 |
PDBsum entry 1jhe
|
|
|
|
 |
Contents |
 |
|
|
|
|
|
|
|
|
|
* Residue conservation analysis
|
|
|
|
 |
|
|
 |
 |
 |
 |
Enzyme class:
|
 |
E.C.3.4.21.88
- repressor LexA.
|
|
 |
 |
 |
 |
 |
Reaction:
|
 |
Hydrolysis of Ala-|-Gly bond in repressor lexA.
|
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
|
|
|
| |
|
DOI no:
|
Cell
106:585-594
(2001)
|
|
PubMed id:
|
|
|
|
|
| |
|
Crystal structure of LexA: a conformational switch for regulation of self-cleavage.
|
|
Y.Luo,
R.A.Pfuetzner,
S.Mosimann,
M.Paetzel,
E.A.Frey,
M.Cherney,
B.Kim,
J.W.Little,
N.C.Strynadka.
|
|
|
|
| |
ABSTRACT
|
|
|
| |
|
LexA repressor undergoes a self-cleavage reaction. In vivo, this reaction
requires an activated form of RecA, but it occurs spontaneously in vitro at high
pH. Accordingly, LexA must both allow self-cleavage and yet prevent this
reaction in the absence of a stimulus. We have solved the crystal structures of
several mutant forms of LexA. Strikingly, two distinct conformations are
observed, one compatible with cleavage, and the other in which the cleavage site
is approximately 20 A from the catalytic center. Our analysis provides insight
into the structural and energetic features that modulate the interconversion
between these two forms and hence the rate of the self-cleavage reaction. We
suggest RecA activates the self-cleavage of LexA and related proteins through
selective stabilization of the cleavable conformation.
|
|
|
|
|
| |
Selected figure(s)
|
|
|
| |
 |
 |
|
 |
|
 |
Figure 5.
Figure 5. Mapping of Previously Characterized MutantsA
stereo ribbon representation of LexA (C form) with LexA Ind^−
mutations (in blue), Ind^s mutations (in green), and λ cI
RecA-specific mutations (in brown) mapped on the structure (as
based on Figure 1)
|
 |
Figure 6.
Figure 6. The Exposed Hydrophobic Surface of LexAThe
catalytic core of LexA is shown in a molecular surface
representation with the hydrophobic area highlighted in green
(GRASP; Honig and Nicholls, 1995). The CSR and linker loop are
shown as red and purple ribbons, respectively. The side chains
of selected hydrophobic side chains on the CSR that become
differentially exposed to solvent are highlighted in a cyan ball
and stick representation.(A) NC form.(B) C form
|
 |
|
|
|
| |
The above figures are
reprinted
by permission from Cell Press:
Cell
(2001,
106,
585-594)
copyright 2001.
|
|
| |
Figures were
selected
by an automated process.
|
|
|
|
|
 |
 |
|
 |
 |
 |
 |
 |
 |
 |
 |
 |
|
Literature references that cite this PDB file's key reference
|
|
 |
| |
PubMed id
|
 |
Reference
|
 |
|
|
|
 |
C.L.Brooks,
C.Lazareno-Saez,
J.S.Lamoureux,
M.W.Mak,
and
M.J.Lemieux
(2011).
Insights into substrate gating in H. influenzae rhomboid.
|
| |
J Mol Biol,
407,
687-697.
|
 |
|
PDB code:
|
 |
|
|
|
|
|
 |
F.Capotosti,
S.Guernier,
F.Lammers,
P.Waridel,
Y.Cai,
J.Jin,
J.W.Conaway,
R.C.Conaway,
and
W.Herr
(2011).
O-GlcNAc transferase catalyzes site-specific proteolysis of HCF-1.
|
| |
Cell,
144,
376-388.
|
 |
|
|
|
|
 |
P.Bhaumik,
Y.Horimoto,
H.Xiao,
T.Miura,
K.Hidaka,
Y.Kiso,
A.Wlodawer,
R.Y.Yada,
and
A.Gustchina
(2011).
Crystal structures of the free and inhibited forms of plasmepsin I (PMI) from Plasmodium falciparum.
|
| |
J Struct Biol,
175,
73-84.
|
 |
|
PDB codes:
|
 |
|
|
|
|
|
 |
T.D.Thi,
E.López,
A.Rodríguez-Rojas,
J.Rodríguez-Beltrán,
A.Couce,
J.R.Guelfo,
A.Castañeda-García,
and
J.Blázquez
(2011).
Effect of recA inactivation on mutagenesis of Escherichia coli exposed to sublethal concentrations of antimicrobials.
|
| |
J Antimicrob Chemother,
66,
531-538.
|
 |
|
|
|
|
 |
A.P.Zhang,
Y.Z.Pigli,
and
P.A.Rice
(2010).
Structure of the LexA-DNA complex and implications for SOS box measurement.
|
| |
Nature,
466,
883-886.
|
 |
|
PDB codes:
|
 |
|
|
|
|
|
 |
E.León,
G.Navarro-Avilés,
C.M.Santiveri,
C.Flores-Flores,
M.Rico,
C.González,
F.J.Murillo,
M.Elías-Arnanz,
M.A.Jiménez,
and
S.Padmanabhan
(2010).
A bacterial antirepressor with SH3 domain topology mimics operator DNA in sequestering the repressor DNA recognition helix.
|
| |
Nucleic Acids Res,
38,
5226-5241.
|
 |
|
PDB codes:
|
 |
|
|
|
|
|
 |
I.Weinheimer,
K.Boonrod,
M.Moser,
M.Zwiebel,
M.Füllgrabe,
G.Krczal,
and
M.Wassenegger
(2010).
Analysis of an autoproteolytic activity of rice yellow mottle virus silencing suppressor P1.
|
| |
Biol Chem,
391,
271-281.
|
 |
|
|
|
|
 |
L.Medina-Ruiz,
S.Campoy,
C.Latasa,
P.Cardenas,
J.C.Alonso,
and
J.Barbé
(2010).
Overexpression of the recA gene decreases oral but not intraperitoneal fitness of Salmonella enterica.
|
| |
Infect Immun,
78,
3217-3225.
|
 |
|
|
|
|
 |
M.D.Sutton
(2010).
Coordinating DNA polymerase traffic during high and low fidelity synthesis.
|
| |
Biochim Biophys Acta,
1804,
1167-1179.
|
 |
|
|
|
|
 |
E.López,
and
J.Blázquez
(2009).
Effect of subinhibitory concentrations of antibiotics on intrachromosomal homologous recombination in Escherichia coli.
|
| |
Antimicrob Agents Chemother,
53,
3411-3415.
|
 |
|
|
|
|
 |
K.Barreto,
V.M.Bharathikumar,
A.Ricardo,
J.F.DeCoteau,
Y.Luo,
and
C.R.Geyer
(2009).
A genetic screen for isolating "lariat" Peptide inhibitors of protein function.
|
| |
Chem Biol,
16,
1148-1157.
|
 |
|
|
|
|
 |
P.J.Beuning,
S.Chan,
L.S.Waters,
H.Addepalli,
J.N.Ollivierre,
and
G.C.Walker
(2009).
Characterization of novel alleles of the Escherichia coli umuDC genes identifies additional interaction sites of UmuC with the beta clamp.
|
| |
J Bacteriol,
191,
5910-5920.
|
 |
|
|
|
|
 |
T.Ganguly,
M.Das,
A.Bandhu,
P.K.Chanda,
B.Jana,
R.Mondal,
and
S.Sau
(2009).
Physicochemical properties and distinct DNA binding capacity of the repressor of temperate Staphylococcus aureus phage phi11.
|
| |
FEBS J,
276,
1975-1985.
|
 |
|
|
|
|
 |
V.E.Galkin,
X.Yu,
J.Bielnicki,
D.Ndjonka,
C.E.Bell,
and
E.H.Egelman
(2009).
Cleavage of bacteriophage lambda cI repressor involves the RecA C-terminal domain.
|
| |
J Mol Biol,
385,
779-787.
|
 |
|
|
|
|
 |
K.C.Giese,
C.B.Michalowski,
and
J.W.Little
(2008).
RecA-dependent cleavage of LexA dimers.
|
| |
J Mol Biol,
377,
148-161.
|
 |
|
|
|
|
 |
O.D.Ekici,
M.Paetzel,
and
R.E.Dalbey
(2008).
Unconventional serine proteases: variations on the catalytic Ser/His/Asp triad configuration.
|
| |
Protein Sci,
17,
2023-2037.
|
 |
|
|
|
|
 |
S.Stayrook,
P.Jaru-Ampornpan,
J.Ni,
A.Hochschild,
and
M.Lewis
(2008).
Crystal structure of the lambda repressor and a model for pairwise cooperative operator binding.
|
| |
Nature,
452,
1022-1025.
|
 |
|
PDB code:
|
 |
|
|
|
|
|
 |
A.C.Babić,
and
J.W.Little
(2007).
Cooperative DNA binding by CI repressor is dispensable in a phage lambda variant.
|
| |
Proc Natl Acad Sci U S A,
104,
17741-17746.
|
 |
|
|
|
|
 |
D.Ferreira,
E.Leitão,
J.Sjöholm,
P.Oliveira,
P.Lindblad,
P.Moradas-Ferreira,
and
P.Tamagnini
(2007).
Transcription and regulation of the hydrogenase(s) accessory genes, hypFCDEAB, in the cyanobacterium Lyngbya majuscula CCAP 1446/4.
|
| |
Arch Microbiol,
188,
609-617.
|
 |
|
|
|
|
 |
E.López,
M.Elez,
I.Matic,
and
J.Blázquez
(2007).
Antibiotic-mediated recombination: ciprofloxacin stimulates SOS-independent recombination of divergent sequences in Escherichia coli.
|
| |
Mol Microbiol,
64,
83-93.
|
 |
|
|
|
|
 |
G.Navarro-Avilés,
M.A.Jiménez,
M.C.Pérez-Marín,
C.González,
M.Rico,
F.J.Murillo,
M.Elías-Arnanz,
and
S.Padmanabhan
(2007).
Structural basis for operator and antirepressor recognition by Myxococcus xanthus CarA repressor.
|
| |
Mol Microbiol,
63,
980-994.
|
 |
|
PDB code:
|
 |
|
|
|
|
|
 |
M.Ni,
S.Y.Wang,
J.K.Li,
and
Q.Ouyang
(2007).
Simulating the temporal modulation of inducible DNA damage response in Escherichia coli.
|
| |
Biophys J,
93,
62-73.
|
 |
|
|
|
|
 |
S.A.Coleman,
E.R.Fischer,
D.C.Cockrell,
D.E.Voth,
D.Howe,
D.J.Mead,
J.E.Samuel,
and
R.A.Heinzen
(2007).
Proteome and antigen profiling of Coxiella burnetii developmental forms.
|
| |
Infect Immun,
75,
290-298.
|
 |
|
|
|
|
 |
D.Ndjonka,
and
C.E.Bell
(2006).
Structure of a hyper-cleavable monomeric fragment of phage lambda repressor containing the cleavage site region.
|
| |
J Mol Biol,
362,
479-489.
|
 |
|
PDB codes:
|
 |
|
|
|
|
|
 |
H.D.Ulrich
(2006).
Deubiquitinating PCNA: a downside to DNA damage tolerance.
|
| |
Nat Cell Biol,
8,
303-305.
|
 |
|
|
|
|
 |
J.Lee,
A.R.Feldman,
B.Delmas,
and
M.Paetzel
(2006).
Expression, purification and crystallization of a birnavirus-encoded protease, VP4, from blotched snakehead virus (BSNV).
|
| |
Acta Crystallogr Sect F Struct Biol Cryst Commun,
62,
353-356.
|
 |
|
|
|
|
 |
J.Lee,
A.R.Feldman,
E.Chiu,
C.Chan,
Y.N.Kim,
B.Delmas,
and
M.Paetzel
(2006).
Purification, crystallization and preliminary X-ray analysis of truncated and mutant forms of VP4 protease from infectious pancreatic necrosis virus.
|
| |
Acta Crystallogr Sect F Struct Biol Cryst Commun,
62,
1235-1238.
|
 |
|
|
|
|
 |
J.W.Lee,
and
J.D.Helmann
(2006).
The PerR transcription factor senses H2O2 by metal-catalysed histidine oxidation.
|
| |
Nature,
440,
363-367.
|
 |
|
|
|
|
 |
P.J.Beuning,
S.M.Simon,
A.Zemla,
D.Barsky,
and
G.C.Walker
(2006).
A non-cleavable UmuD variant that acts as a UmuD' mimic.
|
| |
J Biol Chem,
281,
9633-9640.
|
 |
|
|
|
|
 |
R.Matsumi,
H.Atomi,
and
T.Imanaka
(2006).
Identification of the amino acid residues essential for proteolytic activity in an archaeal signal peptide peptidase.
|
| |
J Biol Chem,
281,
10533-10539.
|
 |
|
|
|
|
 |
T.V.Rotanova,
I.Botos,
E.E.Melnikov,
F.Rasulova,
A.Gustchina,
M.R.Maurizi,
and
A.Wlodawer
(2006).
Slicing a protease: structural features of the ATP-dependent Lon proteases gleaned from investigations of isolated domains.
|
| |
Protein Sci,
15,
1815-1828.
|
 |
|
|
|
|
 |
B.C.McCabe,
D.R.Pawlowski,
and
G.B.Koudelka
(2005).
The bacteriophage 434 repressor dimer preferentially undergoes autoproteolysis by an intramolecular mechanism.
|
| |
J Bacteriol,
187,
5624-5630.
|
 |
|
|
|
|
 |
E.S.Groban,
M.B.Johnson,
P.Banky,
P.G.Burnett,
G.L.Calderon,
E.C.Dwyer,
S.N.Fuller,
B.Gebre,
L.M.King,
I.N.Sheren,
L.D.Von Mutius,
T.M.O'Gara,
and
C.M.Lovett
(2005).
Binding of the Bacillus subtilis LexA protein to the SOS operator.
|
| |
Nucleic Acids Res,
33,
6287-6295.
|
 |
|
|
|
|
 |
I.B.Dodd,
K.E.Shearwin,
and
J.B.Egan
(2005).
Revisited gene regulation in bacteriophage lambda.
|
| |
Curr Opin Genet Dev,
15,
145-152.
|
 |
|
|
|
|
 |
J.Cuñé,
P.Cullen,
G.Mazon,
S.Campoy,
B.Adler,
and
J.Barbe
(2005).
The Leptospira interrogans lexA gene is not autoregulated.
|
| |
J Bacteriol,
187,
5841-5845.
|
 |
|
|
|
|
 |
M.Okon,
R.A.Pfuetzner,
M.Vuckovic,
J.W.Little,
N.C.Strynadka,
and
L.P.McIntosh
(2005).
Backbone chemical shift assignments of the LexA catalytic domain in its active conformation.
|
| |
J Biomol NMR,
31,
371-372.
|
 |
|
|
|
|
 |
M.Quinones,
H.H.Kimsey,
and
M.K.Waldor
(2005).
LexA cleavage is required for CTX prophage induction.
|
| |
Mol Cell,
17,
291-300.
|
 |
|
|
|
|
 |
S.Campoy,
N.Salvador,
P.Cortés,
I.Erill,
and
J.Barbé
(2005).
Expression of canonical SOS genes is not under LexA repression in Bdellovibrio bacteriovorus.
|
| |
J Bacteriol,
187,
5367-5375.
|
 |
|
|
|
|
 |
A.P.Koudelka,
L.A.Hufnagel,
and
G.B.Koudelka
(2004).
Purification and characterization of the repressor of the shiga toxin-encoding bacteriophage 933W: DNA binding, gene regulation, and autocleavage.
|
| |
J Bacteriol,
186,
7659-7669.
|
 |
|
|
|
|
 |
D.R.Pawlowski,
and
G.B.Koudelka
(2004).
The preferred substrate for RecA-mediated cleavage of bacteriophage 434 repressor is the DNA-bound dimer.
|
| |
J Bacteriol,
186,
1-7.
|
 |
|
|
|
|
 |
I.Botos,
E.E.Melnikov,
S.Cherry,
J.E.Tropea,
A.G.Khalatova,
F.Rasulova,
Z.Dauter,
M.R.Maurizi,
T.V.Rotanova,
A.Wlodawer,
and
A.Gustchina
(2004).
The catalytic domain of Escherichia coli Lon protease has a unique fold and a Ser-Lys dyad in the active site.
|
| |
J Biol Chem,
279,
8140-8148.
|
 |
|
PDB codes:
|
 |
|
|
|
|
|
 |
I.Erill,
M.Jara,
N.Salvador,
M.Escribano,
S.Campoy,
and
J.Barbé
(2004).
Differences in LexA regulon structure among Proteobacteria through in vivo assisted comparative genomics.
|
| |
Nucleic Acids Res,
32,
6617-6626.
|
 |
|
|
|
|
 |
M.Abella,
I.Erill,
M.Jara,
G.Mazón,
S.Campoy,
and
J.Barbé
(2004).
Widespread distribution of a lexA-regulated DNA damage-inducible multiple gene cassette in the Proteobacteria phylum.
|
| |
Mol Microbiol,
54,
212-222.
|
 |
|
|
|
|
 |
A.R.Fernández de Henestrosa,
J.Cuñé,
G.Mazón,
B.L.Dubbels,
D.A.Bazylinski,
and
J.Barbé
(2003).
Characterization of a new LexA binding motif in the marine magnetotactic bacterium strain MC-1.
|
| |
J Bacteriol,
185,
4471-4482.
|
 |
|
|
|
|
 |
J.M.Flynn,
S.B.Neher,
Y.I.Kim,
R.T.Sauer,
and
T.A.Baker
(2003).
Proteomic discovery of cellular substrates of the ClpXP protease reveals five classes of ClpX-recognition signals.
|
| |
Mol Cell,
11,
671-683.
|
 |
|
|
|
|
 |
L.H.Caporale
(2003).
Natural selection and the emergence of a mutation phenotype: an update of the evolutionary synthesis considering mechanisms that affect genome variation.
|
| |
Annu Rev Microbiol,
57,
467-485.
|
 |
|
|
|
|
 |
M.Jara,
C.Núñez,
S.Campoy,
A.R.Fernández de Henestrosa,
D.R.Lovley,
and
J.Barbé
(2003).
Geobacter sulfurreducens has two autoregulated lexA genes whose products do not bind the recA promoter: differing responses of lexA and recA to DNA damage.
|
| |
J Bacteriol,
185,
2493-2502.
|
 |
|
|
|
|
 |
S.B.Neher,
J.M.Flynn,
R.T.Sauer,
and
T.A.Baker
(2003).
Latent ClpX-recognition signals ensure LexA destruction after DNA damage.
|
| |
Genes Dev,
17,
1084-1089.
|
 |
|
|
|
|
 |
S.Campoy,
M.Fontes,
S.Padmanabhan,
P.Cortés,
M.Llagostera,
and
J.Barbé
(2003).
LexA-independent DNA damage-mediated induction of gene expression in Myxococcus xanthus.
|
| |
Mol Microbiol,
49,
769-781.
|
 |
|
|
|
|
 |
T.Jansèn,
H.Kidron,
A.Soitamo,
T.Salminen,
and
P.Mäenpää
(2003).
Transcriptional regulation and structural modelling of the Synechocystis sp. PCC 6803 carboxyl-terminal endoprotease family.
|
| |
FEMS Microbiol Lett,
228,
121-128.
|
 |
|
|
|
|
 |
A.R.Fernández de Henestrosa,
J.Cuñé,
I.Erill,
J.K.Magnuson,
and
J.Barbé
(2002).
A green nonsulfur bacterium, Dehalococcoides ethenogenes, with the LexA binding sequence found in gram-positive organisms.
|
| |
J Bacteriol,
184,
6073-6080.
|
 |
|
|
|
|
 |
A.Tapias,
S.Fernández,
J.C.Alonso,
and
J.Barbé
(2002).
Rhodobacter sphaeroides LexA has dual activity: optimising and repressing recA gene transcription.
|
| |
Nucleic Acids Res,
30,
1539-1546.
|
 |
|
|
|
|
 |
A.V.Kajava,
S.N.Zolov,
K.I.Pyatkov,
A.E.Kalinin,
and
M.A.Nesmeyanova
(2002).
Processing of Escherichia coli alkaline phosphatase. Sequence requirements and possible conformations of the -6 to -4 region of the signal peptide.
|
| |
J Biol Chem,
277,
50396-50402.
|
 |
|
|
|
|
 |
S.Shin,
T.H.Lee,
H.M.Koo,
S.Y.Kim,
H.S.Lee,
Y.S.Kim,
and
B.H.Oh
(2002).
Crystallization and preliminary X-ray crystallographic analysis of malonamidase E2, an amidase signature family member.
|
| |
Acta Crystallogr D Biol Crystallogr,
58,
562-563.
|
 |
|
|
|
|
 |
S.Shin,
T.H.Lee,
N.C.Ha,
H.M.Koo,
S.Y.Kim,
H.S.Lee,
Y.S.Kim,
and
B.H.Oh
(2002).
Structure of malonamidase E2 reveals a novel Ser-cisSer-Lys catalytic triad in a new serine hydrolase fold that is prevalent in nature.
|
| |
EMBO J,
21,
2509-2516.
|
 |
|
PDB codes:
|
 |
|
|
|
|
|
 |
G.C.Walker
(2001).
To cleave or not to cleave? Insights from the LexA crystal structure.
|
| |
Mol Cell,
8,
486-487.
|
 |
|
 |
 |
|
The most recent references are shown first.
Citation data come partly from CiteXplore and partly
from an automated harvesting procedure. Note that this is likely to be
only a partial list as not all journals are covered by
either method. However, we are continually building up the citation data
so more and more references will be included with time.
Where a reference describes a PDB structure, the PDB
code is
shown on the right.
|
');
}
}
 |