spacer
spacer

PDBsum entry 1igc

Go to PDB code: 
protein Protein-protein interface(s) links
Complex (antibody/binding protein) PDB id
1igc

 

 

 

 

Loading ...

 
JSmol PyMol  
Contents
Protein chains
213 a.a. *
222 a.a. *
58 a.a. *
Waters ×345
* Residue conservation analysis
PDB id:
1igc
Name: Complex (antibody/binding protein)
Title: Igg1 fab fragment (mopc21) complex with domain iii of protein g from streptococcus
Structure: Igg1-kappa mopc21 fab (light chain). Chain: l. Engineered: yes. Igg1-kappa mopc21 fab (heavy chain). Chain: h. Engineered: yes. Streptococcal protein g (domain iii). Chain: a. Engineered: yes
Source: Mus musculus. House mouse. Organism_taxid: 10090. Expressed in: escherichia coli. Expression_system_taxid: 562. Streptococcus sp. G148. Organism_taxid: 1324.
Biol. unit: Trimer (from PQS)
Resolution:
2.60Å     R-factor:   0.168    
Authors: J.P.Derrick,D.B.Wigley
Key ref: J.P.Derrick and D.B.Wigley (1994). The third IgG-binding domain from streptococcal protein G. An analysis by X-ray crystallography of the structure alone and in a complex with Fab. J Mol Biol, 243, 906-918. PubMed id: 7966308
Date:
05-Aug-94     Release date:   03-Jun-95    
PROCHECK
Go to PROCHECK summary
 Headers
 References

Protein chain
Pfam   ArchSchema ?
P01634  (KV5A2_MOUSE) -  Ig kappa chain V-V region MOPC 21 from Mus musculus
Seq:
Struc:
136 a.a.
213 a.a.*
Protein chain
No UniProt id for this chain
Struc: 222 a.a.
Protein chain
Pfam   ArchSchema ?
P06654  (SPG1_STRSG) -  Immunoglobulin G-binding protein G from Streptococcus sp. group G
Seq:
Struc:
448 a.a.
58 a.a.
Key:    PfamA domain  Secondary structure  CATH domain
* PDB and UniProt seqs differ at 1 residue position (black cross)

 

 
J Mol Biol 243:906-918 (1994)
PubMed id: 7966308  
 
 
The third IgG-binding domain from streptococcal protein G. An analysis by X-ray crystallography of the structure alone and in a complex with Fab.
J.P.Derrick, D.B.Wigley.
 
  ABSTRACT  
 
Protein G is a cell surface-associated protein from Streptococcus that binds to IgG with high affinity. We have determined the X-ray crystal structures of the third IgG-binding domain (domain III) alone to a resolution of 1.1 A (final R-factor of 19.3%), and in complex with an Fab fragment to 2.6 A (final R-factor of 16.8%). The structure of domain III is similar to the lower-resolution crystal structures of protein G domains determined previously by other investigators, but shows some minor differences when compared with the equivalent NMR structures. Domain III binds to the immunoglobulin by formation of an antiparallel interaction between the second beta-strand in domain III and the last beta-strand in the CH 1 domain. There is also a minor site of interaction between the C-terminal end of the alpha-helix in protein G and the first beta-strand in the CH 1 domain. Previous studies by NMR on the interactions between protein G and IgG have concluded that different portions of the protein G domain are involved in binding to the Fab and Fc portions. The results presented here support these findings and permit a detailed analysis of the recognition of Fab by protein G; formation of the complex buries a large water-accessible area, of a magnitude comparable with that found in antibody/antigen interactions. The majority of hydrogen bonds between the two proteins involve main-chain atoms from the CH 1 domain. The CH 1 domain residues that are in contact with protein G are shown to be highly conserved in alignments of mouse and human gamma chain amino acid sequences. We conclude that the binding site for protein G on Fab is relatively invariant across different species and gamma chain subclasses, providing an explanation for the widespread recognition of Fab fragments from mouse and human antibodies by protein G. The solution of the crystal structures of domain III alone and bound to Fab has demonstrated that there is no major structural change apparent in either protein on formation of the complex.
 

Literature references that cite this PDB file's key reference

  PubMed id Reference
22940676 B.Vögeli, S.Kazemi, P.Güntert, and R.Riek (2012).
Spatial elucidation of motion in proteins by ensemble-based structure calculation using exact NOEs.
  Nat Struct Mol Biol, 19, 1053-1057.
PDB code: 2lum
21568864 E.V.Sidorin, and T.F.Solov'eva (2011).
IgG-Binding Proteins of Bacteria.
  Biochemistry (Mosc), 76, 295-308.  
21132840 J.R.Perilla, O.Beckstein, E.J.Denning, and T.B.Woolf (2011).
Computing ensembles of transitions from stable states: Dynamic importance sampling.
  J Comput Chem, 32, 196-209.  
21305337 L.Cai, D.S.Kosov, and D.Fushman (2011).
Density functional calculations of backbone (15)N shielding tensors in beta-sheet and turn residues of protein G.
  J Biomol NMR, 50, 19-33.  
20958032 A.Grishaev, L.Guo, T.Irving, and A.Bax (2010).
Improved fitting of solution X-ray scattering data to macromolecular structures and structural ensembles by explicit water modeling.
  J Am Chem Soc, 132, 15484-15486.  
20049918 A.Lewandowska, S.Ołdziej, A.Liwo, and H.A.Scheraga (2010).
Mechanism of formation of the C-terminal beta-hairpin of the B3 domain of the immunoglobulin-binding protein G from Streptococcus. IV. Implication for the mechanism of folding of the parent protein.
  Biopolymers, 93, 469-480.  
  19847914 A.Lewandowska, S.Ołdziej, A.Liwo, and H.A.Scheraga (2010).
Mechanism of formation of the C-terminal beta-hairpin of the B3 domain of the immunoglobulin binding protein G from Streptococcus. III. Dynamics of long-range hydrophobic interactions.
  Proteins, 78, 723-737.  
20681720 L.Yao, A.Grishaev, G.Cornilescu, and A.Bax (2010).
The impact of hydrogen bonding on amide 1H chemical shift anisotropy studied by cross-correlated relaxation and liquid crystal NMR spectroscopy.
  J Am Chem Soc, 132, 10866-10875.  
20489715 M.J.Plevin, D.L.Bryce, and J.Boisbouvier (2010).
Direct detection of CH/pi interactions in proteins.
  Nat Chem, 2, 466-471.  
19089955 A.Skwierawska, J.Makowska, S.Ołdziej, A.Liwo, and H.A.Scheraga (2009).
Mechanism of formation of the C-terminal beta-hairpin of the B3 domain of the immunoglobulin binding protein G from Streptococcus. I. Importance of hydrophobic interactions in stabilization of beta-hairpin structure.
  Proteins, 75, 931-953.  
18767128 A.Skwierawska, S.Ołdziej, A.Liwo, and H.A.Scheraga (2009).
Conformational studies of the C-terminal 16-amino-acid-residue fragment of the B3 domain of the immunoglobulin binding protein G from Streptococcus.
  Biopolymers, 91, 37-51.  
19241469 A.Skwierawska, W.Zmudzińska, S.Ołdziej, A.Liwo, and H.A.Scheraga (2009).
Mechanism of formation of the C-terminal beta-hairpin of the B3 domain of the immunoglobulin binding protein G from Streptococcus. II. Interplay of local backbone conformational dynamics and long-range hydrophobic interactions in hairpin formation.
  Proteins, 76, 637-654.  
19758995 D.A.MacKenzie, L.E.Tailford, A.M.Hemmings, and N.Juge (2009).
Crystal structure of a mucus-binding protein repeat reveals an unexpected functional immunoglobulin binding activity.
  J Biol Chem, 284, 32444-32453.
PDB code: 3i57
18767152 G.R.Bowman, and V.S.Pande (2009).
Simulated tempering yields insight into the low-resolution Rosetta scoring functions.
  Proteins, 74, 777-788.  
19513117 G.R.Bowman, and V.S.Pande (2009).
The roles of entropy and kinetics in structure prediction.
  PLoS One, 4, e5840.  
17847091 A.F.Pereira de Araújo, A.L.Gomes, A.A.Bursztyn, and E.I.Shakhnovich (2008).
Native atomic burials, supplemented by physically motivated hydrogen bond constraints, contain sufficient information to determine the tertiary structure of small globular proteins.
  Proteins, 70, 971-983.  
18655142 A.Skwierawska, S.Rodziewicz-Motowidło, S.Ołdziej, A.Liwo, and H.A.Scheraga (2008).
Conformational studies of the alpha-helical 28-43 fragment of the B3 domain of the immunoglobulin binding protein G from Streptococcus.
  Biopolymers, 89, 1032-1044.  
18458825 B.Vögeli, L.Yao, and A.Bax (2008).
Protein backbone motions viewed by intraresidue and sequential HN-Halpha residual dipolar couplings.
  J Biomol NMR, 41, 17-28.  
18076052 D.J.Wilton, R.B.Tunnicliffe, Y.O.Kamatari, K.Akasaka, and M.P.Williamson (2008).
Pressure-induced changes in the solution structure of the GB1 domain of protein G.
  Proteins, 71, 1432-1440.
PDB codes: 2j52 2j53
18324719 G.Nodet, D.Abergel, and G.Bodenhausen (2008).
Predicting NMR relaxation rates in anisotropically tumbling proteins through networks of coupled rotators.
  Chemphyschem, 9, 625-633.  
18484179 L.Cai, D.Fushman, and D.S.Kosov (2008).
Density functional calculations of 15N chemical shifts in solvated dipeptides.
  J Biomol NMR, 41, 77-88.  
18305196 N.Juranić, J.J.Dannenberg, G.Cornilescu, P.Salvador, E.Atanasova, H.C.Ahn, S.Macura, J.L.Markley, and F.G.Prendergast (2008).
Structural dependencies of protein backbone 2JNC' couplings.
  Protein Sci, 17, 768-776.  
17975832 N.Trbovic, B.Kim, R.A.Friesner, and A.G.Palmer (2008).
Structural analysis of protein dynamics by MD simulations and NMR spin-relaxation.
  Proteins, 71, 684-694.  
17605815 A.M.Burroughs, S.Balaji, L.M.Iyer, and L.Aravind (2007).
Small but versatile: the extraordinary functional and structural diversity of the beta-grasp fold.
  Biol Direct, 2, 18.  
17180547 M.E.Villegas, J.A.Vila, and H.A.Scheraga (2007).
Effects of side-chain orientation on the 13C chemical shifts of antiparallel beta-sheet model peptides.
  J Biomol NMR, 37, 137-146.  
17567747 N.Juranić, E.Atanasova, J.H.Streiff, S.Macura, and F.G.Prendergast (2007).
Solvent-induced differentiation of protein backbone hydrogen bonds in calmodulin.
  Protein Sci, 16, 1329-1337.  
17609385 P.A.Alexander, Y.He, Y.Chen, J.Orban, and P.N.Bryan (2007).
The design and characterization of two proteins with 88% sequence identity but different structure and function.
  Proc Natl Acad Sci U S A, 104, 11963-11968.  
16917941 A.Shehu, C.Clementi, and L.E.Kavraki (2006).
Modeling protein conformational ensembles: from missing loops to equilibrium fluctuations.
  Proteins, 65, 164-179.  
17120284 G.Bouvignies, S.Meier, S.Grzesiek, and M.Blackledge (2006).
Ultrahigh-resolution backbone structure of perdeuterated protein GB1 using residual dipolar couplings from two alignment media.
  Angew Chem Int Ed Engl, 45, 8166-8169.
PDB code: 2plp
18797518 M.Nanias, C.Czaplewski, and H.A.Scheraga (2006).
Replica Exchange and Multicanonical Algorithms with the coarse-grained UNRES force field.
  J Chem Theory Comput, 2, 513-528.  
16906531 M.Samuelsson, J.Jendholm, S.Amisten, S.L.Morrison, A.Forsgren, and K.Riesbeck (2006).
The IgD CH1 region contains the binding site for the human respiratory pathogen Moraxella catarrhalis IgD-binding protein MID.
  Eur J Immunol, 36, 2525-2534.  
16967194 P.R.Vasos, J.B.Hall, R.Kümmerle, and D.Fushman (2006).
Measurement of 15N relaxation in deuterated amide groups in proteins using direct nitrogen detection.
  J Biomol NMR, 36, 27-36.  
15677316 A.Liwo, M.Khalili, and H.A.Scheraga (2005).
Ab initio simulations of protein-folding pathways by molecular dynamics with the united-residue model of polypeptide chains.
  Proc Natl Acad Sci U S A, 102, 2362-2367.  
15803394 E.Miclet, J.Boisbouvier, and A.Bax (2005).
Measurement of eight scalar and dipolar couplings for methine-methylene pairs in proteins and nucleic acids.
  J Biomol NMR, 31, 201-216.  
16172390 G.Bouvignies, P.Bernadó, S.Meier, K.Cho, S.Grzesiek, R.Brüschweiler, and M.Blackledge (2005).
Identification of slow correlated motions in proteins using residual dipolar and hydrogen-bond scalar couplings.
  Proc Natl Acad Sci U S A, 102, 13885-13890.  
16231289 H.Li, A.D.Robertson, and J.H.Jensen (2005).
Very fast empirical prediction and rationalization of protein pKa values.
  Proteins, 61, 704-721.  
16049010 H.M.Patterson, J.A.Brannigan, S.M.Cutting, K.S.Wilson, A.J.Wilkinson, E.Ab, T.Diercks, R.N.de Jong, V.Truffault, G.E.Folkers, and R.Kaptein (2005).
The structure of bypass of forespore C, an intercompartmental signaling factor during sporulation in Bacillus.
  J Biol Chem, 280, 36214-36220.
PDB code: 2bw2
15596511 I.Koyama-Honda, K.Ritchie, T.Fujiwara, R.Iino, H.Murakoshi, R.S.Kasai, and A.Kusumi (2005).
Fluorescence imaging for monitoring the colocalization of two single molecules in living cells.
  Biophys J, 88, 2126-2136.  
15822102 J.L.Jiménez (2005).
Does structural and chemical divergence play a role in precluding undesirable protein interactions?
  Proteins, 59, 757-764.  
15701721 J.Liu, C.W.Jackson, R.A.Gruppo, L.K.Jennings, and T.K.Gartner (2005).
The beta3 subunit of the integrin alphaIIbbeta3 regulates alphaIIb-mediated outside-in signaling.
  Blood, 105, 4345-4352.  
15681644 K.Suzuki, K.Ritchie, E.Kajikawa, T.Fujiwara, and A.Kusumi (2005).
Rapid hop diffusion of a G-protein-coupled receptor in the plasma membrane as revealed by single-molecule techniques.
  Biophys J, 88, 3659-3680.  
16088925 M.Nanias, M.Chinchio, S.Ołdziej, C.Czaplewski, and H.A.Scheraga (2005).
Protein structure prediction with the UNRES force-field using Replica-Exchange Monte Carlo-with-Minimization; Comparison with MCM, CSA, and CFMC.
  J Comput Chem, 26, 1472-1486.  
16041073 R.Caliandro, B.Carrozzini, G.L.Cascarano, L.De Caro, C.Giacovazzo, and D.Siliqi (2005).
Ab initio phasing at resolution higher than experimental resolution.
  Acta Crystallogr D Biol Crystallogr, 61, 1080-1087.  
15162492 A.T.Alexandrescu (2004).
Strategy for supplementing structure calculations using limited data with hydrophobic distance restraints.
  Proteins, 56, 117-129.  
15152083 E.Carredano, H.Baumann, A.Grönberg, N.Norrman, G.Glad, J.Zou, O.Ersoy, E.Steensma, and A.Axén (2004).
A novel and conserved pocket of human kappa-Fab fragments: design, synthesis, and verification of directed affinity ligands.
  Protein Sci, 13, 1476-1488.  
15333921 L.Urzhumtseva, N.Lunina, A.Fokine, J.P.Samama, V.Y.Lunin, and A.Urzhumtsev (2004).
Ab initio phasing based on topological restraints: automated determination of the space group and the number of molecules in the unit cell.
  Acta Crystallogr D Biol Crystallogr, 60, 1519-1526.  
15189846 M.Zweckstetter, G.Hummer, and A.Bax (2004).
Prediction of charge-induced molecular alignment of biomolecules dissolved in dilute liquid-crystalline phases.
  Biophys J, 86, 3444-3460.  
15630564 P.Jensen, H.J.Sass, and S.Grzesiek (2004).
Improved detection of long-range residual dipolar couplings in weakly aligned samples by Lee-Goldburg decoupling of homonuclear dipolar truncation.
  J Biomol NMR, 30, 443-450.  
12493823 A.Bax (2003).
Weak alignment offers new NMR opportunities to study protein structure and dynamics.
  Protein Sci, 12, 1.  
14529300 J.Yang, and D.P.Weliky (2003).
Solid-state nuclear magnetic resonance evidence for parallel and antiparallel strand arrangements in the membrane-associated HIV-1 fusion peptide.
  Biochemistry, 42, 11879-11890.  
14501108 N.Lunina, V.Y.Lunin, and A.Urzhumtsev (2003).
Connectivity-based ab initio phasing: from low resolution to a secondary structure.
  Acta Crystallogr D Biol Crystallogr, 59, 1702-1715.  
12198293 A.Fokine, and A.Urzhumtsev (2002).
Flat bulk-solvent model: obtaining optimal parameters.
  Acta Crystallogr D Biol Crystallogr, 58, 1387-1392.  
11854494 A.Liwo, P.Arłukowicz, C.Czaplewski, S.Ołdziej, J.Pillardy, and H.A.Scheraga (2002).
A method for optimizing potential-energy functions by a hierarchical design of the potential-energy landscape: application to the UNRES force field.
  Proc Natl Acad Sci U S A, 99, 1937-1942.  
11853159 H.Kazama, K.Yamada, T.Aoki, and H.Watabe (2002).
Application of green fluorescent protein to affinity electrophoresis; affinity of IgG-binding domain C from streptococcal protein G to mouse IgG1.
  Biol Pharm Bull, 25, 168-171.  
11880627 J.S.Richardson, and D.C.Richardson (2002).
Natural beta-sheet proteins use negative design to avoid edge-to-edge aggregation.
  Proc Natl Acad Sci U S A, 99, 2754-2759.  
16233317 R.Arai, H.Nakagawa, A.Kitayama, H.Ueda, and T.Nagamune (2002).
Detection of protein-protein interaction by bioluminescence resonance energy transfer from firefly luciferase to red fluorescent protein.
  J Biosci Bioeng, 94, 362-364.  
11948589 R.Kaźmierkiewicz, A.Liwo, and H.A.Scheraga (2002).
Energy-based reconstruction of a protein backbone from its alpha-carbon trace by a Monte-Carlo method.
  J Comput Chem, 23, 715-723.  
10760259 A.Karlstrom, G.Zhong, C.Rader, N.A.Larsen, A.Heine, R.Fuller, B.List, F.Tanaka, I.A.Wilson, C.F.Barbas, and R.A.Lerner (2000).
Using antibody catalysis to study the outcome of multiple evolutionary trials of a chemical task.
  Proc Natl Acad Sci U S A, 97, 3878-3883.  
10737939 D.W.Ritchie, and G.J.Kemp (2000).
Protein docking using spherical polar Fourier correlations.
  Proteins, 39, 178-194.  
11193052 P.B.Furtado, R.Furmonaviciene, J.McElveen, H.F.Sewell, and F.Shakib (2000).
Prediction of the interacting surfaces in a trimolecular complex formed between the major dust mite allergen Der p 1, a mouse monoclonal anti-Der p 1 antibody, and its anti-idiotype.
  Mol Pathol, 53, 324-332.  
10986462 S.Carr, D.Walker, R.James, C.Kleanthous, and A.M.Hemmings (2000).
Inhibition of a ribosome-inactivating ribonuclease: the crystal structure of the cytotoxic domain of colicin E3 in complex with its immunity protein.
  Structure, 8, 949-960.
PDB code: 1e44
10209039 M.Léonetti, J.Galon, R.Thai, C.Sautès-Fridman, G.Moine, and A.Ménez (1999).
Presentation of antigen in immune complexes is boosted by soluble bacterial immunoglobulin binding proteins.
  J Exp Med, 189, 1217-1228.  
10089457 T.Sandalova, G.Schneider, H.Käck, and Y.Lindqvist (1999).
Structure of dethiobiotin synthetase at 0.97 A resolution.
  Acta Crystallogr D Biol Crystallogr, 55, 610-624.
PDB code: 1byi
10398393 Z.C.Fan, L.Shan, B.Z.Goldsteen, L.W.Guddat, A.Thakur, N.F.Landolfi, M.S.Co, M.Vasquez, C.Queen, P.A.Ramsland, and A.B.Edmundson (1999).
Comparison of the three-dimensional structures of a humanized and a chimeric Fab of an anti-gamma-interferon antibody.
  J Mol Recognit, 12, 19-32.
PDB codes: 1b2w 1b4j
10089412 Z.Chen, E.Blanc, and M.S.Chapman (1999).
Improved free R factors for cross-validation of macromolecular structure - importance for real-space refinement.
  Acta Crystallogr D Biol Crystallogr, 55, 219-224.  
9710236 E.Muñoz, L.Vidarte, C.Pastor, M.Casado, and F.Vivanco (1998).
A small domain (6.5 kDa) of bacterial protein G inhibits C3 covalent binding to the Fc region of IgG immune complexes.
  Eur J Immunol, 28, 2591-2597.  
9523114 I.A.Wilson, and P.J.Bjorkman (1998).
Unusual MHC-like molecules: CD1, Fc receptor, the hemochromatosis gene product, and viral homologs.
  Curr Opin Immunol, 10, 67-73.  
9824417 J.E.McElveen, M.R.Clark, S.J.Smith, H.F.Sewell, and F.Shakib (1998).
Primary sequence and molecular model of the variable region of a mouse monoclonal anti-Der p 1 antibody showing a similar epitope specificity as human IgE.
  Clin Exp Allergy, 28, 1427-1434.  
  8740525 C.J.Tsai, S.L.Lin, H.J.Wolfson, and R.Nussinov (1996).
Protein-protein interfaces: architectures and interactions in protein-protein interfaces and in protein cores. Their similarities and differences.
  Crit Rev Biochem Mol Biol, 31, 127-152.  
8816770 M.Gerstein, and C.Chothia (1996).
Packing at the protein-water interface.
  Proc Natl Acad Sci U S A, 93, 10167-10172.  
8756332 N.Nassar, G.Horn, C.Herrmann, C.Block, R.Janknecht, and A.Wittinghofer (1996).
Ras/Rap effector specificity determined by charge reversal.
  Nat Struct Biol, 3, 723-729.
PDB code: 1gua
7788293 A.E.Sauer-Eriksson, G.J.Kleywegt, M.Uhlén, and T.A.Jones (1995).
Crystal structure of the C2 fragment of streptococcal protein G in complex with the Fc domain of human IgG.
  Structure, 3, 265-278.
PDB code: 1fcc
7743134 K.Kato, L.Y.Lian, I.L.Barsukov, J.P.Derrick, H.Kim, R.Tanaka, A.Yoshino, M.Shiraishi, I.Shimada, and Y.Arata (1995).
Model for the complex between protein G and an antibody Fc fragment in solution.
  Structure, 3, 79-85.  
8528763 M.Tashiro, and G.T.Montelione (1995).
Structures of bacterial immunoglobulin-binding domains and their complexes with immunoglobulins.
  Curr Opin Struct Biol, 5, 471-481.  
  7670383 P.Bork, and L.Patthy (1995).
The SEA module: a new extracellular domain associated with O-glycosylation.
  Protein Sci, 4, 1421-1425.  
The most recent references are shown first. Citation data come partly from CiteXplore and partly from an automated harvesting procedure. Note that this is likely to be only a partial list as not all journals are covered by either method. However, we are continually building up the citation data so more and more references will be included with time. Where a reference describes a PDB structure, the PDB code is shown on the right.

 

spacer

spacer