spacer
spacer

PDBsum entry 1jcl

Go to PDB code: 
protein ligands Protein-protein interface(s) links
Lyase PDB id
1jcl

 

 

 

 

Loading ...

 
JSmol PyMol  
Contents
Protein chains
252 a.a. *
Ligands
HPD ×2
Waters ×708
* Residue conservation analysis
PDB id:
1jcl
Name: Lyase
Title: Observation of covalent intermediates in an enzyme mechanism at atomic resolution
Structure: Deoxyribose-phosphate aldolase. Chain: a, b. Synonym: phosphodeoxyriboaldolase, deoxyriboaldolase. Engineered: yes
Source: Escherichia coli. Organism_taxid: 562. Expressed in: escherichia coli. Expression_system_taxid: 562
Resolution:
1.05Å     R-factor:   0.143     R-free:   0.169
Authors: A.Heine,G.Desantis,J.G.Luz,M.Mitchell,C.-H.Wong,I.A.Wilson
Key ref:
A.Heine et al. (2001). Observation of covalent intermediates in an enzyme mechanism at atomic resolution. Science, 294, 369-374. PubMed id: 11598300 DOI: 10.1126/science.1063601
Date:
09-Jun-01     Release date:   31-Oct-01    
PROCHECK
Go to PROCHECK summary
 Headers
 References

Protein chains
Pfam   ArchSchema ?
P0A6L0  (DEOC_ECOLI) -  Deoxyribose-phosphate aldolase from Escherichia coli (strain K12)
Seq:
Struc:
259 a.a.
252 a.a.
Key:    PfamA domain  Secondary structure  CATH domain

 Enzyme reactions 
   Enzyme class: E.C.4.1.2.4  - deoxyribose-phosphate aldolase.
[IntEnz]   [ExPASy]   [KEGG]   [BRENDA]

      Pathway:
Deoxyribose-phosphate aldolase
      Reaction: 2-deoxy-D-ribose 5-phosphate = D-glyceraldehyde 3-phosphate + acetaldehyde
2-deoxy-D-ribose 5-phosphate
Bound ligand (Het Group name = HPD)
corresponds exactly
= D-glyceraldehyde 3-phosphate
+ acetaldehyde
Molecule diagrams generated from .mol files obtained from the KEGG ftp site

 

 
    reference    
 
 
DOI no: 10.1126/science.1063601 Science 294:369-374 (2001)
PubMed id: 11598300  
 
 
Observation of covalent intermediates in an enzyme mechanism at atomic resolution.
A.Heine, G.DeSantis, J.G.Luz, M.Mitchell, C.H.Wong, I.A.Wilson.
 
  ABSTRACT  
 
In classical enzymology, intermediates and transition states in a catalytic mechanism are usually inferred from a series of biochemical experiments. Here, we derive an enzyme mechanism from true atomic-resolution x-ray structures of reaction intermediates. Two ultra-high resolution structures of wild-type and mutant d-2-deoxyribose-5-phosphate (DRP) aldolase complexes with DRP at 1.05 and 1.10 angstroms unambiguously identify the postulated covalent carbinolamine and Schiff base intermediates in the aldolase mechanism. In combination with site-directed mutagenesis and (1)H nuclear magnetic resonance, we can now propose how the heretofore elusive C-2 proton abstraction step and the overall stereochemical course are accomplished. A proton relay system appears to activate a conserved active-site water that functions as the critical mediator for proton transfer.
 
  Selected figure(s)  
 
Figure 1.
Fig. 1. DERA reaction. In vivo, DERA catalyzes the aldol reaction between the acetaldehyde donor and D-glyceraldehyde-3-phosphate acceptor to generate DRP.
Figure 4.
Fig. 4. Catalytic mechanism for DERA. (A) 1H NMR experiment. DERA-catalyzed exchange of C2 proton of (R)-2-deuteropropanaldehyde and (S)-2-deuteropropanaldehyde in D[2]O was established by 1H NMR. Incubation of (R)-2-deuteropropanaldehyde with DERA in D[2]O effects complete exchange of the -proton to a deuteron, as observed by the collapse of the C3 doublet resonances of the aldehyde and acetal to singlets (left). By contrast, incubation of (S)-2-deuteropropanaldehyde with DERA in D[2]O does not effect proton exchange, as observed by retention of the doublet resonances (right). (B) Proposed catalytic mechanism for DERA. The proposed mechanism is consistent with all of our ultra-high resolution structural, modeling, site-directed mutagenesis, and 1H NMR data. Lys167 is identified as the Schiff base-forming residue. After the enamine is formed, the system is poised for nucleophilic attack onto the carbonyl-carbon of the acceptor aldehyde D-glyceraldehyde-3-phosphate. A proton relay system between Asp102, Lys201, and an active site water molecule is responsible for shuffling a proton between C2 of the acetaldehyde imine and enamine and subsequent C3 hydroxyl protonation. The double arrows in green indicate rapid proton shuffling between Lys201 and Asp102. Crystallographically observed reaction intermediates are boxed (left, carbinolamine; right, Schiff base). (C) Stereochemical course of aldol reaction. When propanal is substituted for acetaldehyde as the donor, the pro-S proton is removed, and thus the aldol reaction proceeds with retention of configuration at C2, with the Si face of the resulting enamine approaching the Re face of the acceptor carbonyl. A:H, general acid; B, general base.
 
  The above figures are reprinted by permission from the AAAs: Science (2001, 294, 369-374) copyright 2001.  
  Figures were selected by an automated process.  

Literature references that cite this PDB file's key reference

  PubMed id Reference
21340087 A.Fihri, D.Luart, C.Len, A.Solhy, C.Chevrin, and V.Polshettiwar (2011).
Suzuki-Miyaura cross-coupling coupling reactions with low catalyst loading: a green and sustainable protocol in pure water.
  Dalton Trans, 40, 3116-3121.  
21209328 R.Shi, L.McDonald, Q.Cui, A.Matte, M.Cygler, and I.Ekiel (2011).
Structural and mechanistic insight into covalent substrate binding by Escherichia coli dihydroxyacetone kinase.
  Proc Natl Acad Sci U S A, 108, 1302-1307.
PDB codes: 3pnk 3pnl 3pnm 3pno 3pnq
20050614 H.H.Nguyen, L.Wang, H.Huang, E.Peisach, D.Dunaway-Mariano, and K.N.Allen (2010).
Structural determinants of substrate recognition in the HAD superfamily member D-glycero-D-manno-heptose-1,7-bisphosphate phosphatase (GmhB) .
  Biochemistry, 49, 1082-1092.
PDB codes: 3l8e 3l8f 3l8g 3l8h
19215202 A.S.Burton, and N.Lehman (2009).
DNA before proteins? Recent discoveries in nucleic acid catalysis strengthen the case.
  Astrobiology, 9, 125-130.  
19846764 E.W.Debler, R.Müller, D.Hilvert, and I.A.Wilson (2009).
An aspartate and a water molecule mediate efficient acid-base catalysis in a tailored antibody pocket.
  Proc Natl Acad Sci U S A, 106, 18539-18544.
PDB codes: 3fo0 3fo1 3fo2
19530727 H.Huang, H.Y.Kim, I.D.Kozekov, Y.J.Cho, H.Wang, A.Kozekova, T.M.Harris, C.J.Rizzo, and M.P.Stone (2009).
Stereospecific formation of the (R)-gamma-hydroxytrimethylene interstrand N2-dG:N2-dG cross-link arising from the gamma-OH-1,N2-propano-2'-deoxyguanosine adduct in the 5'-CpG-3' DNA sequence.
  J Am Chem Soc, 131, 8416-8424.  
19237310 J.A.Gerlt, and P.C.Babbitt (2009).
Enzyme (re)design: lessons from natural evolution and computation.
  Curr Opin Chem Biol, 13, 10-18.  
19319412 L.W.Xu, J.Luo, and Y.Lu (2009).
Asymmetric catalysis with chiral primary amine-based organocatalysts.
  Chem Commun (Camb), (), 1807-1821.  
  19090515 M.M.Müller, M.A.Windsor, W.C.Pomerantz, S.H.Gellman, and D.Hilvert (2009).
A rationally designed aldolase foldamer.
  Angew Chem Int Ed Engl, 48, 922-925.  
19885454 M.Raj, and V.K.Singh (2009).
Organocatalytic reactions in water.
  Chem Commun (Camb), (), 6687-6703.  
19794489 T.Kawamichi, T.Haneda, M.Kawano, and M.Fujita (2009).
X-ray observation of a transient hemiaminal trapped in a porous network.
  Nature, 461, 633-635.  
19714241 Z.Diaz, K.B.Xavier, and S.T.Miller (2009).
The crystal structure of the Escherichia coli autoinducer-2 processing protein LsrF.
  PLoS One, 4, e6820.
PDB codes: 3gkf 3glc 3gnd
19885492 Z.Xu, P.Daka, and H.Wang (2009).
Primary amine-metal Lewis acid bifunctional catalysts: the application to asymmetric direct aldol reactions.
  Chem Commun (Camb), (), 6825-6827.  
18638483 D.S.Berkholz, H.R.Faber, S.N.Savvides, and P.A.Karplus (2008).
Catalytic cycle of human glutathione reductase near 1 A resolution.
  J Mol Biol, 382, 371-384.
PDB codes: 3djg 3djj 3dk4 3dk8 3dk9
18323453 L.Jiang, E.A.Althoff, F.R.Clemente, L.Doyle, D.Röthlisberger, A.Zanghellini, J.L.Gallaher, J.L.Betker, F.Tanaka, C.F.Barbas, D.Hilvert, K.N.Houk, B.L.Stoddard, and D.Baker (2008).
De novo computational design of retro-aldol enzymes.
  Science, 319, 1387-1391.
PDB codes: 3b5l 3b5v 3hoj
18528563 L.W.Xu, and Y.Lu (2008).
Primary amino acids: privileged catalysts in enantioselective organocatalysis.
  Org Biomol Chem, 6, 2047-2053.  
17905878 H.Sakuraba, K.Yoneda, K.Yoshihara, K.Satoh, R.Kawakami, Y.Uto, H.Tsuge, K.Takahashi, H.Hori, and T.Ohshima (2007).
Sequential aldol condensation catalyzed by hyperthermophilic 2-deoxy-d-ribose-5-phosphate aldolase.
  Appl Environ Microbiol, 73, 7427-7434.
PDB code: 1vcv
17766382 J.Dechancie, F.R.Clemente, A.J.Smith, H.Gunaydin, Y.L.Zhao, X.Zhang, and K.N.Houk (2007).
How similar are enzyme active site geometries derived from quantum mechanical theozymes to crystal structures of enzyme-inhibitor complexes? Implications for enzyme design.
  Protein Sci, 16, 1851-1866.  
17656719 T.Iwasawa, R.J.Hooley, and J.Rebek (2007).
Stabilization of labile carbonyl addition intermediates by a synthetic receptor.
  Science, 317, 493-496.  
17448143 Y.L.Boersma, M.J.Dröge, and W.J.Quax (2007).
Selection strategies for improved biocatalysts.
  FEBS J, 274, 2181-2195.  
16637082 A.Córdova, W.Zou, P.Dziedzic, I.Ibrahem, E.Reyes, and Y.Xu (2006).
Direct asymmetric intermolecular aldol reactions catalyzed by amino acids and small peptides.
  Chemistry, 12, 5383-5397.  
16357992 P.Dziedzic, W.Zou, J.Háfren, and A.Córdova (2006).
The small peptide-catalyzed direct asymmetric aldol reaction in water.
  Org Biomol Chem, 4, 38-40.  
16892289 S.Jennewein, M.Schürmann, M.Wolberg, I.Hilker, R.Luiten, M.Wubbolts, and D.Mink (2006).
Directed evolution of an industrial biocatalyst: 2-deoxy-D-ribose 5-phosphate aldolase.
  Biotechnol J, 1, 537-548.  
16259017 A.Bassan, W.Zou, E.Reyes, F.Himo, and A.Córdova (2005).
The origin of stereoselectivity in primary amino acid catalyzed intermolecular aldol reactions.
  Angew Chem Int Ed Engl, 44, 7028-7032.  
15929141 A.Córdova, I.Ibrahem, J.Casas, H.Sundén, M.Engqvist, and E.Reyes (2005).
Amino acid catalyzed neogenesis of carbohydrates: a plausible ancient transformation.
  Chemistry, 11, 4772-4784.  
15967977 C.C.Hsu, Z.Hong, M.Wada, D.Franke, and C.H.Wong (2005).
Directed evolution of D-sialic acid aldolase to L-3-deoxy-manno-2-octulosonic acid (L-KDO) aldolase.
  Proc Natl Acad Sci U S A, 102, 9122-9126.  
15624230 J.Casas, M.Engqvist, I.Ibrahem, B.Kaynak, and A.Córdova (2005).
Direct amino acid catalyzed asymmetric synthesis of polyketide sugars.
  Angew Chem Int Ed Engl, 44, 1343-1345.  
15860561 K.Wang, and R.Samudrala (2005).
FSSA: a novel method for identifying functional signatures from structural alignments.
  Bioinformatics, 21, 2969-2977.  
17193175 M.Limbach (2005).
'Five at one stroke': proline and small peptides in the stereoselective de novo synthesis and enantiotopic functionalization of carbohydrates.
  Chem Biodivers, 2, 825-836.  
15272157 A.W.Schüttelkopf, and D.M.van Aalten (2004).
PRODRG: a tool for high-throughput crystallography of protein-ligand complexes.
  Acta Crystallogr D Biol Crystallogr, 60, 1355-1363.  
15298890 L.Yang, J.S.Dordick, and S.Garde (2004).
Hydration of enzyme in nonaqueous media is consistent with solvent dependence of its activity.
  Biophys J, 87, 812-821.  
15388928 N.K.Lokanath, I.Shiromizu, N.Ohshima, Y.Nodake, M.Sugahara, S.Yokoyama, S.Kuramitsu, M.Miyano, and N.Kunishima (2004).
Structure of aldolase from Thermus thermophilus HB8 showing the contribution of oligomeric state to thermostability.
  Acta Crystallogr D Biol Crystallogr, 60, 1816-1823.
PDB codes: 1j2w 1ub3
15205420 N.Rashid, H.Imanaka, T.Fukui, H.Atomi, and T.Imanaka (2004).
Presence of a novel phosphopentomutase and a 2-deoxyribose 5-phosphate aldolase reveals a metabolic link between pentoses and central carbon metabolism in the hyperthermophilic archaeon Thermococcus kodakaraensis.
  J Bacteriol, 186, 4185-4191.  
12039005 C.M.Wilmot, and A.R.Pearson (2002).
Cryocrystallography of metalloprotein reaction intermediates.
  Curr Opin Chem Biol, 6, 202-207.  
12150912 J.L.Hansen, J.A.Ippolito, N.Ban, P.Nissen, P.B.Moore, and T.A.Steitz (2002).
The structures of four macrolide antibiotics bound to the large ribosomal subunit.
  Mol Cell, 10, 117-128.
PDB codes: 1k8a 1k9m 1kd1 1m1k
The most recent references are shown first. Citation data come partly from CiteXplore and partly from an automated harvesting procedure. Note that this is likely to be only a partial list as not all journals are covered by either method. However, we are continually building up the citation data so more and more references will be included with time. Where a reference describes a PDB structure, the PDB codes are shown on the right.

 

spacer

spacer