spacer
spacer

PDBsum entry 1j0h

Go to PDB code: 
protein metals Protein-protein interface(s) links
Hydrolase PDB id
1j0h

 

 

 

 

Loading ...

 
JSmol PyMol  
Contents
Protein chains
588 a.a. *
Metals
_CA ×2
_CL
Waters ×1601
* Residue conservation analysis
PDB id:
1j0h
Name: Hydrolase
Title: Crystal structure of bacillus stearothermophilus neopullulanase
Structure: Neopullulanase. Chain: a, b. Engineered: yes
Source: Geobacillus stearothermophilus. Organism_taxid: 1422. Expressed in: escherichia coli. Expression_system_taxid: 562.
Biol. unit: Dimer (from PQS)
Resolution:
1.90Å     R-factor:   0.163     R-free:   0.203
Authors: H.Hondoh,T.Kuriki,Y.Matsuura
Key ref:
H.Hondoh et al. (2003). Three-dimensional structure and substrate binding of Bacillus stearothermophilus neopullulanase. J Mol Biol, 326, 177-188. PubMed id: 12547200 DOI: 10.1016/S0022-2836(02)01402-X
Date:
14-Nov-02     Release date:   28-Jan-03    
PROCHECK
Go to PROCHECK summary
 Headers
 References

Protein chains
Pfam   ArchSchema ?
P38940  (NEPU_GEOSE) -  Neopullulanase from Geobacillus stearothermophilus
Seq:
Struc:
 
Seq:
Struc:
588 a.a.
588 a.a.*
Key:    PfamA domain  Secondary structure  CATH domain
* PDB and UniProt seqs differ at 1 residue position (black cross)

 Enzyme reactions 
   Enzyme class: E.C.3.2.1.135  - neopullulanase.
[IntEnz]   [ExPASy]   [KEGG]   [BRENDA]
      Reaction: Hydrolysis of pullulan to panose (6-alpha-D-glucosylmaltose).

 

 
DOI no: 10.1016/S0022-2836(02)01402-X J Mol Biol 326:177-188 (2003)
PubMed id: 12547200  
 
 
Three-dimensional structure and substrate binding of Bacillus stearothermophilus neopullulanase.
H.Hondoh, T.Kuriki, Y.Matsuura.
 
  ABSTRACT  
 
Crystal structures of Bacillus stearothermophilus TRS40 neopullulanase and its complexes with panose, maltotetraose and isopanose were determined at resolutions of 1.9, 2.4, 2.8 and 3.2A, respectively. Since the latter two carbohydrates are substrates of this enzyme, a deactivated mutant at the catalytic residue Glu357-->Gln was used for complex crystallization. The structures were refined at accuracies with r.m.s. deviations of bond lengths and bond angles ranging from 0.005A to 0.008A and 1.3 degrees to 1.4 degrees, respectively. The active enzyme forms a dimer in the crystalline state and in solution. The monomer enzyme is composed of four domains, N, A, B and C, and has a (beta/alpha)(8)-barrel in domain A. The active site lies between domain A and domain N from the other monomer. The results show that dimer formation makes the active-site cleft narrower than those of ordinary alpha-amylases, which may contribute to the unique substrate specificity of this enzyme toward both alpha-1,4 and alpha-1,6-glucosidic linkages. This specificity may be influenced by the subsite structure. Only subsites -1 and -2 are commonly occupied by the product and substrates, suggesting that equivocal recognition occurs at the other subsites, which contributes to the wide substrate specificity of this enzyme.
 
  Selected figure(s)  
 
Figure 1.
Figure 1. (a) Monomer structure of neopullulanase with domain names. Three catalytic residues, Asp328, Glu357 and Asp424, are shown as ball-and-stick models and a bound calcium ion is shown as an orange sphere. (b) Dimer structure of neopullulanase. Mol-1 and Mol-2 are colored green and red, respectively. Bound panose molecules at the active cleft are shown to indicate the location of the active site. The Figure was produced with MOLSCRIPT 34 and RENDER from the Raster3D package. 35
Figure 6.
Figure 6. Stereo views of the active cleft of the enzyme with bound substrates: panose (green), maltotetraose (blue) and isopanose (red). Hydrophobic residues are shown in yellow.
 
  The above figures are reprinted by permission from Elsevier: J Mol Biol (2003, 326, 177-188) copyright 2003.  
  Figures were selected by an automated process.  

Literature references that cite this PDB file's key reference

  PubMed id Reference
21355000 F.Li, X.Zhu, Y.Li, H.Cao, and Y.Zhang (2011).
Functional characterization of a special thermophilic multifunctional amylase OPMA-N and its N-terminal domain.
  Acta Biochim Biophys Sin (Shanghai), 43, 324-334.  
20855205 S.Ben Mabrouk, N.Aghajari, M.Ben Ali, E.Ben Messaoud, M.Juy, R.Haser, and S.Bejar (2011).
Enhancement of the thermostability of the maltogenic amylase MAUS149 by Gly312Ala and Lys436Arg substitutions.
  Bioresour Technol, 102, 1740-1746.  
20159465 N.M.Koropatkin, and T.J.Smith (2010).
SusG: a unique cell-membrane-associated alpha-amylase from a prominent human gut symbiont targets complex starch molecules.
  Structure, 18, 200-215.
PDB codes: 3k8k 3k8l 3k8m
19662349 Y.Wang, F.Li, and Y.Zhang (2010).
Preliminary investigation on the action modes of an oligosaccharide-producing multifunctional amylase.
  Appl Biochem Biotechnol, 160, 1955-1966.  
18223106 A.Labes, E.N.Karlsson, O.H.Fridjonsson, P.Turner, G.O.Hreggvidson, J.K.Kristjansson, O.Holst, and P.Schönheit (2008).
Novel members of glycoside hydrolase family 13 derived from environmental DNA.
  Appl Environ Microbiol, 74, 1914-1921.  
18703518 E.J.Woo, S.Lee, H.Cha, J.T.Park, S.M.Yoon, H.N.Song, and K.H.Park (2008).
Structural Insight into the Bifunctional Mechanism of the Glycogen-debranching Enzyme TreX from the Archaeon Sulfolobus solfataricus.
  J Biol Chem, 283, 28641-28648.
PDB codes: 2vnc 2vr5 2vuy
18540099 K.Tang, R.S.Kobayashi, V.Champreda, L.Eurwilaichitr, and S.Tanapongpipat (2008).
Isolation and characterization of a novel thermostable neopullulanase-like enzyme from a hot spring in Thailand.
  Biosci Biotechnol Biochem, 72, 1448-1456.  
18981178 M.Kitamura, M.Okuyama, F.Tanzawa, H.Mori, Y.Kitago, N.Watanabe, A.Kimura, I.Tanaka, and M.Yao (2008).
Structural and Functional Analysis of a Glycoside Hydrolase Family 97 Enzyme from Bacteroides thetaiotaomicron.
  J Biol Chem, 283, 36328-36337.
PDB codes: 2d73 2zq0
18049800 S.B.Mabrouk, E.B.Messaoud, D.Ayadi, S.Jemli, A.Roy, M.Mezghani, and S.Bejar (2008).
Cloning and sequencing of an original gene encoding a maltogenic amylase from Bacillus sp. US149 strain and characterization of the recombinant activity.
  Mol Biotechnol, 38, 211-219.  
17630303 S.J.Yang, B.C.Min, Y.W.Kim, S.M.Jang, B.H.Lee, and K.H.Park (2007).
Changes in the catalytic properties of Pyrococcus furiosus thermostable amylase by mutagenesis of the substrate binding sites.
  Appl Environ Microbiol, 73, 5607-5612.  
16790023 K.Tang, T.Utairungsee, P.Kanokratana, R.Sriprang, V.Champreda, L.Eurwilaichitr, and S.Tanapongpipat (2006).
Characterization of a novel cyclomaltodextrinase expressed from environmental DNA isolated from Bor Khleung hot spring in Thailand.
  FEMS Microbiol Lett, 260, 91-99.  
16990265 O.Mirza, L.K.Skov, D.Sprogøe, L.A.van den Broek, G.Beldman, J.S.Kastrup, and M.Gajhede (2006).
Structural rearrangements of sucrose phosphorylase from Bifidobacterium adolescentis during sucrose conversion.
  J Biol Chem, 281, 35576-35584.
PDB codes: 2gdu 2gdv
16857016 S.Y.Tang, Q.T.Le, J.H.Shim, S.J.Yang, J.H.Auh, C.Park, and K.H.Park (2006).
Enhancing thermostability of maltogenic amylase from Bacillus thermoalkalophilus ET2 by DNA shuffling.
  FEBS J, 273, 3335-3345.  
16302977 A.Abe, H.Yoshida, T.Tonozuka, Y.Sakano, and S.Kamitori (2005).
Complexes of Thermoactinomyces vulgaris R-47 alpha-amylase 1 and pullulan model oligossacharides provide new insight into the mechanism for recognizing substrates with alpha-(1,6) glycosidic linkages.
  FEBS J, 272, 6145-6153.
PDB codes: 2d0f 2d0g 2d0h
16310726 P.Turner, A.Labes, O.H.Fridjonsson, G.O.Hreggvidson, P.Schönheit, J.K.Kristjansson, O.Holst, and E.N.Karlsson (2005).
Two novel cyclodextrin-degrading enzymes isolated from thermophilic bacteria have similar domain structures but differ in oligomeric state and activity profile.
  J Biosci Bioeng, 100, 380-390.  
15272305 A.Buschiazzo, J.E.Ugalde, M.E.Guerin, W.Shepard, R.A.Ugalde, and P.M.Alzari (2004).
Crystal structure of glycogen synthase: homologous enzymes catalyze glycogen synthesis and degradation.
  EMBO J, 23, 3196-3205.
PDB codes: 1rzu 1rzv
15138257 A.Ohtaki, M.Mizuno, T.Tonozuka, Y.Sakano, and S.Kamitori (2004).
Complex structures of Thermoactinomyces vulgaris R-47 alpha-amylase 2 with acarbose and cyclodextrins demonstrate the multiple substrate recognition mechanism.
  J Biol Chem, 279, 31033-31040.
PDB codes: 1vfk 1vfm 1vfo 1vfu 3a6o
15182368 M.Mizuno, T.Tonozuka, A.Uechi, A.Ohtaki, K.Ichikawa, S.Kamitori, A.Nishikawa, and Y.Sakano (2004).
The crystal structure of Thermoactinomyces vulgaris R-47 alpha-amylase II (TVA II) complexed with transglycosylated product.
  Eur J Biochem, 271, 2530-2538.
PDB code: 1vb9
15598351 S.Cheek, Y.Qi, S.S.Krishna, L.N.Kinch, and N.V.Grishin (2004).
4SCOPmap: automated assignment of protein structures to evolutionary superfamilies.
  BMC Bioinformatics, 5, 197.  
12902281 Y.W.Kim, J.H.Choi, J.W.Kim, C.Park, J.W.Kim, H.Cha, S.B.Lee, B.H.Oh, T.W.Moon, and K.H.Park (2003).
Directed evolution of Thermus maltogenic amylase toward enhanced thermal resistance.
  Appl Environ Microbiol, 69, 4866-4874.  
The most recent references are shown first. Citation data come partly from CiteXplore and partly from an automated harvesting procedure. Note that this is likely to be only a partial list as not all journals are covered by either method. However, we are continually building up the citation data so more and more references will be included with time. Where a reference describes a PDB structure, the PDB codes are shown on the right.

 

spacer

spacer