spacer
spacer

PDBsum entry 1j8f

Go to PDB code: 
protein metals Protein-protein interface(s) links
Gene regulation, transferase PDB id
1j8f

 

 

 

 

Loading ...

 
JSmol PyMol  
Contents
Protein chain
312 a.a. *
Metals
_ZN ×3
Waters ×2598
* Residue conservation analysis
PDB id:
1j8f
Name: Gene regulation, transferase
Title: Human sirt2 histone deacetylase
Structure: Sirtuin 2, isoform 1. Chain: a, b, c. Synonym: sirt2. Sir2-related protein type 2. Silencing information regulator 2-like. Sir2-like 2. Silent mating type information regulation 2, s.Cerevisiae, homolog 2. Engineered: yes
Source: Homo sapiens. Human. Organism_taxid: 9606. Gene: sirt2. Expressed in: escherichia coli bl21(de3). Expression_system_taxid: 469008.
Biol. unit: Dimer (from PQS)
Resolution:
1.70Å     R-factor:   0.235     R-free:   0.260
Authors: N.P.Pavletich,M.S.Finnin,J.R.Donigian
Key ref:
M.S.Finnin et al. (2001). Structure of the histone deacetylase SIRT2. Nat Struct Biol, 8, 621-625. PubMed id: 11427894 DOI: 10.1038/89668
Date:
21-May-01     Release date:   06-Jul-01    
PROCHECK
Go to PROCHECK summary
 Headers
 References

Protein chains
Pfam   ArchSchema ?
Q8IXJ6  (SIR2_HUMAN) -  NAD-dependent protein deacetylase sirtuin-2 from Homo sapiens
Seq:
Struc:
389 a.a.
312 a.a.
Key:    PfamA domain  Secondary structure  CATH domain

 Enzyme reactions 
   Enzyme class 1: E.C.2.3.1.-  - ?????
[IntEnz]   [ExPASy]   [KEGG]   [BRENDA]
   Enzyme class 2: E.C.2.3.1.286  - protein acetyllysine N-acetyltransferase.
[IntEnz]   [ExPASy]   [KEGG]   [BRENDA]
      Reaction: N6-acetyl-L-lysyl-[protein] + NAD+ + H2O = 2''-O-acetyl-ADP-D-ribose + nicotinamide + L-lysyl-[protein]
N(6)-acetyl-L-lysyl-[protein]
+ NAD(+)
+ H2O
= 2''-O-acetyl-ADP-D-ribose
+ nicotinamide
+ L-lysyl-[protein]
Note, where more than one E.C. class is given (as above), each may correspond to a different protein domain or, in the case of polyprotein precursors, to a different mature protein.
Molecule diagrams generated from .mol files obtained from the KEGG ftp site

 

 
    Added reference    
 
 
DOI no: 10.1038/89668 Nat Struct Biol 8:621-625 (2001)
PubMed id: 11427894  
 
 
Structure of the histone deacetylase SIRT2.
M.S.Finnin, J.R.Donigian, N.P.Pavletich.
 
  ABSTRACT  
 
Sir2 is an NAD-dependent histone deacetylase that mediates transcriptional silencing at mating-type loci, telomeres and ribosomal gene clusters, and has a critical role in the determination of life span in yeast and Caenorhabditis elegans. The 1.7 A crystal structure of the 323 amino acid catalytic core of human SIRT2, a homolog of yeast Sir2, reveals an NAD-binding domain, which is a variant of the Rossmann fold, and a smaller domain composed of a helical module and a zinc-binding module. A conserved large groove at the interface of the two domains is the likely site of catalysis based on mutagenesis. Intersecting this large groove, there is a pocket formed by the helical module. The pocket is lined with hydrophobic residues conserved within each of the five Sir2 classes, suggesting that it is a class-specific protein-binding site.
 
  Selected figure(s)  
 
Figure 3.
Figure 3. Conservation among Sir2-like enzymes. a, Surface representation of SIRT2 generated by the program GRASP39, with residues identical among all Sir2-like enzymes (yellow) and those identical among class I enzymes (magenta) mapped onto the surface. These residues are indicated as ball-and-stick representations in the black-rimmed expansion (right), which shows a close-up view of the potential NAD-binding site. b, An expanded surface representation of the area highlighted in (a) with the hydrophobic residues of the pocket mapped onto the surface in orange. The black-rimmed expansion shows a ribbon diagram of the helical module containing the hydrophobic pocket and ball-and-stick representation of the hydrophobic residues, which are labeled. c, Histone deacetylase activity of the SIRT2 point mutants. Reactions contained wild type or mutant SIRT2, 500 M NAD and 10 g of [3H]acetyl-labeled murine erythroleukemia histone preparation. Assays were performed in triplicate and error bars denote the standard deviation.
Figure 4.
Figure 4. Structural comparison between SIRT2 and Sir2-Af1. a, Superposition of SIRT2 Rossmann fold with Sir2-Af1 in stereo. SIRT2 is shown in cyan and positioned approximately in the same orientation as in Fig. 1 (right), and Sir2-Af1 is in gray. The zinc from SIRT2 is in magenta, whereas the zinc atom from Sir2-Af1 is in orange. The NAD molecule from the Sir2-Af1 -NAD complex is in red. The SIRT2 small pocket and the L-1B loop of Sir2-Af1 are labeled. Notice the increased size of the Sir2-Af1 acetyl-lysine binding site in SIRT2. b, A stereo, close-up view of the NAD binding sites of SIRT2 and Sir2-Af1. The view shows the molecules turned 90° along a horizontal axis in the plane of the paper. Conserved SIRT2 residues that are candidates for NAD-binding or catalysis are shown as ball-and-stick representations and are labeled.
 
  The above figures are reprinted by permission from Macmillan Publishers Ltd: Nat Struct Biol (2001, 8, 621-625) copyright 2001.  
  Figures were selected by an automated process.  

Literature references that cite this PDB file's key reference

  PubMed id Reference
21080423 P.Bheda, J.T.Wang, J.C.Escalante-Semerena, and C.Wolberger (2011).
Structure of Sir2Tm bound to a propionylated peptide.
  Protein Sci, 20, 131-139.
PDB code: 3pdh
20863707 E.Verdin, M.D.Hirschey, L.W.Finley, and M.C.Haigis (2010).
Sirtuin regulation of mitochondria: energy production, apoptosis, and signaling.
  Trends Biochem Sci, 35, 669-675.  
19824050 J.Schemies, U.Uciechowska, W.Sippl, and M.Jung (2010).
NAD(+) -dependent histone deacetylases (sirtuins) as novel therapeutic targets.
  Med Res Rev, 30, 861-889.  
19937668 J.Tavares, A.Ouaissi, P.Kong Thoo Lin, I.Loureiro, S.Kaur, N.Roy, and A.Cordeiro-da-Silva (2010).
Bisnaphthalimidopropyl derivatives as inhibitors of Leishmania SIR2 related protein 1.
  ChemMedChem, 5, 140-147.  
19634988 M.A.Wouters, S.W.Fan, and N.L.Haworth (2010).
Disulfides as redox switches: from molecular mechanisms to functional significance.
  Antioxid Redox Signal, 12, 53-91.  
19404761 S.Kaur, A.V.Shivange, and N.Roy (2010).
Structural analysis of trypanosomal sirtuin: an insight for selective drug design.
  Mol Divers, 14, 169-178.  
18790076 A.Mai, and L.Altucci (2009).
Epi-drugs to fight cancer: from chemistry to cancer treatment, the road ahead.
  Int J Biochem Cell Biol, 41, 199-213.  
19558452 D.Albani, L.Polito, S.Batelli, S.De Mauro, C.Fracasso, G.Martelli, L.Colombo, C.Manzoni, M.Salmona, S.Caccia, A.Negro, and G.Forloni (2009).
The SIRT1 activator resveratrol protects SK-N-BE cells from oxidative stress and against toxicity caused by alpha-synuclein or amyloid-beta (1-42) peptide.
  J Neurochem, 110, 1445-1456.  
19355989 D.Wang (2009).
Computational studies on the histone deacetylases and the design of selective histone deacetylase inhibitors.
  Curr Top Med Chem, 9, 241-256.  
19491102 D.Zhang, S.Li, P.Cruz, and B.C.Kone (2009).
Sirtuin 1 functionally and physically interacts with disruptor of telomeric silencing-1 to regulate alpha-ENaC transcription in collecting duct.
  J Biol Chem, 284, 20917-20926.  
19060927 E.Lara, A.Mai, V.Calvanese, L.Altucci, P.Lopez-Nieva, M.L.Martinez-Chantar, M.Varela-Rey, D.Rotili, A.Nebbioso, S.Ropero, G.Montoya, J.Oyarzabal, S.Velasco, M.Serrano, M.Witt, A.Villar-Garea, A.Inhof, J.M.Mato, M.Esteller, and M.F.Fraga (2009).
Salermide, a Sirtuin inhibitor with a strong cancer-specific proapoptotic effect.
  Oncogene, 28, 781-791.  
19419202 F.Medda, R.J.Russell, M.Higgins, A.R.McCarthy, J.Campbell, A.M.Slawin, D.P.Lane, S.Lain, and N.J.Westwood (2009).
Novel cambinol analogs as sirtuin inhibitors: synthesis, biological evaluation, and rationalization of activity.
  J Med Chem, 52, 2673-2682.  
19037106 F.Wang, and Q.Tong (2009).
SIRT2 suppresses adipocyte differentiation by deacetylating FOXO1 and enhancing FOXO1's repressive interaction with PPARgamma.
  Mol Biol Cell, 20, 801-808.  
19706170 K.S.Makarova, Y.I.Wolf, J.van der Oost, and E.V.Koonin (2009).
Prokaryotic homologs of Argonaute proteins are predicted to function as key components of a novel system of defense against mobile genetic elements.
  Biol Direct, 4, 29.  
19535340 L.Jin, W.Wei, Y.Jiang, H.Peng, J.Cai, C.Mao, H.Dai, W.Choy, J.E.Bemis, M.R.Jirousek, J.C.Milne, C.H.Westphal, and R.B.Perni (2009).
Crystal structures of human SIRT3 displaying substrate-induced conformational changes.
  J Biol Chem, 284, 24394-24405.
PDB codes: 3glr 3gls 3glt 3glu
19721249 T.Suzuki (2009).
Explorative study on isoform-selective histone deacetylase inhibitors.
  Chem Pharm Bull (Tokyo), 57, 897-906.  
18360740 D.P.Dowling, L.Di Costanzo, H.A.Gennadios, and D.W.Christianson (2008).
Evolution of the arginase fold and functional diversity.
  Cell Mol Life Sci, 65, 2039-2055.  
18640115 E.G.Lynn, C.J.McLeod, J.P.Gordon, J.Bao, and M.N.Sack (2008).
SIRT2 is a negative regulator of anoxia-reoxygenation tolerance via regulation of 14-3-3 zeta and BAD in H9c2 cells.
  FEBS Lett, 582, 2857-2862.  
19806227 I.Autiero, S.Costantini, and G.Colonna (2008).
Human sirt-1: molecular modeling and structure-function relationships of an unordered protein.
  PLoS One, 4, e7350.  
18586844 J.A.Kovacs, M.Yeager, and R.Abagyan (2008).
Damped-dynamics flexible fitting.
  Biophys J, 95, 3192-3207.  
18282481 J.C.Milne, and J.M.Denu (2008).
The Sirtuin family: therapeutic targets to treat diseases of aging.
  Curr Opin Chem Biol, 12, 11-17.  
19049465 P.Hu, S.Wang, and Y.Zhang (2008).
Highly dissociative and concerted mechanism for the nicotinamide cleavage reaction in Sir2Tm enzyme suggested by ab initio QM/MM molecular dynamics simulations.
  J Am Chem Soc, 130, 16721-16728.  
18827827 S.Lavu, O.Boss, P.J.Elliott, and P.D.Lambert (2008).
Sirtuins--novel therapeutic targets to treat age-associated diseases.
  Nat Rev Drug Discov, 7, 841-853.  
18985648 U.Uciechowska, J.Schemies, R.C.Neugebauer, E.M.Huda, M.L.Schmitt, R.Meier, E.Verdin, M.Jung, and W.Sippl (2008).
Thiobarbiturates as sirtuin inhibitors: virtual screening, free-energy calculations, and biological testing.
  ChemMedChem, 3, 1965-1976.  
18786399 W.F.Hawse, K.G.Hoff, D.G.Fatkins, A.Daines, O.V.Zubkova, V.L.Schramm, W.Zheng, and C.Wolberger (2008).
Structural insights into intermediate steps in the Sir2 deacetylation reaction.
  Structure, 16, 1368-1377.
PDB codes: 3d4b 3d81
17355872 A.Schuetz, J.Min, T.Antoshenko, C.L.Wang, A.Allali-Hassani, A.Dong, P.Loppnau, M.Vedadi, A.Bochkarev, R.Sternglanz, and A.N.Plotnikov (2007).
Structural basis of inhibition of the human NAD+-dependent deacetylase SIRT5 by suramin.
  Structure, 15, 377-389.
PDB code: 2nyr
17827348 C.J.Merrick, and M.T.Duraisingh (2007).
Plasmodium falciparum Sir2: an unusual sirtuin with dual histone deacetylase and ADP-ribosyltransferase activity.
  Eukaryot Cell, 6, 2081-2091.  
17516032 F.Nahhas, S.C.Dryden, J.Abrams, and M.A.Tainsky (2007).
Mutations in SIRT2 deacetylase which regulate enzymatic activity but not its interaction with HDAC6 and tubulin.
  Mol Cell Biochem, 303, 221-230.  
17521387 F.Wang, M.Nguyen, F.X.Qin, and Q.Tong (2007).
SIRT2 deacetylates FOXO3a in response to oxidative stress and caloric restriction.
  Aging Cell, 6, 505-514.  
17156081 H.Yang, J.A.Baur, A.Chen, C.Miller, J.K.Adams, A.Kisielewski, K.T.Howitz, R.E.Zipkin, and D.A.Sinclair (2007).
Design and synthesis of compounds that extend yeast replicative lifespan.
  Aging Cell, 6, 35-43.  
17242192 J.Mead, R.McCord, L.Youngster, M.Sharma, M.R.Gartenberg, and A.K.Vershon (2007).
Swapping the gene-specific and regional silencing specificities of the Hst1 and Sir2 histone deacetylases.
  Mol Cell Biol, 27, 2466-2475.  
17628866 J.Trapp, R.Meier, D.Hongwiset, M.U.Kassack, W.Sippl, and M.Jung (2007).
Structure-Activity Studies on Suramin Analogues as Inhibitors of NAD(+)-Dependent Histone Deacetylases (Sirtuins).
  ChemMedChem, 2, 1419-1431.  
17984971 S.Lall (2007).
Primers on chromatin.
  Nat Struct Mol Biol, 14, 1110-1115.  
16909107 T.Inoue, M.Hiratsuka, M.Osaki, H.Yamada, I.Kishimoto, S.Yamaguchi, S.Nakano, M.Katoh, H.Ito, and M.Oshimura (2007).
SIRT2, a tubulin deacetylase, acts to block the entry to chromosome condensation in response to mitotic stress.
  Oncogene, 26, 945-957.  
16756498 A.A.Sauve, C.Wolberger, V.L.Schramm, and J.D.Boeke (2006).
The biochemistry of sirtuins.
  Annu Rev Biochem, 75, 435-465.  
16520376 A.N.Khan, and P.N.Lewis (2006).
Use of substrate analogs and mutagenesis to study substrate binding and catalysis in the Sir2 family of NAD-dependent protein deacetylases.
  J Biol Chem, 281, 11702-11711.  
16717101 D.A.King, B.E.Hall, M.A.Iwamoto, K.Z.Win, J.F.Chang, and T.Ellenberger (2006).
Domain structure and protein interactions of the silent information regulator Sir3 revealed by screening a nested deletion library of protein fragments.
  J Biol Chem, 281, 20107-20119.  
16905097 K.G.Hoff, J.L.Avalos, K.Sens, and C.Wolberger (2006).
Insights into the sirtuin mechanism from ternary complexes containing NAD+ and acetylated peptide.
  Structure, 14, 1231-1240.
PDB codes: 2h4f 2h4h 2h4j 2h59
17001674 S.Sheng (2006).
A role of novel serpin maspin in tumor progression: the divergence revealed through efforts to converge.
  J Cell Physiol, 209, 631-635.  
17103016 T.Huhtiniemi, C.Wittekindt, T.Laitinen, J.Leppänen, A.Salminen, A.Poso, and M.Lahtela-Kakkonen (2006).
Comparative and pharmacophore model for deacetylase SIRT1.
  J Comput Aided Mol Des, 20, 589-599.  
15822187 D.C.Drummond, C.O.Noble, D.B.Kirpotin, Z.Guo, G.K.Scott, and C.C.Benz (2005).
Clinical development of histone deacetylase inhibitors as anticancer agents.
  Annu Rev Pharmacol Toxicol, 45, 495-528.  
15642260 E.A.Sickmier, D.Brekasis, S.Paranawithana, J.B.Bonanno, M.S.Paget, S.K.Burley, and C.L.Kielkopf (2005).
X-ray structure of a Rex-family repressor/NADH complex insights into the mechanism of redox sensing.
  Structure, 13, 43-54.
PDB code: 1xcb
15795229 G.Liszt, E.Ford, M.Kurtev, and L.Guarente (2005).
Mouse Sir2 homolog SIRT6 is a nuclear ADP-ribosyltransferase.
  J Biol Chem, 280, 21313-21320.  
15780941 J.L.Avalos, K.M.Bever, and C.Wolberger (2005).
Mechanism of sirtuin inhibition by nicotinamide: altering the NAD(+) cosubstrate specificity of a Sir2 enzyme.
  Mol Cell, 17, 855-868.
PDB codes: 1yc2 1yc5
15898057 M.Biel, V.Wascholowski, and A.Giannis (2005).
Epigenetics--an epicenter of gene regulation: histones and histone-modifying enzymes.
  Angew Chem Int Ed Engl, 44, 3186-3216.  
15128440 B.J.North, and E.Verdin (2004).
Sirtuins: Sir2-related NAD-dependent protein deacetylases.
  Genome Biol, 5, 224.  
15189148 G.Blander, and L.Guarente (2004).
The Sir2 family of protein deacetylases.
  Annu Rev Biochem, 73, 417-435.  
15662999 H.Park, and S.Lee (2004).
Homology modeling, force field design, and free energy simulation studies to optimize the activities of histone deacetylase inhibitors.
  J Comput Aided Mol Des, 18, 375-388.  
15150415 K.Zhao, R.Harshaw, X.Chai, and R.Marmorstein (2004).
Structural basis for nicotinamide cleavage and ADP-ribose transfer by NAD(+)-dependent Sir2 histone/protein deacetylases.
  Proc Natl Acad Sci U S A, 101, 8563-8568.
PDB codes: 1szc 1szd
15466593 L.M.Iyer, K.S.Makarova, E.V.Koonin, and L.Aravind (2004).
Comparative genomics of the FtsK-HerA superfamily of pumping ATPases: implications for the origins of chromosome segregation, cell division and viral capsid packaging.
  Nucleic Acids Res, 32, 5260-5279.  
15269219 M.T.Schmidt, B.C.Smith, M.D.Jackson, and J.M.Denu (2004).
Coenzyme specificity of Sir2 protein deacetylases: implications for physiological regulation.
  J Biol Chem, 279, 40122-40129.  
12517451 J.M.Denu (2003).
Linking chromatin function with metabolic networks: Sir2 family of NAD(+)-dependent deacetylases.
  Trends Biochem Sci, 28, 41-48.  
12966141 K.J.Bitterman, O.Medvedik, and D.A.Sinclair (2003).
Longevity regulation in Saccharomyces cerevisiae: linking metabolism, genome stability, and heterochromatin.
  Microbiol Mol Biol Rev, 67, 376.  
14502267 K.Zhao, X.Chai, A.Clements, and R.Marmorstein (2003).
Structure and autoregulation of the yeast Hst2 homolog of Sir2.
  Nat Struct Biol, 10, 864-871.
PDB code: 1q14
14604530 K.Zhao, X.Chai, and R.Marmorstein (2003).
Structure of the yeast Hst2 protein deacetylase in ternary complex with 2'-O-acetyl ADP ribose and histone peptide.
  Structure, 11, 1403-1411.
PDB codes: 1q17 1q1a
14522996 M.D.Jackson, M.T.Schmidt, N.J.Oppenheimer, and J.M.Denu (2003).
Mechanism of nicotinamide inhibition and transglycosidation by Sir2 histone/protein deacetylases.
  J Biol Chem, 278, 50985-50998.  
14534292 M.Hirao, J.Posakony, M.Nelson, H.Hruby, M.Jung, J.A.Simon, and A.Bedalov (2003).
Identification of selective inhibitors of NAD+-dependent deacetylases using phenotypic screens in yeast.
  J Biol Chem, 278, 52773-52782.  
12697818 S.C.Dryden, F.A.Nahhas, J.E.Nowak, A.S.Goustin, and M.A.Tainsky (2003).
Role for human SIRT2 NAD-dependent deacetylase activity in control of mitotic exit in the cell cycle.
  Mol Cell Biol, 23, 3173-3185.  
12930829 T.Senawong, V.J.Peterson, D.Avram, D.M.Shepherd, R.A.Frye, S.Minucci, and M.Leid (2003).
Involvement of the histone deacetylase SIRT1 in chicken ovalbumin upstream promoter transcription factor (COUP-TF)-interacting protein 2-mediated transcriptional repression.
  J Biol Chem, 278, 43041-43050.  
11914636 D.M.Vigushin, and R.C.Coombes (2002).
Histone deacetylase inhibitors in cancer treatment.
  Anticancer Drugs, 13, 1.  
12006491 E.Langley, M.Pearson, M.Faretta, U.M.Bauer, R.A.Frye, S.Minucci, P.G.Pelicci, and T.Kouzarides (2002).
Human SIR2 deacetylates p53 and antagonizes PML/p53-induced cellular senescence.
  EMBO J, 21, 2383-2396.  
12024030 G.J.Hoppe, J.C.Tanny, A.D.Rudner, S.A.Gerber, S.Danaie, S.P.Gygi, and D.Moazed (2002).
Steps in assembly of silent chromatin in yeast: Sir3-independent binding of a Sir2/Sir4 complex to silencers and role for Sir2-dependent deacetylation.
  Mol Cell Biol, 22, 4167-4180.  
12377115 J.C.Tanny, and D.Moazed (2002).
Recognition of acetylated proteins: lessons from an ancient family of enzymes.
  Structure, 10, 1290-1292.  
12091395 J.H.Chang, H.C.Kim, K.Y.Hwang, J.W.Lee, S.P.Jackson, S.D.Bell, and Y.Cho (2002).
Structural basis for the NAD-dependent deacetylase mechanism of Sir2.
  J Biol Chem, 277, 34489-34498.
PDB codes: 1m2g 1m2h 1m2j 1m2k 1m2n
11812793 M.T.Borra, F.J.O'Neill, M.D.Jackson, B.Marshall, E.Verdin, K.R.Foltz, and J.M.Denu (2002).
Conserved enzymatic production and biological effect of O-acetyl-ADP-ribose by silent information regulator 2-like NAD+-dependent deacetylases.
  J Biol Chem, 277, 12632-12641.  
12438358 N.Ariel, A.Zvi, H.Grosfeld, O.Gat, Y.Inbar, B.Velan, S.Cohen, and A.Shafferman (2002).
Search for potential vaccine candidate open reading frames in the Bacillus anthracis virulence plasmid pXO1: in silico and in vitro screening.
  Infect Immun, 70, 6817-6827.  
12429083 R.Marmorstein (2002).
Dehydrogenases, NAD, and transcription--what's the connection?
  Structure, 10, 1465-1466.  
12419229 V.Kumar, J.E.Carlson, K.A.Ohgi, T.A.Edwards, D.W.Rose, C.R.Escalante, M.G.Rosenfeld, and A.K.Aggarwal (2002).
Transcription corepressor CtBP is an NAD(+)-regulated dehydrogenase.
  Mol Cell, 10, 857-869.
PDB code: 1mx3
11752457 A.Bedalov, T.Gatbonton, W.P.Irvine, D.E.Gottschling, and J.A.Simon (2001).
Identification of a small molecule inhibitor of Sir2p.
  Proc Natl Acad Sci U S A, 98, 15113-15118.  
The most recent references are shown first. Citation data come partly from CiteXplore and partly from an automated harvesting procedure. Note that this is likely to be only a partial list as not all journals are covered by either method. However, we are continually building up the citation data so more and more references will be included with time. Where a reference describes a PDB structure, the PDB code is shown on the right.

 

spacer

spacer