spacer
spacer

PDBsum entry 1j2h

Go to PDB code: 
protein links
Protein transport PDB id
1j2h

 

 

 

 

Loading ...

 
JSmol PyMol  
Contents
Protein chain
112 a.a.
Waters ×111
Superseded by: 1o3x
PDB id:
1j2h
Name: Protein transport
Title: Crystal structure of human gga1 gat domain
Structure: Adp-ribosylation factor binding protein gga1. Chain: a. Fragment: gat domain. Engineered: yes
Source: Homo sapiens. Human. Expressed in: escherichia coli.
Resolution:
2.10Å     R-factor:   0.247     R-free:   0.290
Authors: T.Shiba,M.Kawasaki,H.Takatsu,T.Nogi,N.Matsugaki,N.Igarashi, M.Suzuki,R.Kato,K.Nakayama,S.Wakatsuki
Key ref:
T.Shiba et al. (2003). Molecular mechanism of membrane recruitment of GGA by ARF in lysosomal protein transport. Nat Struct Biol, 10, 386-393. PubMed id: 12679809 DOI: 10.1038/nsb920
Date:
05-Jan-03     Release date:   06-May-03    
PROCHECK
Go to PROCHECK summary
 Headers
 References

Protein chain
Pfam   ArchSchema ?
Q9UJY5  (GGA1_HUMAN) -  ADP-ribosylation factor-binding protein GGA1 from Homo sapiens
Seq:
Struc:
 
Seq:
Struc:
639 a.a.
112 a.a.
Key:    PfamA domain  Secondary structure  CATH domain

 

 
DOI no: 10.1038/nsb920 Nat Struct Biol 10:386-393 (2003)
PubMed id: 12679809  
 
 
Molecular mechanism of membrane recruitment of GGA by ARF in lysosomal protein transport.
T.Shiba, M.Kawasaki, H.Takatsu, T.Nogi, N.Matsugaki, N.Igarashi, M.Suzuki, R.Kato, K.Nakayama, S.Wakatsuki.
 
  ABSTRACT  
 
GGAs are critical for trafficking soluble proteins from the trans-Golgi network (TGN) to endosomes/lysosomes through interactions with TGN-sorting receptors, ADP-ribosylation factor (ARF) and clathrin. ARF-GTP bound to TGN membranes recruits its effector GGA by binding to the GAT domain, thus facilitating recognition of GGA for cargo-loaded receptors. Here we report the X-ray crystal structures of the human GGA1-GAT domain and the complex between ARF1-GTP and the N-terminal region of the GAT domain. When unbound, the GAT domain forms an elongated bundle of three a-helices with a hydrophobic core. Structurally, this domain, combined with the preceding VHS domain, resembles CALM, an AP180 homolog involved in endocytosis. In the complex with ARF1-GTP, a helix-loop-helix of the N-terminal part of GGA1-GAT interacts with the switches 1 and 2 of ARF1 predominantly in a hydrophobic manner. These data reveal a molecular mechanism underlying membrane recruitment of adaptor proteins by ARF-GTP.
 
  Selected figure(s)  
 
Figure 1.
Figure 1. Structures of the GGA1-GAT domain and its complex with ARF1. a, Stereo diagram of the GGA1-GAT domain. The GAT domain forms three -helices connected by loops of varying length. The final model is complete except for the N-terminal 26 residues (166 -191, dotted line) and the C-terminal 2 residues (304 -305), whose electron density is weak. b, Stereo view of the omit F[o] -F[c] electron density map of the GGA1 N-GAT (Leu178 -Asn194) within the ARF1 -N-GAT complex. The map was calculated to 1.6 Å resolution and is displayed at 1.5 cutoff, superimposed with a ball-and-stick model of the N-GAT domain. c, Stereo view of the ARF1 -N-GAT complex. N-GAT forms a helix-loop-helix motif facing switches 1 and 2 of ARF1-GTP. The diagrams in (a) and (c) are shown in the same orientation, which was chosen by the least-square minimization of the overlap of a common helical region (199 -205, shown in red in a and c) between the GAT domain and the ARF1 -N-GAT complex.
Figure 6.
Figure 6. Domain organization of GGA and a proposed model of the interactions with its partners at several stages of the vesicle formation: M6PR, ARF -GTP, clathrin N-terminal propeller and an accessory protein. The N-terminal VHS domain recognizes the sorting signals, such as M6PR (PDB entry 1JWG). The GAT domain interacts with a membrane-bound ARF (this study). The subsequent hinge region interacts with clathrin (clathrin terminal domain in complex with the clathrin-box peptide from 3-hinge of AP-3; PDB entry 1C9I). The sequence S*LLDDELM interact with VHS domain (autoinhibition), where S* is phosphorylated^24. Finally, the C-terminal GGA1 GAE domain is modeled from the structure of the ear domain of -adaptin (PDB entry 1IU1) based on their similarity both in sequence and function.
 
  The above figures are reprinted by permission from Macmillan Publishers Ltd: Nat Struct Biol (2003, 10, 386-393) copyright 2003.  
  Figures were selected by an automated process.  

Literature references that cite this PDB file's key reference

  PubMed id Reference
21170023 A.S.Selyunin, S.E.Sutton, B.A.Weigele, L.E.Reddick, R.C.Orchard, S.M.Bresson, D.R.Tomchick, and N.M.Alto (2011).
The assembly of a GTPase-kinase signalling complex by a bacterial catalytic scaffold.
  Nature, 469, 107-111.
PDB codes: 3pcr 3pcs
21129209 A.F.Neuwald (2010).
Bayesian classification of residues associated with protein functional divergence: Arf and Arf-like GTPases.
  Biol Direct, 5, 66.  
20444903 B.Kropff, Y.Koedel, W.Britt, and M.Mach (2010).
Optimal replication of human cytomegalovirus correlates with endocytosis of glycoprotein gpUL132.
  J Virol, 84, 7039-7052.  
21134634 P.Chavrier, and J.Ménétrey (2010).
Toward a structural understanding of arf family:effector specificity.
  Structure, 18, 1552-1558.  
20067992 S.Kametaka, N.Sawada, J.S.Bonifacino, and S.Waguri (2010).
Functional characterization of protein-sorting machineries at the trans-Golgi network in Drosophila melanogaster.
  J Cell Sci, 123, 460-471.  
20589642 S.Qin, and H.X.Zhou (2010).
Selection of near-native poses in CAPRI rounds 13-19.
  Proteins, 78, 3166-3173.  
20604899 T.Wang, N.S.Liu, L.F.Seet, and W.Hong (2010).
The emerging role of VHS domain-containing Tom1, Tom1L1 and Tom1L2 in membrane trafficking.
  Traffic, 11, 1119-1128.  
20506033 Y.Liu, and J.H.Prestegard (2010).
A device for the measurement of residual chemical shift anisotropy and residual dipolar coupling in soluble and membrane-associated proteins.
  J Biomol NMR, 47, 249-258.  
20601958 Y.Liu, R.A.Kahn, and J.H.Prestegard (2010).
Dynamic structure of membrane-anchored Arf*GTP.
  Nat Struct Mol Biol, 17, 876-881.
PDB code: 2ksq
19644450 T.Isabet, G.Montagnac, K.Regazzoni, B.Raynal, F.El Khadali, P.England, M.Franco, P.Chavrier, A.Houdusse, and J.Ménétrey (2009).
The structural basis of Arf effector specificity: the crystal structure of ARF6 in a complex with JIP4.
  EMBO J, 28, 2835-2845.
PDB code: 2w83
19729648 T.J.Pucadyil, and S.L.Schmid (2009).
Conserved functions of membrane active GTPases in coated vesicle formation.
  Science, 325, 1217-1220.  
18162163 B.Hall, M.A.McLean, K.Davis, J.E.Casanova, S.G.Sligar, and M.A.Schwartz (2008).
A fluorescence resonance energy transfer activation sensor for Arf6.
  Anal Biochem, 374, 243-249.  
18784256 M.E.Abazeed, and R.S.Fuller (2008).
Yeast Golgi-localized, gamma-Ear-containing, ADP-ribosylation factor-binding proteins are but adaptor protein-1 is not required for cell-free transport of membrane proteins from the trans-Golgi network to the prevacuolar compartment.
  Mol Biol Cell, 19, 4826-4836.  
18689681 R.Beck, Z.Sun, F.Adolf, C.Rutz, J.Bassler, K.Wild, I.Sinning, E.Hurt, B.Brügger, J.Béthune, and F.Wieland (2008).
Membrane curvature induced by Arf1-GTP is essential for vesicle formation.
  Proc Natl Acad Sci U S A, 105, 11731-11736.  
17962409 A.F.Neuwald (2007).
Galpha Gbetagamma dissociation may be due to retraction of a buried lysine and disruption of an aromatic cluster by a GTP-sensing Arg Trp pair.
  Protein Sci, 16, 2570-2577.  
17803214 A.Heifetz, S.Pal, and G.R.Smith (2007).
Protein-protein docking: progress in CAPRI rounds 6-12 using a combination of methods: the introduction of steered solvated molecular dynamics.
  Proteins, 69, 816-822.  
17506703 A.K.Gillingham, and S.Munro (2007).
The small G proteins of the Arf family and their regulators.
  Annu Rev Cell Dev Biol, 23, 579-611.  
17543868 G.Prag, H.Watson, Y.C.Kim, B.M.Beach, R.Ghirlando, G.Hummer, J.S.Bonifacino, and J.H.Hurley (2007).
The Vps27/Hse1 complex is a GAT domain-based scaffold for ubiquitin-dependent sorting.
  Dev Cell, 12, 973-986.
PDB code: 2pjw
17681620 H.P.Price, M.Stark, B.Smith, and D.F.Smith (2007).
TbARF1 influences lysosomal function but not endocytosis in procyclic stage Trypanosoma brucei.
  Mol Biochem Parasitol, 155, 123-127.  
17347647 J.Ménétrey, M.Perderiset, J.Cicolari, T.Dubois, N.Elkhatib, F.El Khadali, M.Franco, P.Chavrier, and A.Houdusse (2007).
Structural basis for ARF1-mediated recruitment of ARHGAP21 to Golgi membranes.
  EMBO J, 26, 1953-1962.
PDB code: 2j59
17494868 J.Wang, H.Q.Sun, E.Macia, T.Kirchhausen, H.Watson, J.S.Bonifacino, and H.L.Yin (2007).
PI4P promotes the recruitment of the GGA adaptor proteins to the trans-Golgi network and regulates their recognition of the ubiquitin sorting signal.
  Mol Biol Cell, 18, 2646-2655.  
17894347 S.Chaudhury, A.Sircar, A.Sivasubramanian, M.Berrondo, and J.J.Gray (2007).
Incorporating biochemical information and backbone flexibility in RosettaDock for CAPRI rounds 6-12.
  Proteins, 69, 793-800.  
16633337 C.D'Souza-Schorey, and P.Chavrier (2006).
ARF proteins: roles in membrane traffic and beyond.
  Nat Rev Mol Cell Biol, 7, 347-358.  
17160515 L.Baksheev, and P.J.Fuller (2006).
Gene expression in the adapting small bowel after massive small bowel resection.
  J Gastroenterol, 41, 1041-1052.  
16439358 O.Schlenker, A.Hendricks, I.Sinning, and K.Wild (2006).
The structure of the mammalian signal recognition particle (SRP) receptor as prototype for the interaction of small GTPases with Longin domains.
  J Biol Chem, 281, 8898-8906.
PDB code: 2fh5
16669702 P.Beemiller, A.D.Hoppe, and J.A.Swanson (2006).
A phosphatidylinositol-3-kinase-dependent signal transition regulates ARF1 and ARF6 during Fcgamma receptor-mediated phagocytosis.
  PLoS Biol, 4, e162.  
16460808 V.V.Gurevich, and E.V.Gurevich (2006).
The structural basis of arrestin-mediated regulation of G-protein-coupled receptors.
  Pharmacol Ther, 110, 465-502.  
16099990 C.J.O'Neal, M.G.Jobling, R.K.Holmes, and W.G.Hol (2005).
Structural basis for the activation of cholera toxin by human ARF6-GTP.
  Science, 309, 1093-1096.
PDB codes: 2a5d 2a5f 2a5g
15701688 G.Prag, S.Lee, R.Mattera, C.N.Arighi, B.M.Beach, J.S.Bonifacino, and J.H.Hurley (2005).
Structural mechanism for ubiquitinated-cargo recognition by the Golgi-localized, gamma-ear-containing, ADP-ribosylation-factor-binding proteins.
  Proc Natl Acad Sci U S A, 102, 2334-2339.
PDB code: 1yd8
15966896 M.Kawasaki, T.Shiba, Y.Shiba, Y.Yamaguchi, N.Matsugaki, N.Igarashi, M.Suzuki, R.Kato, K.Kato, K.Nakayama, and S.Wakatsuki (2005).
Molecular mechanism of ubiquitin recognition by GGA3 GAT domain.
  Genes Cells, 10, 639-654.
PDB code: 1wr6
15933719 M.Wu, T.Wang, E.Loh, W.Hong, and H.Song (2005).
Structural basis for recruitment of RILP by small GTPase Rab7.
  EMBO J, 24, 1491-1501.
PDB codes: 1t91 1yhn
15549676 R.L.Rich, and D.G.Myszka (2005).
Survey of the year 2003 commercial optical biosensor literature.
  J Mol Recognit, 18, 1.  
15473838 D.J.Owen, B.M.Collins, and P.R.Evans (2004).
Adaptors for clathrin coats: structure and function.
  Annu Rev Cell Dev Biol, 20, 153-191.  
15457209 G.Zhu, P.Zhai, X.He, N.Wakeham, K.Rodgers, G.Li, J.Tang, and X.C.Zhang (2004).
Crystal structure of human GGA1 GAT domain complexed with the GAT-binding domain of Rabaptin5.
  EMBO J, 23, 3909-3917.
PDB code: 1x79
15265035 M.Albrecht, M.Golatta, U.Wüllner, and T.Lengauer (2004).
Structural and functional analysis of ataxin-2 and ataxin-3.
  Eur J Biochem, 271, 3155-3170.  
14690499 M.M.McKay, and R.A.Kahn (2004).
Multiple phosphorylation events regulate the subcellular localization of GGA1.
  Traffic, 5, 102-116.  
14718928 M.Wu, L.Lu, W.Hong, and H.Song (2004).
Structural basis for recruitment of GRIP domain golgin-245 by small GTPase Arl1.
  Nat Struct Mol Biol, 11, 86-94.
PDB code: 1r4a
15056867 M.Yamakami, and H.Yokosawa (2004).
Tom1 (target of Myb 1) is a novel negative regulator of interleukin-1- and tumor necrosis factor-induced signaling pathways.
  Biol Pharm Bull, 27, 564-566.  
15494413 P.S.Bilodeau, S.C.Winistorfer, M.M.Allaman, K.Surendhran, W.R.Kearney, A.D.Robertson, and R.C.Piper (2004).
The GAT domains of clathrin-associated GGA proteins have two ubiquitin binding motifs.
  J Biol Chem, 279, 54808-54816.  
15143060 R.Mattera, R.Puertollano, W.J.Smith, and J.S.Bonifacino (2004).
The trihelical bundle subdomain of the GGA proteins interacts with multiple partners through overlapping but distinct sites.
  J Biol Chem, 279, 31409-31418.  
15047686 Y.Katoh, Y.Shiba, H.Mitsuhashi, Y.Yanagida, H.Takatsu, and K.Nakayama (2004).
Tollip and Tom1 form a complex and recruit ubiquitin-conjugated proteins onto early endosomes.
  J Biol Chem, 279, 24435-24443.  
14660606 Y.Shiba, Y.Katoh, T.Shiba, K.Yoshino, H.Takatsu, H.Kobayashi, H.W.Shin, S.Wakatsuki, and K.Nakayama (2004).
GAT (GGA and Tom1) domain responsible for ubiquitin binding and ubiquitination.
  J Biol Chem, 279, 7105-7111.  
14580338 B.Panic, O.Perisic, D.B.Veprintsev, R.L.Williams, and S.Munro (2003).
Structural basis for Arl1-dependent targeting of homodimeric GRIP domains to the Golgi apparatus.
  Mol Cell, 12, 863-874.
PDB code: 1upt
14745135 K.Nakayama, and S.Wakatsuki (2003).
The structure and function of GGAs, the traffic controllers at the TGN sorting crossroads.
  Cell Struct Funct, 28, 431-442.  
14636058 P.Zhai, X.He, J.Liu, N.Wakeham, G.Zhu, G.Li, J.Tang, and X.C.Zhang (2003).
The interaction of the human GGA1 GAT domain with rabaptin-5 is mediated by residues on its three-helix bundle.
  Biochemistry, 42, 13901-13908.  
The most recent references are shown first. Citation data come partly from CiteXplore and partly from an automated harvesting procedure. Note that this is likely to be only a partial list as not all journals are covered by either method. However, we are continually building up the citation data so more and more references will be included with time. Where a reference describes a PDB structure, the PDB codes are shown on the right.

 

spacer

spacer