spacer
spacer

PDBsum entry 1jlc

Go to PDB code: 
protein ligands Protein-protein interface(s) links
Transferase PDB id
1jlc

 

 

 

 

Loading ...

 
JSmol PyMol  
Contents
Protein chains
535 a.a. *
402 a.a. *
Ligands
FTC
* Residue conservation analysis
PDB id:
1jlc
Name: Transferase
Title: Crystal structure of y181c mutant HIV-1 reverse transcriptase in complex with pett-2
Structure: HIV-1 rt a-chain. Chain: a. Fragment: p66. Engineered: yes. HIV-1 rt b-chain. Chain: b. Fragment: p51. Engineered: yes
Source: HIV-1 m:b_hxb2r. Organism_taxid: 11706. Strain: hxb2 isolate. Gene: pol. Expressed in: escherichia coli. Expression_system_taxid: 562. Expression_system_taxid: 562
Biol. unit: Dimer (from PQS)
Resolution:
3.00Å     R-factor:   0.225     R-free:   0.282
Authors: J.Ren,C.Nichols,L.Bird,P.Chamberlain,K.Weaver,S.Short,D.I.Stuart, D.K.Stammers
Key ref:
J.Ren et al. (2001). Structural mechanisms of drug resistance for mutations at codons 181 and 188 in HIV-1 reverse transcriptase and the improved resilience of second generation non-nucleoside inhibitors. J Mol Biol, 312, 795-805. PubMed id: 11575933 DOI: 10.1006/jmbi.2001.4988
Date:
16-Jul-01     Release date:   03-Oct-01    
PROCHECK
Go to PROCHECK summary
 Headers
 References

Protein chain
Pfam   ArchSchema ?
P04585  (POL_HV1H2) -  Gag-Pol polyprotein from Human immunodeficiency virus type 1 group M subtype B (isolate HXB2)
Seq:
Struc:
 
Seq:
Struc:
 
Seq:
Struc:
1435 a.a.
535 a.a.*
Protein chain
Pfam   ArchSchema ?
P04585  (POL_HV1H2) -  Gag-Pol polyprotein from Human immunodeficiency virus type 1 group M subtype B (isolate HXB2)
Seq:
Struc:
 
Seq:
Struc:
 
Seq:
Struc:
1435 a.a.
402 a.a.*
Key:    PfamA domain  Secondary structure  CATH domain
* PDB and UniProt seqs differ at 3 residue positions (black crosses)

 Enzyme reactions 
   Enzyme class 1: Chains A, B: E.C.2.7.7.-  - ?????
[IntEnz]   [ExPASy]   [KEGG]   [BRENDA]
   Enzyme class 2: Chains A, B: E.C.2.7.7.49  - RNA-directed Dna polymerase.
[IntEnz]   [ExPASy]   [KEGG]   [BRENDA]
      Reaction: DNA(n) + a 2'-deoxyribonucleoside 5'-triphosphate = DNA(n+1) + diphosphate
DNA(n)
+ 2'-deoxyribonucleoside 5'-triphosphate
= DNA(n+1)
+ diphosphate
   Enzyme class 3: Chains A, B: E.C.2.7.7.7  - DNA-directed Dna polymerase.
[IntEnz]   [ExPASy]   [KEGG]   [BRENDA]
      Reaction: DNA(n) + a 2'-deoxyribonucleoside 5'-triphosphate = DNA(n+1) + diphosphate
DNA(n)
+ 2'-deoxyribonucleoside 5'-triphosphate
= DNA(n+1)
+ diphosphate
   Enzyme class 4: Chains A, B: E.C.3.1.-.-
[IntEnz]   [ExPASy]   [KEGG]   [BRENDA]
   Enzyme class 5: Chains A, B: E.C.3.1.13.2  - exoribonuclease H.
[IntEnz]   [ExPASy]   [KEGG]   [BRENDA]
      Reaction: Exonucleolytic cleavage to 5'-phosphomonoester oligonucleotides in both 5'- to 3'- and 3'- to 5'-directions.
   Enzyme class 6: Chains A, B: E.C.3.1.26.13  - retroviral ribonuclease H.
[IntEnz]   [ExPASy]   [KEGG]   [BRENDA]
   Enzyme class 7: Chains A, B: E.C.3.4.23.16  - HIV-1 retropepsin.
[IntEnz]   [ExPASy]   [KEGG]   [BRENDA]
      Reaction: Specific for a P1 residue that is hydrophobic, and P1' variable, but often Pro.
Note, where more than one E.C. class is given (as above), each may correspond to a different protein domain or, in the case of polyprotein precursors, to a different mature protein.
Molecule diagrams generated from .mol files obtained from the KEGG ftp site

 

 
    reference    
 
 
DOI no: 10.1006/jmbi.2001.4988 J Mol Biol 312:795-805 (2001)
PubMed id: 11575933  
 
 
Structural mechanisms of drug resistance for mutations at codons 181 and 188 in HIV-1 reverse transcriptase and the improved resilience of second generation non-nucleoside inhibitors.
J.Ren, C.Nichols, L.Bird, P.Chamberlain, K.Weaver, S.Short, D.I.Stuart, D.K.Stammers.
 
  ABSTRACT  
 
Mutations at either Tyr181 or Tyr188 within HIV-1 reverse transcriptase (RT) give high level resistance to many first generation non-nucleoside inhibitors (NNRTIs) such as the anti-AIDS drug nevirapine. By comparison second generation inhibitors, for instance the drug efavirenz, show much greater resilience to these mutations. In order to understand the structural basis for these differences we have determined a series of seven crystal structures of mutant RTs in complexes with first and second generation NNRTIs as well as one example of an unliganded mutant RT. These are Tyr181Cys RT (TNK-651) to 2.4 A, Tyr181Cys RT (efavirenz) to 2.6 A, Tyr181Cys RT (nevirapine) to 3.0 A, Tyr181Cys RT (PETT-2) to 3.0 A, Tyr188Cys RT (nevirapine) to 2.6 A, Tyr188Cys RT (UC-781) to 2.6 A and Tyr188Cys RT (unliganded) to 2.8 A resolution. In the two previously published structures of HIV-1 reverse transcriptase with mutations at 181 or 188 no side-chain electron density was observed within the p66 subunit (which contains the inhibitor binding pocket) for the mutated residues. In contrast the mutated side-chains can be seen in the NNRTI pocket for all seven structures reported here, eliminating the possibility that disordering contributes to the mechanism of resistance. In the case of the second generation compounds efavirenz with Tyr181Cys RT and UC-781 with Tyr188Cys RT there are only small rearrangements of either inhibitor within the binding site compared to wild-type RT and also for the first generation compounds TNK-651, PETT-2 and nevirapine with Tyr181Cys RT. For nevirapine with the Tyr188Cys RT there is however a more substantial movement of the drug molecule. We conclude that protein conformational changes and rearrangements of drug molecules within the mutated sites are not general features of these particular inhibitor/mutant combinations. The main contribution to drug resistance for Tyr181Cys and Tyr188Cys RT mutations is the loss of aromatic ring stacking interactions for first generation compounds, providing a simple explanation for the resilience of second generation NNRTIs, as such interactions make much less significant contribution to their binding.
 
  Selected figure(s)  
 
Figure 3.
Figure 3. Stereo-diagram comparing the NNRTI binding sites of wild-type and Tyr181Cys mutant RTs for the following complexes: (a) nevirapine, (b) TNK-651, (c) PETT-2, and (d) efavirenz. The thinner bonds show the main-chain backbone with wild-type RT coloured as dark grey and the mutant RT as light grey. Side-chains and the inhibitors are shown with thicker bonds with wild-type RT coloured brown and mutant RT as green. For clarity the side-chain of 181 and inhibitor are shown in red for wild-type RT and in cyan for the mutant. The broken yellow lines represent hydrogen bonds.
Figure 4.
Figure 4. Stereo-diagram comparing the NNRTI binding sites of wild-type and Tyr188Cys mutant RTs for the following: (a) unliganded, (b) nevirapine complex and (c) UC-781 complex. The colour scheme for backbone, inhibitors and side-chains is the same as in Figure 3.
 
  The above figures are reprinted by permission from Elsevier: J Mol Biol (2001, 312, 795-805) copyright 2001.  
  Figures were selected by an automated process.  

Literature references that cite this PDB file's key reference

  PubMed id Reference
22421880 A.Engelman, and P.Cherepanov (2012).
The structural biology of HIV-1: mechanistic and therapeutic insights.
  Nat Rev Microbiol, 10, 279-290.  
21255607 M.Chourasia, G.M.Sastry, and G.N.Sastry (2011).
Aromatic-Aromatic Interactions Database, A(2)ID: an analysis of aromatic π-networks in proteins.
  Int J Biol Macromol, 48, 540-552.  
  21322110 M.Yu, Z.Li, S.Liu, E.Fan, C.Pannecouque, E.De Clercq, and X.Liu (2011).
Synthesis and biological evaluation of 6-substituted 5-alkyl-2-(phenylaminocarbonylmethylthio)pyrimidin-4(3H)-ones as potent HIV-1 NNRTIs.
  ChemMedChem, 6, 826-833.  
21449841 S.Ibe, and W.Sugiura (2011).
Clinical significance of HIV reverse-transcriptase inhibitor-resistance mutations.
  Future Microbiol, 6, 295-315.  
21134218 Z.Li, H.Zhang, Y.Li, J.Zhang, and H.F.Chen (2011).
Drug resistant mechanism of diaryltriazine analog inhibitors of HIV-1 reverse transcriptase using molecular dynamics simulation and 3D-QSAR.
  Chem Biol Drug Des, 77, 63-74.  
20358252 A.Herschhorn, and A.Hizi (2010).
Retroviral reverse transcriptases.
  Cell Mol Life Sci, 67, 2717-2747.  
21088701 K.A.Delviks-Frankenberry, G.N.Nikolenko, and V.K.Pathak (2010).
The "Connection" Between HIV Drug Resistance and RNase H.
  Viruses, 2, 1476-1503.  
20376302 K.Singh, B.Marchand, K.A.Kirby, E.Michailidis, and S.G.Sarafianos (2010).
Structural Aspects of Drug Resistance and Inhibition of HIV-1 Reverse Transcriptase.
  Viruses, 2, 606-638.  
20480085 R.K.Raju, N.A.Burton, and I.H.Hillier (2010).
Modelling the binding of HIV-reverse transcriptase and nevirapine: an assessment of quantum mechanical and force field approaches and predictions of the effect of mutations on binding.
  Phys Chem Chem Phys, 12, 7117-7125.  
20535242 S.Ganguly, S.Murugesan, N.Prasanthi, O.Alptürk, B.Herman, and N.Sluis-Cremer (2010).
Synthesis and Anti-HIV-1 Activity of a Novel Series of Aminoimidazole Analogs.
  Lett Drug Des Discov, 7, 318-323.  
19374380 S.E.Nichols, R.A.Domaoal, V.V.Thakur, J.Tirado-Rives, K.S.Anderson, and W.L.Jorgensen (2009).
Discovery of wild-type and Y181C mutant non-nucleoside HIV-1 reverse transcriptase inhibitors using virtual screening with multiple protein structures.
  J Chem Inf Model, 49, 1272-1279.  
19022262 S.G.Sarafianos, B.Marchand, K.Das, D.M.Himmel, M.A.Parniak, S.H.Hughes, and E.Arnold (2009).
Structure and function of HIV-1 reverse transcriptase: molecular mechanisms of polymerization and inhibition.
  J Mol Biol, 385, 693-713.  
18543862 C.Spadafora (2008).
A reverse transcriptase-dependent mechanism plays central roles in fundamental biological processes.
  Syst Biol Reprod Med, 54, 11-21.  
18327981 E.Magiorkinis, D.Paraskevis, H.Sambatakou, P.Gargalianos, C.Haida, A.Vassilakis, and A.Hatzakis (2008).
Emergence of an NNRTI resistance mutation Y181C in an HIV-infected NNRTI-naive patient.
  AIDS Res Hum Retroviruses, 24, 413-415.  
18351578 M.Landriscina, S.A.Altamura, L.Roca, M.Gigante, A.Piscazzi, E.Cavalcanti, E.Costantino, C.Barone, M.Cignarelli, L.Gesualdo, and E.Ranieri (2008).
Reverse transcriptase inhibitors induce cell differentiation and enhance the immunogenic phenotype in human renal clear-cell carcinoma.
  Int J Cancer, 122, 2842-2850.  
18338369 P.Srivab, and S.Hannongbua (2008).
A study of the binding energies of efavirenz to wild-type and K103N/Y181C HIV-1 reverse transcriptase based on the ONIOM method.
  ChemMedChem, 3, 803-811.  
17329328 D.M.Held, J.D.Kissel, S.J.Thacker, D.Michalowski, D.Saran, J.Ji, R.W.Hardy, J.J.Rossi, and D.H.Burke (2007).
Cross-clade inhibition of recombinant human immunodeficiency virus type 1 (HIV-1), HIV-2, and simian immunodeficiency virus SIVcpz reverse transcriptases by RNA pseudoknot aptamers.
  J Virol, 81, 5375-5384.  
17686836 F.Ceccherini-Silberstein, V.Svicher, T.Sing, A.Artese, M.M.Santoro, F.Forbici, A.Bertoli, S.Alcaro, G.Palamara, A.d'Arminio Monforte, J.Balzarini, A.Antinori, T.Lengauer, and C.F.Perno (2007).
Characterization and structural analysis of novel mutations in human immunodeficiency virus type 1 reverse transcriptase involved in the regulation of resistance to nonnucleoside inhibitors.
  J Virol, 81, 11507-11519.  
17600478 S.Modoni, M.Landriscina, A.Fabiano, A.Fersini, N.Urbano, A.Ambrosi, and M.Cignarelli (2007).
Reinduction of cell differentiation and 131I uptake in a poorly differentiated thyroid tumor in response to the reverse transcriptase (RT) inhibitor nevirapine.
  Cancer Biother Radiopharm, 22, 289-295.  
16911530 J.Ren, C.E.Nichols, A.Stamp, P.P.Chamberlain, R.Ferris, K.L.Weaver, S.A.Short, and D.K.Stammers (2006).
Structural insights into mechanisms of non-nucleoside drug resistance for HIV-1 reverse transcriptases mutated at codons 101 or 138.
  FEBS J, 273, 3850-3860.
PDB codes: 2hnd 2hny 2hnz
17012051 M.Landriscina, S.Modoni, A.Fabiano, A.Fersini, C.Barone, A.Ambrosi, and M.Cignarelli (2006).
Cell differentiation and iodine-131 uptake in poorly differentiated thyroid tumour in response to nevirapine.
  Lancet Oncol, 7, 877-879.  
17009092 T.M.Steindl, D.Schuster, G.Wolber, C.Laggner, and T.Langer (2006).
High-throughput structure-based pharmacophore modelling as a basis for successful parallel virtual screening.
  J Comput Aided Mol Des, 20, 703-715.  
16897578 Z.Zhang, M.Zheng, L.Du, J.Shen, X.Luo, W.Zhu, and H.Jiang (2006).
Towards discovering dual functional inhibitors against both wild type and K103N mutant HIV-1 reverse transcriptases: molecular docking and QSAR studies on 4,1-benzoxazepinone analogues.
  J Comput Aided Mol Des, 20, 281-293.  
16060830 B.Rodes, C.de Mendoza, M.Rodgers, A.Newell, V.Jimenez, R.M.Lopez-Brugada, and V.Soriano (2005).
Treatment response and drug resistance in patients infected with HIV type 1 group O viruses.
  AIDS Res Hum Retroviruses, 21, 602-607.  
15806170 I.Sciamanna, M.Landriscina, C.Pittoggi, M.Quirino, C.Mearelli, R.Beraldi, E.Mattei, A.Serafino, A.Cassano, P.Sinibaldi-Vallebona, E.Garaci, C.Barone, and C.Spadafora (2005).
Inhibition of endogenous reverse transcriptase antagonizes human tumor growth.
  Oncogene, 24, 3923-3931.  
16245320 S.Saen-oon, M.Kuno, and S.Hannongbua (2005).
Binding energy analysis for wild-type and Y181C mutant HIV-1 RT/8-Cl TIBO complex structures: quantum chemical calculations based on the ONIOM method.
  Proteins, 61, 859-869.  
16114038 X.He, Y.Mei, Y.Xiang, D.W.Zhang, and J.Z.Zhang (2005).
Quantum computational analysis for drug resistance of HIV-1 reverse transcriptase to nevirapine through point mutations.
  Proteins, 61, 423-432.  
15789428 Y.Mei, X.He, Y.Xiang, D.W.Zhang, and J.Z.Zhang (2005).
Quantum study of mutational effect in binding of efavirenz to HIV-1 RT.
  Proteins, 59, 489-495.  
15482231 C.Fortin, and V.Joly (2004).
Efavirenz for HIV-1 infection in adults: an overview.
  Expert Rev Anti Infect Ther, 2, 671-684.  
15220416 J.Auwerx, M.Stevens, A.R.Van Rompay, L.E.Bird, J.Ren, E.De Clercq, B.Oberg, D.K.Stammers, A.Karlsson, and J.Balzarini (2004).
The phenylmethylthiazolylthiourea nonnucleoside reverse transcriptase (RT) inhibitor MSK-076 selects for a resistance mutation in the active site of human immunodeficiency virus type 2 RT.
  J Virol, 78, 7427-7437.  
15249669 J.D.Pata, W.G.Stirtan, S.W.Goldstein, and T.A.Steitz (2004).
Structure of HIV-1 reverse transcriptase bound to an inhibitor active against mutant reverse transcriptases resistant to other nonnucleoside inhibitors.
  Proc Natl Acad Sci U S A, 101, 10548-10553.
PDB code: 1tv6
15231830 L.Z.Wang, G.L.Kenyon, and K.A.Johnson (2004).
Novel mechanism of inhibition of HIV-1 reverse transcriptase by a new non-nucleoside analog, KM-1.
  J Biol Chem, 279, 38424-38432.  
15482234 M.Götte (2004).
Inhibition of HIV-1 reverse transcription: basic principles of drug action and resistance.
  Expert Rev Anti Infect Ther, 2, 707-716.  
15544453 N.Sluis-Cremer, N.A.Temiz, and I.Bahar (2004).
Conformational changes in HIV-1 reverse transcriptase induced by nonnucleoside reverse transcriptase inhibitor binding.
  Curr HIV Res, 2, 323-332.  
15113918 Y.Gao, E.Paxinos, J.Galovich, R.Troyer, H.Baird, M.Abreha, C.Kityo, P.Mugyenyi, C.Petropoulos, and E.J.Arts (2004).
Characterization of a subtype D human immunodeficiency virus type 1 isolate that was obtained from an untreated individual and that is highly resistant to nonnucleoside reverse transcriptase inhibitors.
  J Virol, 78, 5390-5401.  
12770866 L.Shen, J.Shen, X.Luo, F.Cheng, Y.Xu, K.Chen, E.Arnold, J.Ding, and H.Jiang (2003).
Steered molecular dynamics simulation on the binding of NNRTI to HIV-1 RT.
  Biophys J, 84, 3547-3563.  
12386343 J.Ren, L.E.Bird, P.P.Chamberlain, G.B.Stewart-Jones, D.I.Stuart, and D.K.Stammers (2002).
Structure of HIV-2 reverse transcriptase at 2.35-A resolution and the mechanism of resistance to non-nucleoside inhibitors.
  Proc Natl Acad Sci U S A, 99, 14410-14415.
PDB code: 1mu2
12377580 L.Menéndez-Arias (2002).
Targeting HIV: antiretroviral therapy and development of drug resistance.
  Trends Pharmacol Sci, 23, 381-388.  
The most recent references are shown first. Citation data come partly from CiteXplore and partly from an automated harvesting procedure. Note that this is likely to be only a partial list as not all journals are covered by either method. However, we are continually building up the citation data so more and more references will be included with time. Where a reference describes a PDB structure, the PDB codes are shown on the right.

 

spacer

spacer