identification of the progenitors of Indonesian and Vietnamese avian influenza A (H5N1) viruses from southern China.
|
| |
J Virol,
82,
3405-3414.
|
 |
|
|
|
|
 |
K.I.Hidari,
T.Murata,
K.Yoshida,
Y.Takahashi,
Y.H.Minamijima,
Y.Miwa,
S.Adachi,
M.Ogata,
T.Usui,
Y.Suzuki,
and
T.Suzuki
(2008).
Chemoenzymatic synthesis, characterization, and application of glycopolymers carrying lactosamine repeats as entry inhibitors against influenza virus infection.
|
| |
Glycobiology,
18,
779-788.
|
 |
|
|
|
|
 |
M.B.Kerby,
S.Freeman,
K.Prachanronarong,
A.W.Artenstein,
S.M.Opal,
and
A.Tripathi
(2008).
Direct sequence detection of structured h5 influenza viral RNA.
|
| |
J Mol Diagn,
10,
225-235.
|
 |
|
|
|
|
 |
M.Okamatsu,
Y.Sakoda,
N.Kishida,
N.Isoda,
and
H.Kida
(2008).
Antigenic structure of the hemagglutinin of H9N2 influenza viruses.
|
| |
Arch Virol,
153,
2189-2195.
|
 |
|
|
|
|
 |
N.Stollenwerk,
R.W.Harper,
and
C.E.Sandrock
(2008).
Bench-to-bedside review: Rare and common viral infections in the intensive care unit--linking pathophysiology to clinical presentation.
|
| |
Crit Care,
12,
219.
|
 |
|
|
|
|
 |
P.J.Collins,
L.F.Haire,
Y.P.Lin,
J.Liu,
R.J.Russell,
P.A.Walker,
J.J.Skehel,
S.R.Martin,
A.J.Hay,
and
S.J.Gamblin
(2008).
Crystal structures of oseltamivir-resistant influenza virus neuraminidase mutants.
|
| |
Nature,
453,
1258-1261.
|
 |
|
PDB codes:
|
 |
|
|
|
|
|
 |
R.J.Russell,
P.S.Kerry,
D.J.Stevens,
D.A.Steinhauer,
S.R.Martin,
S.J.Gamblin,
and
J.J.Skehel
(2008).
Structure of influenza hemagglutinin in complex with an inhibitor of membrane fusion.
|
| |
Proc Natl Acad Sci U S A,
105,
17736-17741.
|
 |
|
PDB codes:
|
 |
|
|
|
|
|
 |
T.Nandi
(2008).
Proposed lead molecules against Hemagglutinin of avian influenza virus (H5N1).
|
| |
Bioinformation,
2,
240-244.
|
 |
|
|
|
|
 |
T.Sawada,
T.Hashimoto,
H.Tokiwa,
T.Suzuki,
H.Nakano,
H.Ishida,
M.Kiso,
and
Y.Suzuki
(2008).
Ab initio base fragment molecular orbital studies of influenza viral hemagglutinin HA1 full-domains in complex with sialoside receptors.
|
| |
J Mol Genet Med,
3,
133-142.
|
 |
|
|
|
|
 |
X.J.Xu,
G.Y.Xu,
H.B.Zhou,
Z.J.Yu,
A.D.Zhang,
Y.F.Song,
M.L.Jin,
and
H.C.Chen
(2008).
Evolutionary characterization of influenza virus A/duck/Hubei/W1/2004 (H9N2) isolated from central China.
|
| |
Virus Genes,
36,
79-83.
|
 |
|
|
|
|
 |
Y.L.Cong,
C.F.Wang,
C.M.Yan,
J.S.Peng,
Z.L.Jiang,
and
J.H.Liu
(2008).
Swine infection with H9N2 influenza viruses in China in 2004.
|
| |
Virus Genes,
36,
461-469.
|
 |
|
|
|
|
 |
A.S.Lipatov,
V.A.Evseenko,
H.L.Yen,
A.V.Zaykovskaya,
A.G.Durimanov,
S.I.Zolotykh,
S.V.Netesov,
I.G.Drozdov,
G.G.Onishchenko,
R.G.Webster,
and
A.M.Shestopalov
(2007).
Influenza (H5N1) viruses in poultry, Russian Federation, 2005-2006.
|
| |
Emerg Infect Dis,
13,
539-546.
|
 |
|
|
|
|
 |
C.L.Cheung,
D.Vijaykrishna,
G.J.Smith,
X.H.Fan,
J.X.Zhang,
J.Bahl,
L.Duan,
K.Huang,
H.Tai,
J.Wang,
L.L.Poon,
J.S.Peiris,
H.Chen,
and
Y.Guan
(2007).
Establishment of influenza A virus (H6N1) in minor poultry species in southern China.
|
| |
J Virol,
81,
10402-10412.
|
 |
|
|
|
|
 |
F.Lei,
S.Tang,
D.Zhao,
X.Zhang,
Z.Kou,
Y.Li,
Z.Zhang,
Z.Yin,
S.Chen,
S.Li,
D.Zhang,
B.Yan,
and
T.Li
(2007).
Characterization of H5N1 influenza viruses isolated from migratory birds in Qinghai province of China in 2006.
|
| |
Avian Dis,
51,
568-572.
|
 |
|
|
|
|
 |
J.Cinatl,
M.Michaelis,
and
H.W.Doerr
(2007).
The threat of avian influenza A (H5N1). Part I: Epidemiologic concerns and virulence determinants.
|
| |
Med Microbiol Immunol,
196,
181-190.
|
 |
|
|
|
|
 |
K.I.Hidari,
S.Shimada,
Y.Suzuki,
and
T.Suzuki
(2007).
Binding kinetics of influenza viruses to sialic acid-containing carbohydrates.
|
| |
Glycoconj J,
24,
583-590.
|
 |
|
|
|
|
 |
M.F.Ducatez,
Z.Tarnagda,
M.C.Tahita,
A.Sow,
S.de Landtsheer,
B.Z.Londt,
I.H.Brown,
D.M.Osterhaus,
R.A.Fouchier,
J.B.Ouedraogo,
and
C.P.Muller
(2007).
Genetic characterization of HPAI (H5N1) viruses from poultry and wild vultures, Burkina Faso.
|
| |
Emerg Infect Dis,
13,
611-613.
|
 |
|
|
|
|
 |
N.V.Kaverin,
I.A.Rudneva,
E.A.Govorkova,
T.A.Timofeeva,
A.A.Shilov,
K.S.Kochergin-Nikitsky,
P.S.Krylov,
and
R.G.Webster
(2007).
Epitope mapping of the hemagglutinin molecule of a highly pathogenic H5N1 influenza virus by using monoclonal antibodies.
|
| |
J Virol,
81,
12911-12917.
|
 |
|
|
|
|
 |
P.Auewarakul,
O.Suptawiwat,
A.Kongchanagul,
C.Sangma,
Y.Suzuki,
K.Ungchusak,
S.Louisirirotchanakul,
H.Lerdsamran,
P.Pooruk,
A.Thitithanyanont,
C.Pittayawonganon,
C.T.Guo,
H.Hiramatsu,
W.Jampangern,
S.Chunsutthiwat,
and
P.Puthavathana
(2007).
An avian influenza H5N1 virus that binds to a human-type receptor.
|
| |
J Virol,
81,
9950-9955.
|
 |
|
|
|
|
 |
Q.Wang,
X.Tian,
X.Chen,
and
J.Ma
(2007).
Structural basis for receptor specificity of influenza B virus hemagglutinin.
|
| |
Proc Natl Acad Sci U S A,
104,
16874-16879.
|
 |
|
PDB codes:
|
 |
|
|
|
|
|
 |
S.Hanashima,
and
P.H.Seeberger
(2007).
Total synthesis of sialylated glycans related to avian and human influenza virus infection.
|
| |
Chem Asian J,
2,
1447-1459.
|
 |
|
|
|
|
 |
S.Perk,
C.Banet-Noach,
N.Golender,
L.Simanov,
E.Rozenblut,
S.Nagar,
S.Pokamunski,
M.Pirak,
Y.Tendler,
M.García,
and
A.Panshin
(2007).
Molecular characterization of the glycoprotein genes of H5N1 influenza A viruses isolated in Israel and the Gaza Strip during 2006 outbreaks.
|
| |
Virus Genes,
35,
497-502.
|
 |
|
|
|
|
 |
G.J.Smith,
X.H.Fan,
J.Wang,
K.S.Li,
K.Qin,
J.X.Zhang,
D.Vijaykrishna,
C.L.Cheung,
K.Huang,
J.M.Rayner,
J.S.Peiris,
H.Chen,
R.G.Webster,
and
Y.Guan
(2006).
Emergence and predominance of an H5N1 influenza variant in China.
|
| |
Proc Natl Acad Sci U S A,
103,
16936-16941.
|
 |
|
|
|
|
 |
H.Chen,
G.J.Smith,
K.S.Li,
J.Wang,
X.H.Fan,
J.M.Rayner,
D.Vijaykrishna,
J.X.Zhang,
L.J.Zhang,
C.T.Guo,
C.L.Cheung,
K.M.Xu,
L.Duan,
K.Huang,
K.Qin,
Y.H.Leung,
W.L.Wu,
H.R.Lu,
Y.Chen,
N.S.Xia,
T.S.Naipospos,
K.Y.Yuen,
S.S.Hassan,
S.Bahri,
T.D.Nguyen,
R.G.Webster,
J.S.Peiris,
and
Y.Guan
(2006).
Establishment of multiple sublineages of H5N1 influenza virus in Asia: implications for pandemic control.
|
| |
Proc Natl Acad Sci U S A,
103,
2845-2850.
|
 |
|
|
|
|
 |
M.Knossow,
and
J.J.Skehel
(2006).
Variation and infectivity neutralization in influenza.
|
| |
Immunology,
119,
1-7.
|
 |
|
|
|
|
 |
R.J.Russell,
D.J.Stevens,
L.F.Haire,
S.J.Gamblin,
and
J.J.Skehel
(2006).
Avian and human receptor binding by hemagglutinins of influenza A viruses.
|
| |
Glycoconj J,
23,
85-92.
|
 |
|
|
|
|
 |
R.J.Russell,
L.F.Haire,
D.J.Stevens,
P.J.Collins,
Y.P.Lin,
G.M.Blackburn,
A.J.Hay,
S.J.Gamblin,
and
J.J.Skehel
(2006).
The structure of H5N1 avian influenza neuraminidase suggests new opportunities for drug design.
|
| |
Nature,
443,
45-49.
|
 |
|
PDB codes:
|
 |
|
|
|
|
|
 |
S.Yamada,
Y.Suzuki,
T.Suzuki,
M.Q.Le,
C.A.Nidom,
Y.Sakai-Tagawa,
Y.Muramoto,
M.Ito,
M.Kiso,
T.Horimoto,
K.Shinya,
T.Sawada,
M.Kiso,
T.Usui,
T.Murata,
Y.Lin,
A.Hay,
L.F.Haire,
D.J.Stevens,
R.J.Russell,
S.J.Gamblin,
J.J.Skehel,
and
Y.Kawaoka
(2006).
Haemagglutinin mutations responsible for the binding of H5N1 influenza A viruses to human-type receptors.
|
| |
Nature,
444,
378-382.
|
 |
|
PDB code:
|
 |
|
|
|
|
|
 |
Y.Muramoto,
T.Q.Le,
L.S.Phuong,
T.Nguyen,
T.H.Nguyen,
Y.Sakai-Tagawa,
K.Iwatsuki-Horimoto,
T.Horimoto,
H.Kida,
and
Y.Kawaoka
(2006).
Molecular characterization of the hemagglutinin and neuraminidase genes of H5N1 influenza A viruses isolated from poultry in Vietnam from 2004 to 2005.
|
| |
J Vet Med Sci,
68,
527-531.
|
 |
|
|
|
|
 |
A.Gambaryan,
S.Yamnikova,
D.Lvov,
A.Tuzikov,
A.Chinarev,
G.Pazynina,
R.Webster,
M.Matrosovich,
and
N.Bovin
(2005).
Receptor specificity of influenza viruses from birds and mammals: new data on involvement of the inner fragments of the carbohydrate chain.
|
| |
Virology,
334,
276-283.
|
 |
|
|
|
|
 |
B.Lu,
H.Zhou,
D.Ye,
G.Kemble,
and
H.Jin
(2005).
Improvement of influenza A/Fujian/411/02 (H3N2) virus growth in embryonated chicken eggs by balancing the hemagglutinin and neuraminidase activities, using reverse genetics.
|
| |
J Virol,
79,
6763-6771.
|
 |
|
|
|
|
 |
C.J.Russell,
and
R.G.Webster
(2005).
The genesis of a pandemic influenza virus.
|
| |
Cell,
123,
368-371.
|
 |
|
|
|
|
 |
E.A.Govorkova,
J.E.Rehg,
S.Krauss,
H.L.Yen,
Y.Guan,
M.Peiris,
T.D.Nguyen,
T.H.Hanh,
P.Puthavathana,
H.T.Long,
C.Buranathai,
W.Lim,
R.G.Webster,
and
E.Hoffmann
(2005).
Lethality to ferrets of H5N1 influenza viruses isolated from humans and poultry in 2004.
|
| |
J Virol,
79,
2191-2198.
|
 |
|
|
|
|
 |
E.Hoffmann,
A.S.Lipatov,
R.J.Webby,
E.A.Govorkova,
and
R.G.Webster
(2005).
Role of specific hemagglutinin amino acids in the immunogenicity and protection of H5N1 influenza virus vaccines.
|
| |
Proc Natl Acad Sci U S A,
102,
12915-12920.
|
 |
|
|
|
|
 |
K.M.Butt,
G.J.Smith,
H.Chen,
L.J.Zhang,
Y.H.Leung,
K.M.Xu,
W.Lim,
R.G.Webster,
K.Y.Yuen,
J.S.Peiris,
and
Y.Guan
(2005).
Human infection with an avian H9N2 influenza A virus in Hong Kong in 2003.
|
| |
J Clin Microbiol,
43,
5760-5767.
|
 |
|
|
|
|
 |
Z.Kou,
F.M.Lei,
J.Yu,
Z.J.Fan,
Z.H.Yin,
C.X.Jia,
K.J.Xiong,
Y.H.Sun,
X.W.Zhang,
X.M.Wu,
X.B.Gao,
and
T.X.Li
(2005).
New genotype of avian influenza H5N1 viruses isolated from tree sparrows in China.
|
| |
J Virol,
79,
15460-15466.
|
 |
|
|
|
|
 |
Z.N.Li,
S.N.Mueller,
L.Ye,
Z.Bu,
C.Yang,
R.Ahmed,
and
D.A.Steinhauer
(2005).
Chimeric influenza virus hemagglutinin proteins containing large domains of the Bacillus anthracis protective antigen: protein characterization, incorporation into infectious influenza viruses, and antigenicity.
|
| |
J Virol,
79,
10003-10012.
|
 |
|
|
|
|
 |
C.W.Lee,
D.A.Senne,
and
D.L.Suarez
(2004).
Effect of vaccine use in the evolution of Mexican lineage H5N2 avian influenza virus.
|
| |
J Virol,
78,
8372-8381.
|
 |
|
|
|
|
 |
K.S.Li,
Y.Guan,
J.Wang,
G.J.Smith,
K.M.Xu,
L.Duan,
A.P.Rahardjo,
P.Puthavathana,
C.Buranathai,
T.D.Nguyen,
A.T.Estoepangestie,
A.Chaisingh,
P.Auewarakul,
H.T.Long,
N.T.Hanh,
R.J.Webby,
L.L.Poon,
H.Chen,
K.F.Shortridge,
K.Y.Yuen,
R.G.Webster,
and
J.S.Peiris
(2004).
Genesis of a highly pathogenic and potentially pandemic H5N1 influenza virus in eastern Asia.
|
| |
Nature,
430,
209-213.
|
 |
|
|
|
|
 |
M.A.Wouters,
K.K.Lau,
and
P.J.Hogg
(2004).
Cross-strand disulphides in cell entry proteins: poised to act.
|
| |
Bioessays,
26,
73-79.
|
 |
|
|
|
|
 |
N.V.Kaverin,
I.A.Rudneva,
N.A.Ilyushina,
A.S.Lipatov,
S.Krauss,
and
R.G.Webster
(2004).
Structural differences among hemagglutinins of influenza A virus subtypes are reflected in their antigenic architecture: analysis of H9 escape mutants.
|
| |
J Virol,
78,
240-249.
|
 |
|
|
|
|
 |
R.Harvey,
A.C.Martin,
M.Zambon,
and
W.S.Barclay
(2004).
Restrictions to the adaptation of influenza a virus h5 hemagglutinin to the human host.
|
| |
J Virol,
78,
502-507.
|
 |
|
|
|
|
 |
Y.Guan,
L.L.Poon,
C.Y.Cheung,
T.M.Ellis,
W.Lim,
A.S.Lipatov,
K.H.Chan,
K.M.Sturm-Ramirez,
C.L.Cheung,
Y.H.Leung,
K.Y.Yuen,
R.G.Webster,
and
J.S.Peiris
(2004).
H5N1 influenza: a protean pandemic threat.
|
| |
Proc Natl Acad Sci U S A,
101,
8156-8161.
|
 |
|
|
|
|
 |
D.R.Perez,
W.Lim,
J.P.Seiler,
G.Yi,
M.Peiris,
K.F.Shortridge,
and
R.G.Webster
(2003).
Role of quail in the interspecies transmission of H9 influenza A viruses: molecular changes on HA that correspond to adaptation from ducks to chickens.
|
| |
J Virol,
77,
3148-3156.
|
 |
|
|
|
|
 |
K.S.Li,
K.M.Xu,
J.S.Peiris,
L.L.Poon,
K.Z.Yu,
K.Y.Yuen,
K.F.Shortridge,
R.G.Webster,
and
Y.Guan
(2003).
Characterization of H9 subtype influenza viruses from the ducks of southern China: a candidate for the next influenza pandemic in humans?
|
| |
J Virol,
77,
6988-6994.
|
 |
|
|
|
|
 |
Y.Ha,
D.J.Stevens,
J.J.Skehel,
and
D.C.Wiley
(2002).
H5 avian and H9 swine influenza virus haemagglutinin structures: possible origin of influenza subtypes.
|
| |
EMBO J,
21,
865-875.
|
 |
|
PDB codes:
|
 |
|
|
 |
 |
|
The most recent references are shown first.
Citation data come partly from CiteXplore and partly
from an automated harvesting procedure. Note that this is likely to be
only a partial list as not all journals are covered by
either method. However, we are continually building up the citation data
so more and more references will be included with time.
Where a reference describes a PDB structure, the PDB
codes are
shown on the right.
|
');
}
}
 |