spacer
spacer

PDBsum entry 1jbe

Go to PDB code: 
protein ligands links
Signaling protein PDB id
1jbe

 

 

 

 

Loading ...

 
JSmol PyMol  
Contents
Protein chain
128 a.a. *
Ligands
SO4 ×3
GOL ×2
Waters ×199
* Residue conservation analysis
PDB id:
1jbe
Name: Signaling protein
Title: 1.08 a structure of apo-chey reveals meta-active conformation
Structure: Chemotaxis protein chey. Chain: a. Engineered: yes
Source: Escherichia coli. Organism_taxid: 562. Expressed in: escherichia coli. Expression_system_taxid: 562
Resolution:
1.08Å     R-factor:   0.113     R-free:   0.152
Authors: M.Simonovic,K.Volz
Key ref:
M.Simonovic and K.Volz (2001). A distinct meta-active conformation in the 1.1-A resolution structure of wild-type ApoCheY. J Biol Chem, 276, 28637-28640. PubMed id: 11410584 DOI: 10.1074/jbc.C100295200
Date:
04-Jun-01     Release date:   08-Aug-01    
PROCHECK
Go to PROCHECK summary
 Headers
 References

Protein chain
P0AE67  (CHEY_ECOLI) -  Chemotaxis protein CheY from Escherichia coli (strain K12)
Seq:
Struc:
129 a.a.
128 a.a.*
Key:    Secondary structure  CATH domain
* PDB and UniProt seqs differ at 1 residue position (black cross)

 

 
DOI no: 10.1074/jbc.C100295200 J Biol Chem 276:28637-28640 (2001)
PubMed id: 11410584  
 
 
A distinct meta-active conformation in the 1.1-A resolution structure of wild-type ApoCheY.
M.Simonovic, K.Volz.
 
  ABSTRACT  
 
CheY is the best characterized member of the response regulator superfamily, and as such it has become the principal model for understanding the initial molecular mechanisms of signaling in two-component systems. Normal signaling by response regulators requires phosphorylation, in combination with an activation mechanism whose conformational effects are not completely understood. CheY activation involves three events, phosphorylation, a conformational change in the beta(4)--alpha(4) loop, and a rotational restriction of the side chain of tyrosine 106. An outstanding question concerns the nature of an active conformation in the apoCheY population. The details of this 1.08-A resolution crystal structure of wild-type apoCheY shows the beta(4)--alpha(4) loop in two distinctly different conformations that sterically correlate with the two rotameric positions of the tyrosine 106 side chain. One of these conformational states of CheY is the inactive form, and we propose that the other is a meta-active form, responsible for the active properties seen in apoCheY.
 
  Selected figure(s)  
 
Figure 1.
Fig. 1. Stereo diagram showing the structural details of the conformational heterogeneity of the [4]- [4] loop and the Tyr106 side chain of wild-type apoCheY. The omit |F[o ]F[c]| [c] electron density is contoured at 3.5 . A, alanine; Y, tyrosine.
Figure 2.
Fig. 2. Schematic diagram for the four possible combined conformations of the [4]- [4] loop and the Tyr106 side chain of wild-type apoCheY. Y, tyrosine.
 
  The above figures are reprinted by permission from the ASBMB: J Biol Chem (2001, 276, 28637-28640) copyright 2001.  

Literature references that cite this PDB file's key reference

  PubMed id Reference
21456702 K.Itoh, and M.Sasai (2011).
Statistical mechanics of protein allostery: roles of backbone and side-chain structural fluctuations.
  J Chem Phys, 134, 125102.  
21346797 V.Parashar, N.Mirouze, D.A.Dubnau, and M.B.Neiditch (2011).
Structural basis of response regulator dephosphorylation by rap phosphatases.
  PLoS Biol, 9, e1000589.
PDB code: 3q15
20702407 C.M.Barbieri, T.R.Mack, V.L.Robinson, M.T.Miller, and A.M.Stock (2010).
Regulation of response regulator autophosphorylation through interdomain contacts.
  J Biol Chem, 285, 32325-32335.
PDB codes: 3nhz 3nnn 3nns
20385843 K.Itoh, and M.Sasai (2010).
Entropic mechanism of large fluctuation in allosteric transition.
  Proc Natl Acad Sci U S A, 107, 7775-7780.  
20211578 R.B.Bourret (2010).
Receiver domain structure and function in response regulator proteins.
  Curr Opin Microbiol, 13, 142-149.  
20226790 R.D.Hills, S.V.Kathuria, L.A.Wallace, I.J.Day, C.L.Brooks, and C.R.Matthews (2010).
Topological frustration in beta alpha-repeat proteins: sequence diversity modulates the conserved folding mechanisms of alpha/beta/alpha sandwich proteins.
  J Mol Biol, 398, 332-350.  
19371748 T.R.Mack, R.Gao, and A.M.Stock (2009).
Probing the roles of the two different dimers mediated by the receiver domain of the response regulator PhoB.
  J Mol Biol, 389, 349-364.  
19246239 U.Jenal, and M.Y.Galperin (2009).
Single domain response regulators: molecular switches with emerging roles in cell organization and dynamics.
  Curr Opin Microbiol, 12, 152-160.  
19646451 Y.Pazy, A.C.Wollish, S.A.Thomas, P.J.Miller, E.J.Collins, R.B.Bourret, and R.E.Silversmith (2009).
Matching biochemical reaction kinetics to the timescales of life: structural determinants that influence the autodephosphorylation rate of response regulator proteins.
  J Mol Biol, 392, 1205-1220.
PDB codes: 3f7n 3fft 3ffw 3ffx 3fgz
18353359 G.Wisedchaisri, M.Wu, D.R.Sherman, and W.G.Hol (2008).
Crystal structures of the response regulator DosR from Mycobacterium tuberculosis suggest a helix rearrangement mechanism for phosphorylation activation.
  J Mol Biol, 378, 227-242.
PDB codes: 3c3w 3c57
18801331 K.McAdams, E.S.Casper, R.Matthew Haas, B.D.Santarsiero, A.L.Eggler, A.Mesecar, and C.J.Halkides (2008).
The structures of T87I phosphono-CheY and T87I/Y106W phosphono-CheY help to explain their binding affinities to the FliM and CheZ peptides.
  Arch Biochem Biophys, 479, 105-113.
PDB codes: 2id7 2id9 2idm
18560010 Q.Cui, and M.Karplus (2008).
Allostery and cooperativity revisited.
  Protein Sci, 17, 1295-1307.  
17766356 E.Caballero-Manrique, J.K.Bray, W.A.Deutschman, F.W.Dahlquist, and M.G.Guenza (2007).
A theory of protein dynamics to predict NMR relaxation.
  Biophys J, 93, 4128-4140.  
17573816 J.S.Fraser, J.P.Merlie, N.Echols, S.R.Weisfield, T.Mignot, D.E.Wemmer, D.R.Zusman, and T.Alber (2007).
An atypical receiver domain controls the dynamic polar localization of the Myxococcus xanthus social motility protein FrzS.
  Mol Microbiol, 65, 319-332.
PDB codes: 2gkg 2i6f 2nt3 2nt4
17655236 L.Ma, and Q.Cui (2007).
Activation mechanism of a signaling protein at atomic resolution from advanced computations.
  J Am Chem Soc, 129, 10261-10268.  
17172298 M.H.Knaggs, F.R.Salsbury, M.H.Edgell, and J.S.Fetrow (2007).
Insights into correlated motions and long-range interactions in CheY derived from molecular dynamics simulations.
  Biophys J, 92, 2062-2079.  
17433693 R.Gao, T.R.Mack, and A.M.Stock (2007).
Bacterial response regulators: versatile regulatory strategies from common domains.
  Trends Biochem Sci, 32, 225-234.  
17050920 A.M.Stock, and J.Guhaniyogi (2006).
A new perspective on response regulator activation.
  J Bacteriol, 188, 7328-7330.  
17050923 C.M.Dyer, and F.W.Dahlquist (2006).
Switched or not?: the structure of unphosphorylated CheY bound to the N terminus of FliM.
  J Bacteriol, 188, 7354-7363.
PDB code: 2b1j
16475196 M.S.Formaneck, L.Ma, and Q.Cui (2006).
Reconciling the "old" and "new" views of protein allostery: a molecular simulation study of chemotaxis Y protein (CheY).
  Proteins, 63, 846-867.  
17019722 M.S.Formaneck, and Q.Cui (2006).
The use of a generalized born model for the analysis of protein conformational transitions: a comparative study with explicit solvent simulations for chemotaxis Y protein (CheY).
  J Comput Chem, 27, 1923-1943.  
16816192 R.Gao, A.Mukhopadhyay, F.Fang, and D.G.Lynn (2006).
Constitutive activation of two-component response regulators: characterization of VirG activation in Agrobacterium tumefaciens.
  J Bacteriol, 188, 5204-5211.  
17139088 U.D.Ramirez, and D.M.Freymann (2006).
Analysis of protein hydration in ultrahigh-resolution structures of the SRP GTPase Ffh.
  Acta Crystallogr D Biol Crystallogr, 62, 1520-1534.
PDB codes: 2j45 2j46
15741343 T.J.Lowery, M.Doucleff, E.J.Ruiz, S.M.Rubin, A.Pines, and D.E.Wemmer (2005).
Distinguishing multiple chemotaxis Y protein conformations with laser-polarized 129Xe NMR.
  Protein Sci, 14, 848-855.
PDB code: 1zdm
14563873 J.G.Smith, J.A.Latiolais, G.P.Guanga, S.Citineni, R.E.Silversmith, and R.B.Bourret (2003).
Investigation of the role of electrostatic charge in activation of the Escherichia coli response regulator CheY.
  J Bacteriol, 185, 6385-6391.  
12381845 P.Roche, L.Mouawad, D.Perahia, J.P.Samama, and D.Kahn (2002).
Molecular dynamics of the FixJ receiver domain: movement of the beta4-alpha4 loop correlates with the in and out flip of Phe101.
  Protein Sci, 11, 2622-2630.  
12438647 S.B.Williams, I.Vakonakis, S.S.Golden, and A.C.LiWang (2002).
Structure and function from the circadian clock protein KaiA of Synechococcus elongatus: a potential clock input mechanism.
  Proc Natl Acad Sci U S A, 99, 15357-15362.
PDB codes: 1m2e 1m2f
12381847 S.Da Re, T.Tolstykh, P.M.Wolanin, and J.B.Stock (2002).
Genetic analysis of response regulator activation in bacterial chemotaxis suggests an intermolecular mechanism.
  Protein Sci, 11, 2644-2654.  
The most recent references are shown first. Citation data come partly from CiteXplore and partly from an automated harvesting procedure. Note that this is likely to be only a partial list as not all journals are covered by either method. However, we are continually building up the citation data so more and more references will be included with time. Where a reference describes a PDB structure, the PDB code is shown on the right.

 

spacer

spacer