spacer
spacer

PDBsum entry 1ipd

Go to PDB code: 
protein ligands links
Oxidoreductase PDB id
1ipd

 

 

 

 

Loading ...

 
JSmol PyMol  
Contents
Protein chain
345 a.a. *
Ligands
SO4 ×2
Waters ×61
* Residue conservation analysis
PDB id:
1ipd
Name: Oxidoreductase
Title: Three-dimensional structure of a highly thermostable enzyme, 3- isopropylmalate dehydrogenase of thermus thermophilus at 2.2 angstroms resolution
Structure: 3-isopropylmalate dehydrogenase. Chain: a. Engineered: yes
Source: Thermus thermophilus. Organism_taxid: 274
Biol. unit: Dimer (from PQS)
Resolution:
2.20Å     R-factor:   0.185    
Authors: K.Imada,M.Sato,N.Tanaka,Y.Katsube,Y.Matsuura,T.Oshima
Key ref: K.Imada et al. (1991). Three-dimensional structure of a highly thermostable enzyme, 3-isopropylmalate dehydrogenase of Thermus thermophilus at 2.2 A resolution. J Mol Biol, 222, 725-738. PubMed id: 1748999
Date:
29-Jan-92     Release date:   31-Oct-93    
PROCHECK
Go to PROCHECK summary
 Headers
 References

Protein chain
Pfam   ArchSchema ?
Q5SIY4  (LEU3_THET8) -  3-isopropylmalate dehydrogenase from Thermus thermophilus (strain ATCC 27634 / DSM 579 / HB8)
Seq:
Struc:
345 a.a.
345 a.a.*
Key:    PfamA domain  Secondary structure  CATH domain
* PDB and UniProt seqs differ at 1 residue position (black cross)

 Enzyme reactions 
   Enzyme class: E.C.1.1.1.85  - 3-isopropylmalate dehydrogenase.
[IntEnz]   [ExPASy]   [KEGG]   [BRENDA]

      Pathway:
Leucine Biosynthesis
      Reaction: (2R,3S)-3-isopropylmalate + NAD+ = 4-methyl-2-oxopentanoate + CO2 + NADH
(2R,3S)-3-isopropylmalate
+ NAD(+)
= 4-methyl-2-oxopentanoate
+ CO2
+ NADH
Molecule diagrams generated from .mol files obtained from the KEGG ftp site

 

 
    reference    
 
 
J Mol Biol 222:725-738 (1991)
PubMed id: 1748999  
 
 
Three-dimensional structure of a highly thermostable enzyme, 3-isopropylmalate dehydrogenase of Thermus thermophilus at 2.2 A resolution.
K.Imada, M.Sato, N.Tanaka, Y.Katsube, Y.Matsuura, T.Oshima.
 
  ABSTRACT  
 
The three-dimensional structure of the highly thermostable 3-isopropylmalate dehydrogenase (IPMDH) from Thermus thermophilus has been determined by the multiple isomorphous replacement method and refined to 2.2 A resolution. The final R-factor is 0.185 for 20,307 reflections. The crystal asymmetric unit has one subunit consisting of 345 amino acid residues. The polypeptide chain of this subunit is folded into two domains (first and second domains) with parallel alpha/beta motifs. The domains are similar in their conformations and folding topologies, but differ from those of the NAD-binding domains of such well-known enzymes as the alcohol and lactate dehydrogenases. A beta-strand that is a part of the long arm-like polypeptide protruding from the second domain comes into contact with another subunit and contributes to the formation of an isologous dimer with a crystallographic 2-fold symmetry. Close subunit contacts are also present at two alpha-helices in the second domain. These helices strongly interact hydrophobically with the corresponding helices of the other subunit to form a hydrophobic core at the center of the dimer. Two large pockets that exist between the first domain of one subunit and the second domain of the other include the amino acid residues responsible for substrate binding. These results indicate that the dimeric form is essential for the IPMDH to express enzymatic activity and that the close subunit contact at the hydrophobic core is important for the thermal stability of the enzyme.
 

Literature references that cite this PDB file's key reference

  PubMed id Reference
21387033 Ã.‰.Gráczer, A.Merli, R.K.Singh, M.Karuppasamy, P.Závodszky, M.S.Weiss, and M.Vas (2011).
Atomic level description of the domain closure in a dimeric enzyme: thermus thermophilus 3-isopropylmalate dehydrogenase.
  Mol Biosyst, 7, 1646-1659.
PDB codes: 2y3z 2y40 2y41 2y42
20975933 M.Lunzer, G.B.Golding, and A.M.Dean (2010).
Pervasive cryptic epistasis in molecular evolution.
  PLoS Genet, 6, e1001162.  
19527660 I.Hajdú, A.Szilágyi, J.Kardos, and P.Závodszky (2009).
A link between hinge-bending domain motions and the temperature dependence of catalysis in 3-isopropylmalate dehydrogenase.
  Biophys J, 96, 5003-5012.  
  19851015 K.Homma, and H.Moriyama (2009).
Crystallization and crystal-packing studies of Chlorella virus deoxyuridine triphosphatase.
  Acta Crystallogr Sect F Struct Biol Cryst Commun, 65, 1030-1034.
PDB codes: 3c2t 3c3i 3ca9
19897891 R.Kasahara, T.Sato, H.Tamegai, and C.Kato (2009).
Piezo-adapted 3-isopropylmalate dehydrogenase of the obligate piezophile Shewanella benthica DB21MT-2 isolated from the 11,000-m depth of the Mariana Trench.
  Biosci Biotechnol Biochem, 73, 2541-2543.  
18256028 A.B.Taylor, G.Hu, P.J.Hart, and L.McAlister-Henn (2008).
Allosteric motions in structures of yeast NAD+-specific isocitrate dehydrogenase.
  J Biol Chem, 283, 10872-10880.
PDB codes: 3blv 3blw 3blx
17634983 K.Imada, T.Tamura, R.Takenaka, I.Kobayashi, K.Namba, and K.Inagaki (2008).
Structure and quantum chemical analysis of NAD+-dependent isocitrate dehydrogenase: hydride transfer and co-factor specificity.
  Proteins, 70, 63-71.
PDB code: 2d4v
18203822 M.Aoshima, and Y.Igarashi (2008).
Nondecarboxylating and decarboxylating isocitrate dehydrogenases: oxalosuccinate reductase as an ancestral form of isocitrate dehydrogenase.
  J Bacteriol, 190, 2050-2055.  
18854331 M.Sasaki, M.Uno, S.Akanuma, and A.Yamagishi (2008).
Random mutagenesis improves the low-temperature activity of the tetrameric 3-isopropylmalate dehydrogenase from the hyperthermophile Sulfolobus tokodaii.
  Protein Eng Des Sel, 21, 721-727.  
17160675 R.Stokke, D.Madern, A.E.Fedøy, S.Karlsen, N.K.Birkeland, and I.H.Steen (2007).
Biochemical characterization of isocitrate dehydrogenase from Methylococcus capsulatus reveals a unique NAD+-dependent homotetrameric enzyme.
  Arch Microbiol, 187, 361-370.  
16699828 J.A.McCourt, and R.G.Duggleby (2006).
Acetohydroxyacid synthase and its role in the biosynthetic pathway for branched-chain amino acids.
  Amino Acids, 31, 173-210.  
16759231 M.Karlström, I.H.Steen, D.Madern, A.E.Fedöy, N.K.Birkeland, and R.Ladenstein (2006).
The crystal structure of a hyperthermostable subfamily II isocitrate dehydrogenase from Thermotoga maritima.
  FEBS J, 273, 2851-2868.
PDB code: 1zor
16767773 O.V.Kalinina, and M.S.Gelfand (2006).
Amino acid residues that determine functional specificity of NADP- and NAD-dependent isocitrate and isopropylmalate dehydrogenases.
  Proteins, 64, 1001-1009.  
16284723 A.Rodríguez-Arnedo, M.Camacho, F.Llorca, and M.J.Bonete (2005).
Complete reversal of coenzyme specificity of isocitrate dehydrogenase from Haloferax volcanii.
  Protein J, 24, 259-266.  
  16511075 G.Hu, A.B.Taylor, L.McAlister-Henn, and P.J.Hart (2005).
Crystallization and preliminary X-ray crystallographic analysis of yeast NAD+-specific isocitrate dehydrogenase.
  Acta Crystallogr Sect F Struct Biol Cryst Commun, 61, 486-488.  
15686840 H.Iwabata, K.Watanabe, T.Ohkuri, S.Yokobori, and A.Yamagishi (2005).
Thermostability of ancestral mutants of Caldococcus noboribetus isocitrate dehydrogenase.
  FEMS Microbiol Lett, 243, 393-398.  
16088877 H.Turakainen, and M.Korhola (2005).
Cloning, sequencing and application of the LEU2 gene from the sour dough yeast Candida milleri.
  Yeast, 22, 805-812.  
16166541 J.Miyazaki, K.Asada, S.Fushinobu, T.Kuzuyama, and M.Nishiyama (2005).
Crystal structure of tetrameric homoisocitrate dehydrogenase from an extreme thermophile, Thermus thermophilus: involvement of hydrophobic dimer-dimer interaction in extremely high thermotolerance.
  J Bacteriol, 187, 6779-6788.
PDB code: 1x0l
15538645 M.Okochi, H.Matsuzaki, T.Nomura, N.Ishii, and M.Yohda (2005).
Molecular characterization of the group II chaperonin from the hyperthermophilic archaeum Pyrococcus horikoshii OT3.
  Extremophiles, 9, 127-134.  
14977044 D.Triantafillidou, E.Persidou, D.Lazarou, P.Andrikopoulos, F.Leontiadou, and T.Choli-Papadopoulou (2004).
Structural destabilization of the recombinant thermophilic TthL11 ribosomal protein by a single amino acid substitution.
  Biol Chem, 385, 31-39.  
14749515 I.Vakonakis, J.Sun, T.Wu, A.Holzenburg, S.S.Golden, and A.C.LiWang (2004).
NMR structure of the KaiC-interacting C-terminal domain of KaiA, a circadian clock protein: implications for KaiA-KaiC interaction.
  Proc Natl Acad Sci U S A, 101, 1479-1484.
PDB codes: 1q6a 1q6b
14691229 K.Usui, N.Ishii, Y.Kawarabayasi, and M.Yohda (2004).
Expression and biochemical characterization of two small heat shock proteins from the thermoacidophilic crenarchaeon Sulfolobus tokodaii strain 7.
  Protein Sci, 13, 134-144.  
12562755 A.P.Lin, and L.McAlister-Henn (2003).
Homologous binding sites in yeast isocitrate dehydrogenase for cofactor (NAD+) and allosteric activator (AMP).
  J Biol Chem, 278, 12864-12872.  
12427751 J.Miyazaki, N.Kobashi, M.Nishiyama, and H.Yamane (2003).
Characterization of homoisocitrate dehydrogenase involved in lysine biosynthesis of an extremely thermophilic bacterium, Thermus thermophilus HB27, and evolutionary implication of beta-decarboxylating dehydrogenase.
  J Biol Chem, 278, 1864-1871.  
12896974 J.Sivaraman, Y.Li, J.Banks, D.E.Cane, A.Matte, and M.Cygler (2003).
Crystal structure of Escherichia coli PdxA, an enzyme involved in the pyridoxal phosphate biosynthesis pathway.
  J Biol Chem, 278, 43682-43690.
PDB codes: 1ps6 1ps7 1ptm
12855708 Y.Yasutake, S.Watanabe, M.Yao, Y.Takada, N.Fukunaga, and I.Tanaka (2003).
Crystal structure of the monomeric isocitrate dehydrogenase in the presence of NADP+: insight into the cofactor recognition, catalysis, and evolution.
  J Biol Chem, 278, 36897-36904.
PDB code: 1j1w
12204383 H.Inoue, T.Tamura, N.Ehara, A.Nishito, Y.Nakayama, M.Maekawa, K.Imada, H.Tanaka, and K.Inagaki (2002).
Biochemical and molecular characterization of the NAD(+)-dependent isocitrate dehydrogenase from the chemolithotroph Acidithiobacillus thiooxidans.
  FEMS Microbiol Lett, 214, 127-132.  
12454487 M.Karlström, I.H.Steen, G.Tibbelin, T.Lien, N.K.Birkeland, and R.Ladenstein (2002).
Crystallization and preliminary X-ray structure analysis of isocitrate dehydrogenase from two hyperthermophiles, Aeropyrum pernix and Thermotoga maritima.
  Acta Crystallogr D Biol Crystallogr, 58, 2162-2164.  
11173468 C.Qu, S.Akanuma, N.Tanaka, H.Moriyama, and T.Oshima (2001).
Design, X-ray crystallography, molecular modelling and thermal stability studies of mutant enzymes at site 172 of 3-isopropylmalate dehydrogenase from Thermus thermophilus.
  Acta Crystallogr D Biol Crystallogr, 57, 225-232.
PDB codes: 1g2u 1gc8 1gc9
11533060 I.H.Steen, D.Madern, M.Karlström, T.Lien, R.Ladenstein, and N.K.Birkeland (2001).
Comparison of isocitrate dehydrogenase from three hyperthermophiles reveals differences in thermostability, cofactor specificity, oligomeric state, and phylogenetic affiliation.
  J Biol Chem, 276, 43924-43931.  
11455601 K.A.Denessiouk, V.V.Rantanen, and M.S.Johnson (2001).
Adenine recognition: a motif present in ATP-, CoA-, NAD-, NADP-, and FAD-dependent proteins.
  Proteins, 44, 282-291.  
11342043 K.Numata, Y.Hayashi-Iwasaki, J.Kawaguchi, M.Sakurai, H.Moriyama, N.Tanaka, and T.Oshima (2001).
Thermostabilization of a chimeric enzyme by residue substitutions: four amino acid residues in loop regions are responsible for the thermostability of Thermus thermophilus isopropylmalate dehydrogenase.
  Biochim Biophys Acta, 1545, 174-183.  
11826966 M.Fujita, H.Tamegai, T.Eguchi, and K.Kakinuma (2001).
Novel substrate specificity of designer 3-isopropylmalate dehydrogenase derived from Thermus thermophilus HB8.
  Biosci Biotechnol Biochem, 65, 2695-2700.  
  11206056 R.Chen, and S.S.Jeong (2000).
Functional prediction: identification of protein orthologs and paralogs.
  Protein Sci, 9, 2344-2353.  
11087384 S.A.Doyle, S.Y.Fung, and D.E.Koshland (2000).
Redesigning the substrate specificity of an enzyme: isocitrate dehydrogenase.
  Biochemistry, 39, 14348-14355.  
9930995 C.Motono, A.Yamagishi, and T.Oshima (1999).
Urea-induced unfolding and conformational stability of 3-isopropylmalate dehydrogenase from the Thermophile thermus thermophilus and its mesophilic counterpart from Escherichia coli.
  Biochemistry, 38, 1332-1337.  
10336376 R.Schleif (1999).
Arm-domain interactions in proteins: a review.
  Proteins, 34, 1-3.  
10095787 S.Akanuma, A.Yamagishi, N.Tanaka, and T.Oshima (1999).
Further improvement of the thermal stability of a partially stabilized Bacillus subtilis 3-isopropylmalate dehydrogenase variant by random and site-directed mutagenesis.
  Eur J Biochem, 260, 499-504.  
  10417229 Y.Korkhin, A.J.Kalb (Gilboa), M.Peretz, O.Bogin, Y.Burstein, and F.Frolow (1999).
Oligomeric integrity--the structural key to thermal stability in bacterial alcohol dehydrogenases.
  Protein Sci, 8, 1241-1249.  
10477256 Y.Xu, G.Bhargava, H.Wu, G.Loeber, and L.Tong (1999).
Crystal structure of human mitochondrial NAD(P)+-dependent malic enzyme: a new class of oxidative decarboxylases.
  Structure, 7, R877-R889.  
9761842 D.Tsuchiya, and A.Takenaka (1998).
Romit profile analysis for molecular replacements.
  Acta Crystallogr D Biol Crystallogr, 54, 151-153.  
9532798 H.Matsunami, H.Kawaguchi, K.Inagaki, T.Eguchi, K.Kakinuma, and H.Tanaka (1998).
Overproduction and substrate specificity of 3-isopropylmalate dehydrogenase from Thiobacillus ferrooxidans.
  Biosci Biotechnol Biochem, 62, 372-373.  
9739088 K.Imada, K.Inagaki, H.Matsunami, H.Kawaguchi, H.Tanaka, N.Tanaka, and K.Namba (1998).
Structure of 3-isopropylmalate dehydrogenase in complex with 3-isopropylmalate at 2.0 A resolution: the role of Glu88 in the unique substrate-recognition mechanism.
  Structure, 6, 971-982.
PDB code: 1a05
9636162 P.Závodszky, J.Kardos, Svingor, and G.A.Petsko (1998).
Adjustment of conformational flexibility is a key event in the thermal adaptation of proteins.
  Proc Natl Acad Sci U S A, 95, 7406-7411.  
  9541402 S.Akanuma, A.Yamagishi, N.Tanaka, and T.Oshima (1998).
Serial increase in the thermal stability of 3-isopropylmalate dehydrogenase from Bacillus subtilis by experimental evolution.
  Protein Sci, 7, 698-705.  
9692189 S.Kashiwabara, Y.Matsuki, T.Kishimoto, and Y.Suzuki (1998).
Clustered proline residues around the active-site cleft in thermostable oligo-1,6-glucosidase of Bacillus flavocaldarius KP1228.
  Biosci Biotechnol Biochem, 62, 1093-1102.  
9461446 T.Mikawa, R.Kato, M.Sugahara, and S.Kuramitsu (1998).
Thermostable repair enzyme for oxidative DNA damage from extremely thermophilic bacterium, Thermus thermophilus HB8.
  Nucleic Acids Res, 26, 903-910.  
9761923 T.Suzuki, H.Moriyama, R.Hirose, M.Sakurai, N.Tanaka, and T.Oshima (1998).
Crystallization and preliminary X-ray studies on the hyperstable 3-isopropylmalate dehydrogenase from the thermoacidophilic archaeon Sulfolobus sp. strain 7.
  Acta Crystallogr D Biol Crystallogr, 54, 444-445.  
9096353 A.M.Dean, and G.B.Golding (1997).
Protein engineering reveals ancient adaptive replacements in isocitrate dehydrogenase.
  Proc Natl Acad Sci U S A, 94, 3104-3109.  
9188741 A.V.Efimov (1997).
Structural trees for protein superfamilies.
  Proteins, 28, 241-260.  
  9165087 L.Prade, P.Hof, and B.Bieseler (1997).
Dimer interface of glutathione S-transferase from Arabidopsis thaliana: influence of the G-site architecture on the dimer interface and implications for classification.
  Biol Chem, 378, 317-320.  
9166771 M.Hennig, R.Sterner, K.Kirschner, and J.N.Jansonius (1997).
Crystal structure at 2.0 A resolution of phosphoribosyl anthranilate isomerase from the hyperthermophile Thermotoga maritima: possible determinants of protein stability.
  Biochemistry, 36, 6009-6016.
PDB code: 1nsj
  9171389 M.Van de Casteele, P.Chen, M.Roovers, C.Legrain, and N.Glansdorff (1997).
Structure and expression of a pyrimidine gene cluster from the extreme thermophile Thermus strain ZO5.
  J Bacteriol, 179, 3470-3481.  
9428712 R.Chen, A.F.Greer, and A.M.Dean (1997).
Structural constraints in protein engineering--the coenzyme specificity of Escherichia coli isocitrate dehydrogenase.
  Eur J Biochem, 250, 578-582.  
  9335302 R.Kato, K.Hasegawa, Y.Hidaka, S.Kuramitsu, and T.Hoshino (1997).
Characterization of a thermostable DNA photolyase from an extremely thermophilic bacterium, Thermus thermophilus HB27.
  J Bacteriol, 179, 6499-6503.  
  9023199 T.Suzuki, Y.Inoki, A.Yamagishi, T.Iwasaki, T.Wakagi, and T.Oshima (1997).
Molecular and phylogenetic characterization of isopropylmalate dehydrogenase of a thermoacidophilic archaeon, Sulfolobus sp. strain 7.
  J Bacteriol, 179, 1174-1179.  
9053397 W.D.Kohn, C.T.Mant, and R.S.Hodges (1997).
Alpha-helical protein assembly motifs.
  J Biol Chem, 272, 2583-2586.  
9268311 W.N.Zhao, and L.McAlister-Henn (1997).
Affinity purification and kinetic analysis of mutant forms of yeast NAD+-specific isocitrate dehydrogenase.
  J Biol Chem, 272, 21811-21817.  
8639526 J.H.Hurley, R.Chen, and A.M.Dean (1996).
Determinants of cofactor specificity in isocitrate dehydrogenase: structure of an engineered NADP+ --> NAD+ specificity-reversal mutant.
  Biochemistry, 35, 5670-5678.
PDB code: 1iso
8901552 R.Chen, A.Greer, and A.M.Dean (1996).
Redesigning secondary structure to invert coenzyme specificity in isopropylmalate dehydrogenase.
  Proc Natl Acad Sci U S A, 93, 12171-12176.  
  8745407 R.Chen, J.A.Grobler, J.H.Hurley, and A.M.Dean (1996).
Second-site suppression of regulatory phosphorylation in Escherichia coli isocitrate dehydrogenase.
  Protein Sci, 5, 287-295.
PDB codes: 1gro 1grp
  8892833 S.Akanuma, A.Yamagishi, N.Tanaka, and T.Oshima (1996).
Spontaneous tandem sequence duplications reverse the thermal stability of carboxyl-terminal modified 3-isopropylmalate dehydrogenase.
  J Bacteriol, 178, 6300-6304.  
  8550506 T.Kotsuka, S.Akanuma, M.Tomuro, A.Yamagishi, and T.Oshima (1996).
Further stabilization of 3-isopropylmalate dehydrogenase of an extreme thermophile, Thermus thermophilus, by a suppressor mutation method.
  J Bacteriol, 178, 723-727.  
  8868488 Y.Hayashi-Iwasaki, K.Numata, A.Yamagishi, K.Yutani, M.Sakurai, N.Tanaka, and T.Oshima (1996).
A stable intermediate in the thermal unfolding process of a chimeric 3-isopropylmalate dehydrogenase between a thermophilic and a mesophilic enzymes.
  Protein Sci, 5, 511-516.  
8710874 Z.Y.Zhu, and S.Karlin (1996).
Clusters of charged residues in protein three-dimensional structures.
  Proc Natl Acad Sci U S A, 93, 8350-8355.  
  8535253 A.M.Dean, and L.Dvorak (1995).
The role of glutamate 87 in the kinetic mechanism of Thermus thermophilus isopropylmalate dehydrogenase.
  Protein Sci, 4, 2156-2167.  
  7556056 D.T.Logan, M.H.Mazauric, D.Kern, and D.Moras (1995).
Crystal structure of glycyl-tRNA synthetase from Thermus thermophilus.
  EMBO J, 14, 4156-4167.
PDB code: 1ati
7557336 E.Yoda, Y.Anraku, H.Kirino, T.Wakagi, and T.Oshima (1995).
Purification and characterization of 3-isopropylmalate dehydrogenase from a thermoacidophilic archaebacterium Sulfolobus sp. strain 7.
  FEMS Microbiol Lett, 131, 243-247.  
7476179 M.Tamakoshi, A.Yamagishi, and T.Oshima (1995).
Screening of stable proteins in an extreme thermophile, Thermus thermophilus.
  Mol Microbiol, 16, 1031-1036.  
  7592429 P.Crouzet, and L.Otten (1995).
Sequence and mutational analysis of a tartrate utilization operon from Agrobacterium vitis.
  J Bacteriol, 177, 6518-6526.  
7498128 S.Kawaguchi, and S.Kuramitsu (1995).
Separation of heat-stable proteins from Thermus thermophilus HB8 by two-dimensional electrophoresis.
  Electrophoresis, 16, 1060-1066.  
  7773180 T.Zhang, and D.E.Koshland (1995).
Modeling substrate binding in Thermus thermophilus isopropylmalate dehydrogenase.
  Protein Sci, 4, 84-92.  
8119295 H.Kirino, M.Aoki, M.Aoshima, Y.Hayashi, M.Ohba, A.Yamagishi, T.Wakagi, and T.Oshima (1994).
Hydrophobic interaction at the subunit interface contributes to the thermostability of 3-isopropylmalate dehydrogenase from an extreme thermophile, Thermus thermophilus.
  Eur J Biochem, 220, 275-281.  
7881901 J.H.Hurley, and A.M.Dean (1994).
Structure of 3-isopropylmalate dehydrogenase in complex with NAD+: ligand-induced loop closing and mechanism for cofactor specificity.
  Structure, 2, 1007-1016.
PDB code: 1hex
8181473 K.Miyazaki, T.Yaoi, and T.Oshima (1994).
Expression, purification, and substrate specificity of isocitrate dehydrogenase from Thermus thermophilus HB8.
  Eur J Biochem, 221, 899-903.  
The most recent references are shown first. Citation data come partly from CiteXplore and partly from an automated harvesting procedure. Note that this is likely to be only a partial list as not all journals are covered by either method. However, we are continually building up the citation data so more and more references will be included with time. Where a reference describes a PDB structure, the PDB codes are shown on the right.

 

spacer

spacer