 |
PDBsum entry 1hrh
|
|
|
|
 |
|
|
|
|
|
|
|
|
|
|
|
|
 |
|
|
|
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
|
|
|
|
|
|
|
|
|
|
Hydrolase(endoribonuclease)
|
PDB id
|
|
|
|
1hrh
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
 |
Contents |
 |
|
|
|
|
|
|
|
* Residue conservation analysis
|
|
|
|
 |
|
|
 |
 |
 |
 |
Enzyme class 1:
|
 |
E.C.2.7.7.-
- ?????
|
|
 |
 |
 |
 |
 |
Enzyme class 2:
|
 |
E.C.2.7.7.49
- RNA-directed Dna polymerase.
|
|
 |
 |
 |
 |
 |
Reaction:
|
 |
DNA(n) + a 2'-deoxyribonucleoside 5'-triphosphate = DNA(n+1) + diphosphate
|
 |
 |
 |
 |
 |
DNA(n)
|
+
|
2'-deoxyribonucleoside 5'-triphosphate
|
=
|
DNA(n+1)
|
+
|
diphosphate
|
|
 |
 |
 |
 |
 |
 |
 |
 |
Enzyme class 3:
|
 |
E.C.2.7.7.7
- DNA-directed Dna polymerase.
|
|
 |
 |
 |
 |
 |
Reaction:
|
 |
DNA(n) + a 2'-deoxyribonucleoside 5'-triphosphate = DNA(n+1) + diphosphate
|
 |
 |
 |
 |
 |
DNA(n)
|
+
|
2'-deoxyribonucleoside 5'-triphosphate
|
=
|
DNA(n+1)
|
+
|
diphosphate
|
|
 |
 |
 |
 |
 |
 |
 |
 |
Enzyme class 4:
|
 |
E.C.3.1.-.-
|
|
 |
 |
 |
 |
 |
Enzyme class 5:
|
 |
E.C.3.1.13.2
- exoribonuclease H.
|
|
 |
 |
 |
 |
 |
Reaction:
|
 |
Exonucleolytic cleavage to 5'-phosphomonoester oligonucleotides in both 5'- to 3'- and 3'- to 5'-directions.
|
 |
 |
 |
 |
 |
Enzyme class 6:
|
 |
E.C.3.1.26.13
- retroviral ribonuclease H.
|
|
 |
 |
 |
 |
 |
Enzyme class 7:
|
 |
E.C.3.4.23.16
- HIV-1 retropepsin.
|
|
 |
 |
 |
 |
 |
Reaction:
|
 |
Specific for a P1 residue that is hydrophobic, and P1' variable, but often Pro.
|
 |
 |
 |
 |
 |
 |
 |
|
Note, where more than one E.C. class is given (as above), each may
correspond to a different protein domain or, in the case of polyprotein
precursors, to a different mature protein.
|
|
 |
|
Molecule diagrams generated from .mol files obtained from the
KEGG ftp site
|
|
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
|
|
|
| |
|
|
| |
|
DOI no:
|
Science
252:88-95
(1991)
|
|
PubMed id:
|
|
|
|
|
| |
|
Crystal structure of the ribonuclease H domain of HIV-1 reverse transcriptase.
|
|
J.F.Davies,
Z.Hostomska,
Z.Hostomsky,
S.R.Jordan,
D.A.Matthews.
|
|
|
|
| |
ABSTRACT
|
|
|
| |
|
The crystal structure of the ribonuclease (RNase) H domain of HIV-1 reverse
transcriptase (RT) has been determined at a resolution of 2.4 A and refined to a
crystallographic R factor of 0.20. The protein folds into a five-stranded mixed
beta sheet flanked by an asymmetric distribution of four alpha helices. Two
divalent metal cations bind in the active site surrounded by a cluster of four
conserved acidic amino acid residues. The overall structure is similar in most
respects to the RNase H from Escherichia coli. Structural features
characteristic of the retroviral protein suggest how it may interface with the
DNA polymerase domain of p66 in the mature RT heterodimer. These features also
offer insights into why the isolated RNase H domain is catalytically inactive
but when combined in vitro with the isolated p51 domain of RT RNase H activity
can be reconstituted. Surprisingly, the peptide bond cleaved by HIV-1 protease
near the polymerase-RNase H junction of p66 is completely inaccessible to
solvent in the structure reported here. This suggests that the homodimeric
p66-p66 precursor of mature RT is asymmetric with one of the two RNase H domains
at least partially unfolded.
|
|
|
|
|
|
|
 |
 |
|
 |
 |
 |
 |
 |
 |
 |
 |
 |
|
Literature references that cite this PDB file's key reference
|
|
 |
| |
PubMed id
|
 |
Reference
|
 |
|
|
|
 |
Q.Gong,
L.Menon,
T.Ilina,
L.G.Miller,
J.Ahn,
M.A.Parniak,
and
R.Ishima
(2011).
Interaction of HIV-1 reverse transcriptase ribonuclease H with an acylhydrazone inhibitor.
|
| |
Chem Biol Drug Des,
77,
39-47.
|
 |
|
|
|
|
 |
A.Goulet,
M.Pina,
P.Redder,
D.Prangishvili,
L.Vera,
J.Lichière,
N.Leulliot,
H.van Tilbeurgh,
M.Ortiz-Lombardia,
V.Campanacci,
and
C.Cambillau
(2010).
ORF157 from the archaeal virus Acidianus filamentous virus 1 defines a new class of nuclease.
|
| |
J Virol,
84,
5025-5031.
|
 |
|
PDB codes:
|
 |
|
|
|
|
|
 |
A.Herschhorn,
and
A.Hizi
(2010).
Retroviral reverse transcriptases.
|
| |
Cell Mol Life Sci,
67,
2717-2747.
|
 |
|
|
|
|
 |
C.S.Adamson,
and
E.O.Freed
(2010).
Novel approaches to inhibiting HIV-1 replication.
|
| |
Antiviral Res,
85,
119-141.
|
 |
|
|
|
|
 |
H.A.Watkins,
and
E.N.Baker
(2010).
Structural and functional characterization of an RNase HI domain from the bifunctional protein Rv2228c from Mycobacterium tuberculosis.
|
| |
J Bacteriol,
192,
2878-2886.
|
 |
|
PDB code:
|
 |
|
|
|
|
|
 |
H.P.Su,
Y.Yan,
G.S.Prasad,
R.F.Smith,
C.L.Daniels,
P.D.Abeywickrema,
J.C.Reid,
H.M.Loughran,
M.Kornienko,
S.Sharma,
J.A.Grobler,
B.Xu,
V.Sardana,
T.J.Allison,
P.D.Williams,
P.L.Darke,
D.J.Hazuda,
and
S.Munshi
(2010).
Structural basis for the inhibition of RNase H activity of HIV-1 reverse transcriptase by RNase H active site-directed inhibitors.
|
| |
J Virol,
84,
7625-7633.
|
 |
|
PDB codes:
|
 |
|
|
|
|
|
 |
J.P.Lu,
S.C.Chai,
and
Q.Z.Ye
(2010).
Catalysis and inhibition of Mycobacterium tuberculosis methionine aminopeptidase.
|
| |
J Med Chem,
53,
1329-1337.
|
 |
|
PDB codes:
|
 |
|
|
|
|
|
 |
L.A.Hirao,
L.Wu,
A.Satishchandran,
A.S.Khan,
R.Draghia-Akli,
A.C.Finnefrock,
A.J.Bett,
M.R.Betts,
D.R.Casimiro,
N.Y.Sardesai,
J.J.Kim,
J.W.Shiver,
and
D.B.Weiner
(2010).
Comparative analysis of immune responses induced by vaccination with SIV antigens by recombinant Ad5 vector or plasmid DNA in rhesus macaques.
|
| |
Mol Ther,
18,
1568-1576.
|
 |
|
|
|
|
 |
O.Khakshoor,
A.J.Lin,
T.P.Korman,
M.R.Sawaya,
S.C.Tsai,
D.Eisenberg,
and
J.S.Nowick
(2010).
X-ray crystallographic structure of an artificial beta-sheet dimer.
|
| |
J Am Chem Soc,
132,
11622-11628.
|
 |
|
PDB code:
|
 |
|
|
|
|
|
 |
S.Azzi,
V.Parissi,
R.G.Maroun,
P.Eid,
O.Mauffret,
and
S.Fermandjian
(2010).
The HIV-1 integrase α4-helix involved in LTR-DNA recognition is also a highly antigenic peptide element.
|
| |
PLoS One,
5,
e16001.
|
 |
|
|
|
|
 |
Z.Hobaika,
L.Zargarian,
R.G.Maroun,
O.Mauffret,
T.R.Burke,
and
S.Fermandjian
(2010).
HIV-1 integrase and virus and cell DNAs: complex formation and perturbation by inhibitors of integration.
|
| |
Neurochem Res,
35,
888-893.
|
 |
|
|
|
|
 |
D.M.Himmel,
K.A.Maegley,
T.A.Pauly,
J.D.Bauman,
K.Das,
C.Dharia,
A.D.Clark,
K.Ryan,
M.J.Hickey,
R.A.Love,
S.H.Hughes,
S.Bergqvist,
and
E.Arnold
(2009).
Structure of HIV-1 reverse transcriptase with the inhibitor beta-Thujaplicinol bound at the RNase H active site.
|
| |
Structure,
17,
1625-1635.
|
 |
|
PDB codes:
|
 |
|
|
|
|
|
 |
J.J.Champoux,
and
S.J.Schultz
(2009).
Ribonuclease H: properties, substrate specificity and roles in retroviral reverse transcription.
|
| |
FEBS J,
276,
1506-1516.
|
 |
|
|
|
|
 |
J.M.Seckler,
K.J.Howard,
M.D.Barkley,
and
P.L.Wintrode
(2009).
Solution structural dynamics of HIV-1 reverse transcriptase heterodimer.
|
| |
Biochemistry,
48,
7646-7655.
|
 |
|
|
|
|
 |
K.Ratcliff,
J.Corn,
and
S.Marqusee
(2009).
Structure, stability, and folding of ribonuclease H1 from the moderately thermophilic Chlorobium tepidum: comparison with thermophilic and mesophilic homologues.
|
| |
Biochemistry,
48,
5890-5898.
|
 |
|
PDB code:
|
 |
|
|
|
|
|
 |
S.G.Sarafianos,
B.Marchand,
K.Das,
D.M.Himmel,
M.A.Parniak,
S.H.Hughes,
and
E.Arnold
(2009).
Structure and function of HIV-1 reverse transcriptase: molecular mechanisms of polymerization and inhibition.
|
| |
J Mol Biol,
385,
693-713.
|
 |
|
|
|
|
 |
T.T.Talele,
A.Upadhyay,
and
V.N.Pandey
(2009).
Influence of the RNase H domain of retroviral reverse transcriptases on the metal specificity and substrate selection of their polymerase domains.
|
| |
Virol J,
6,
159.
|
 |
|
|
|
|
 |
T.Tadokoro,
and
S.Kanaya
(2009).
Ribonuclease H: molecular diversities, substrate binding domains, and catalytic mechanism of the prokaryotic enzymes.
|
| |
FEBS J,
276,
1482-1493.
|
 |
|
|
|
|
 |
Z.Hobaika,
L.Zargarian,
Y.Boulard,
R.G.Maroun,
O.Mauffret,
and
S.Fermandjian
(2009).
Specificity of LTR DNA recognition by a peptide mimicking the HIV-1 integrase {alpha}4 helix.
|
| |
Nucleic Acids Res,
37,
7691-7700.
|
 |
|
|
|
|
 |
A.F.Santos,
R.B.Lengruber,
E.A.Soares,
A.Jere,
E.Sprinz,
A.M.Martinez,
J.Silveira,
F.S.Sion,
V.K.Pathak,
and
M.A.Soares
(2008).
Conservation patterns of HIV-1 RT connection and RNase H domains: identification of new mutations in NRTI-treated patients.
|
| |
PLoS ONE,
3,
e1781.
|
 |
|
|
|
|
 |
F.H.Priddy,
D.Brown,
J.Kublin,
K.Monahan,
D.P.Wright,
J.Lalezari,
S.Santiago,
M.Marmor,
M.Lally,
R.M.Novak,
S.J.Brown,
P.Kulkarni,
S.A.Dubey,
L.S.Kierstead,
D.R.Casimiro,
R.Mogg,
M.J.DiNubile,
J.W.Shiver,
R.Y.Leavitt,
M.N.Robertson,
D.V.Mehrotra,
E.Quirk,
D.M.Asmuth,
S.J.Brown,
S.P.Buchbinder,
C.Creticos,
J.Currier,
G.Drusano,
S.Edupuganti,
M.B.Feinberg,
C.del Rio,
S.E.Frey,
T.J.Friel,
C.Harro,
J.Jacobson,
S.R.Kaster,
M.C.Keefer,
J.Lalezari,
M.Lally,
R.L.Liporace,
M.Marmor,
J.McElrath,
D.Mildvan,
A.Myers,
R.M.Novak,
S.D.Parker,
P.Piliero,
F.H.Priddy,
E.Quinlivan,
S.Santiago,
P.W.Spearman,
R.Tucker,
C.J.Whitener,
D.P.Wright,
and
P.F.Wright
(2008).
Safety and immunogenicity of a replication-incompetent adenovirus type 5 HIV-1 clade B gag/pol/nef vaccine in healthy adults.
|
| |
Clin Infect Dis,
46,
1769-1781.
|
 |
|
|
|
|
 |
H.A.Watkins,
and
E.N.Baker
(2008).
Cloning, expression, purification and preliminary crystallographic analysis of the RNase HI domain of the Mycobacterium tuberculosis protein Rv2228c as a maltose-binding protein fusion.
|
| |
Acta Crystallogr Sect F Struct Biol Cryst Commun,
64,
746-749.
|
 |
|
|
|
|
 |
M.L.Coté,
and
M.J.Roth
(2008).
Murine leukemia virus reverse transcriptase: structural comparison with HIV-1 reverse transcriptase.
|
| |
Virus Res,
134,
186-202.
|
 |
|
|
|
|
 |
S.J.Schultz,
and
J.J.Champoux
(2008).
RNase H activity: structure, specificity, and function in reverse transcription.
|
| |
Virus Res,
134,
86.
|
 |
|
|
|
|
 |
A.Luckay,
M.K.Sidhu,
R.Kjeken,
S.Megati,
S.Y.Chong,
V.Roopchand,
D.Garcia-Hand,
R.Abdullah,
R.Braun,
D.C.Montefiori,
M.Rosati,
B.K.Felber,
G.N.Pavlakis,
I.Mathiesen,
Z.R.Israel,
J.H.Eldridge,
and
M.A.Egan
(2007).
Effect of plasmid DNA vaccine design and in vivo electroporation on the resulting vaccine-specific immune responses in rhesus macaques.
|
| |
J Virol,
81,
5257-5269.
|
 |
|
|
|
|
 |
B.Roquebert,
M.Wirden,
A.Simon,
J.Deval,
C.Katlama,
V.Calvez,
and
A.G.Marcelin
(2007).
Relationship between mutations in HIV-1 RNase H domain and nucleoside reverse transcriptase inhibitors resistance mutations in naïve and pre-treated HIV infected patients.
|
| |
J Med Virol,
79,
207-211.
|
 |
|
|
|
|
 |
M.Ntemgwa,
M.A.Wainberg,
M.Oliveira,
D.Moisi,
R.Lalonde,
V.Micheli,
and
B.G.Brenner
(2007).
Variations in reverse transcriptase and RNase H domain mutations in human immunodeficiency virus type 1 clinical isolates are associated with divergent phenotypic resistance to zidovudine.
|
| |
Antimicrob Agents Chemother,
51,
3861-3869.
|
 |
|
|
|
|
 |
D.J.You,
H.Chon,
Y.Koga,
K.Takano,
and
S.Kanaya
(2006).
Crystallization and preliminary crystallographic analysis of type 1 RNase H from the hyperthermophilic archaeon Sulfolobus tokodaii 7.
|
| |
Acta Crystallogr Sect F Struct Biol Cryst Commun,
62,
781-784.
|
 |
|
|
|
|
 |
D.Lim,
G.G.Gregorio,
C.Bingman,
E.Martinez-Hackert,
W.A.Hendrickson,
and
S.P.Goff
(2006).
Crystal structure of the moloney murine leukemia virus RNase H domain.
|
| |
J Virol,
80,
8379-8389.
|
 |
|
PDB code:
|
 |
|
|
|
|
|
 |
D.R.Livesay,
and
D.J.Jacobs
(2006).
Conserved quantitative stability/flexibility relationships (QSFR) in an orthologous RNase H pair.
|
| |
Proteins,
62,
130-143.
|
 |
|
|
|
|
 |
J.Puglia,
T.Wang,
C.Smith-Snyder,
M.Cote,
M.Scher,
J.N.Pelletier,
S.John,
C.B.Jonsson,
and
M.J.Roth
(2006).
Revealing domain structure through linker-scanning analysis of the murine leukemia virus (MuLV) RNase H and MuLV and human immunodeficiency virus type 1 integrase proteins.
|
| |
J Virol,
80,
9497-9510.
|
 |
|
|
|
|
 |
P.Neumann,
A.Koblízková,
A.Navrátilová,
and
J.Macas
(2006).
Significant expansion of Vicia pannonica genome size mediated by amplification of a single type of giant retroelement.
|
| |
Genetics,
173,
1047-1056.
|
 |
|
|
|
|
 |
S.Kehlenbeck,
U.Betz,
A.Birkmann,
B.Fast,
A.H.Göller,
K.Henninger,
T.Lowinger,
D.Marrero,
A.Paessens,
D.Paulsen,
V.Pevzner,
R.Schohe-Loop,
H.Tsujishita,
R.Welker,
J.Kreuter,
H.Rübsamen-Waigmann,
and
F.Dittmer
(2006).
Dihydroxythiophenes are novel potent inhibitors of human immunodeficiency virus integrase with a diketo acid-like pharmacophore.
|
| |
J Virol,
80,
6883-6894.
|
 |
|
|
|
|
 |
T.L.Diamond,
and
F.D.Bushman
(2006).
Role of metal ions in catalysis by HIV integrase analyzed using a quantitative PCR disintegration assay.
|
| |
Nucleic Acids Res,
34,
6116-6125.
|
 |
|
|
|
|
 |
V.Goldschmidt,
J.Didierjean,
B.Ehresmann,
C.Ehresmann,
C.Isel,
and
R.Marquet
(2006).
Mg2+ dependency of HIV-1 reverse transcription, inhibition by nucleoside analogues and resistance.
|
| |
Nucleic Acids Res,
34,
42-52.
|
 |
|
|
|
|
 |
A.Somasunderam,
M.R.Ferguson,
D.R.Rojo,
V.Thiviyanathan,
X.Li,
W.A.O'Brien,
and
D.G.Gorenstein
(2005).
Combinatorial selection, inhibition, and antiviral activity of DNA thioaptamers targeting the RNase H domain of HIV-1 reverse transcriptase.
|
| |
Biochemistry,
44,
10388-10395.
|
 |
|
|
|
|
 |
F.V.Rivas,
N.H.Tolia,
J.J.Song,
J.P.Aragon,
J.Liu,
G.J.Hannon,
and
L.Joshua-Tor
(2005).
Purified Argonaute2 and an siRNA form recombinant human RISC.
|
| |
Nat Struct Mol Biol,
12,
340-349.
|
 |
|
PDB codes:
|
 |
|
|
|
|
|
 |
J.Didierjean,
C.Isel,
F.Querré,
J.F.Mouscadet,
A.M.Aubertin,
J.Y.Valnot,
S.R.Piettre,
and
R.Marquet
(2005).
Inhibition of human immunodeficiency virus type 1 reverse transcriptase, RNase H, and integrase activities by hydroxytropolones.
|
| |
Antimicrob Agents Chemother,
49,
4884-4894.
|
 |
|
|
|
|
 |
M.E.Abram,
and
M.A.Parniak
(2005).
Virion instability of human immunodeficiency virus type 1 reverse transcriptase (RT) mutated in the protease cleavage site between RT p51 and the RT RNase H domain.
|
| |
J Virol,
79,
11952-11961.
|
 |
|
|
|
|
 |
N.Ohtani,
N.Saito,
M.Tomita,
M.Itaya,
and
A.Itoh
(2005).
The SCO2299 gene from Streptomyces coelicolor A3(2) encodes a bifunctional enzyme consisting of an RNase H domain and an acid phosphatase domain.
|
| |
FEBS J,
272,
2828-2837.
|
 |
|
|
|
|
 |
S.A.Gaidamakov,
I.I.Gorshkova,
P.Schuck,
P.J.Steinbach,
H.Yamada,
R.J.Crouch,
and
S.M.Cerritelli
(2005).
Eukaryotic RNases H1 act processively by interactions through the duplex RNA-binding domain.
|
| |
Nucleic Acids Res,
33,
2166-2175.
|
 |
|
|
|
|
 |
S.R.Budihas,
I.Gorshkova,
S.Gaidamakov,
A.Wamiru,
M.K.Bona,
M.A.Parniak,
R.J.Crouch,
J.B.McMahon,
J.A.Beutler,
and
S.F.Le Grice
(2005).
Selective inhibition of HIV-1 reverse transcriptase-associated ribonuclease H activity by hydroxylated tropolones.
|
| |
Nucleic Acids Res,
33,
1249-1256.
|
 |
|
|
|
|
 |
E.A.Hehl,
P.Joshi,
G.V.Kalpana,
and
V.R.Prasad
(2004).
Interaction between human immunodeficiency virus type 1 reverse transcriptase and integrase proteins.
|
| |
J Virol,
78,
5056-5067.
|
 |
|
|
|
|
 |
G.N.Nikolenko,
E.S.Svarovskaia,
K.A.Delviks,
and
V.K.Pathak
(2004).
Antiretroviral drug resistance mutations in human immunodeficiency virus type 1 reverse transcriptase increase template-switching frequency.
|
| |
J Virol,
78,
8761-8770.
|
 |
|
|
|
|
 |
R.G.Karki,
Y.Tang,
T.R.Burke,
and
M.C.Nicklaus
(2004).
Model of full-length HIV-1 integrase complexed with viral DNA as template for anti-HIV drug design.
|
| |
J Comput Aided Mol Des,
18,
739-760.
|
 |
|
|
|
|
 |
Y.Uyeno,
Y.Sekiguchi,
A.Sunaga,
H.Yoshida,
and
Y.Kamagata
(2004).
Sequence-specific cleavage of small-subunit (SSU) rRNA with oligonucleotides and RNase H: a rapid and simple approach to SSU rRNA-based quantitative detection of microorganisms.
|
| |
Appl Environ Microbiol,
70,
3650-3663.
|
 |
|
|
|
|
 |
K.Klumpp,
J.Q.Hang,
S.Rajendran,
Y.Yang,
A.Derosier,
P.Wong Kai In,
H.Overton,
K.E.Parkes,
N.Cammack,
and
J.A.Martin
(2003).
Two-metal ion mechanism of RNA cleavage by HIV RNase H and mechanism-based design of selective HIV RNase H inhibitors.
|
| |
Nucleic Acids Res,
31,
6852-6859.
|
 |
|
|
|
|
 |
M.R.Tock,
E.Frary,
J.R.Sayers,
and
J.A.Grasby
(2003).
Dynamic evidence for metal ion catalysis in the reaction mediated by a flap endonuclease.
|
| |
EMBO J,
22,
995.
|
 |
|
|
|
|
 |
A.Krakowiak,
A.Owczarek,
M.Koziołkiewicz,
and
W.J.Stec
(2002).
Stereochemical course of Escherichia coli RNase H.
|
| |
Chembiochem,
3,
1242-1250.
|
 |
|
|
|
|
 |
A.L.ten Asbroek,
M.van Groenigen,
M.Nooij,
and
F.Baas
(2002).
The involvement of human ribonucleases H1 and H2 in the variation of response of cells to antisense phosphorothioate oligonucleotides.
|
| |
Eur J Biochem,
269,
583-592.
|
 |
|
|
|
|
 |
D.Lim,
M.Orlova,
and
S.P.Goff
(2002).
Mutations of the RNase H C helix of the Moloney murine leukemia virus reverse transcriptase reveal defects in polypurine tract recognition.
|
| |
J Virol,
76,
8360-8373.
|
 |
|
|
|
|
 |
D.R.Casimiro,
A.Tang,
H.C.Perry,
R.S.Long,
M.Chen,
G.J.Heidecker,
M.E.Davies,
D.C.Freed,
N.V.Persaud,
S.Dubey,
J.G.Smith,
D.Havlir,
D.Richman,
M.A.Chastain,
A.J.Simon,
T.M.Fu,
E.A.Emini,
and
J.W.Shiver
(2002).
Vaccine-induced immune responses in rodents and nonhuman primates by use of a humanized human immunodeficiency virus type 1 pol gene.
|
| |
J Virol,
76,
185-194.
|
 |
|
|
|
|
 |
G.F.Gerard,
R.J.Potter,
M.D.Smith,
K.Rosenthal,
G.Dhariwal,
J.Lee,
and
D.K.Chatterjee
(2002).
The role of template-primer in protection of reverse transcriptase from thermal inactivation.
|
| |
Nucleic Acids Res,
30,
3118-3129.
|
 |
|
|
|
|
 |
J.A.Grobler,
K.Stillmock,
B.Hu,
M.Witmer,
P.Felock,
A.S.Espeseth,
A.Wolfe,
M.Egbertson,
M.Bourgeois,
J.Melamed,
J.S.Wai,
S.Young,
J.Vacca,
and
D.J.Hazuda
(2002).
Diketo acid inhibitor mechanism and HIV-1 integrase: implications for metal binding in the active site of phosphotransferase enzymes.
|
| |
Proc Natl Acad Sci U S A,
99,
6661-6666.
|
 |
|
|
|
|
 |
A.G.Campbell
(2001).
Expression of Moloney murine leukemia virus RNase H rescues the growth defect of an Escherichia coli mutant.
|
| |
J Virol,
75,
6212-6217.
|
 |
|
|
|
|
 |
A.Muroya,
D.Tsuchiya,
M.Ishikawa,
M.Haruki,
M.Morikawa,
S.Kanaya,
and
K.Morikawa
(2001).
Catalytic center of an archaeal type 2 ribonuclease H as revealed by X-ray crystallographic and mutational analyses.
|
| |
Protein Sci,
10,
707-714.
|
 |
|
PDB code:
|
 |
|
|
|
|
|
 |
B.S.Min,
Y.H.Kim,
M.Tomiyama,
N.Nakamura,
H.Miyashiro,
T.Otake,
and
M.Hattori
(2001).
Inhibitory effects of Korean plants on HIV-1 activities.
|
| |
Phytother Res,
15,
481-486.
|
 |
|
|
|
|
 |
J.Beck,
and
M.Nassal
(2001).
Reconstitution of a functional duck hepatitis B virus replication initiation complex from separate reverse transcriptase domains expressed in Escherichia coli.
|
| |
J Virol,
75,
7410-7419.
|
 |
|
|
|
|
 |
J.E.Kwak,
J.Y.Lee,
B.W.Han,
J.H.Moon,
S.H.Sohn,
I.S.Park,
B.G.Kim,
and
S.W.Suh
(2001).
Crystallization and preliminary X-ray crystallographic analysis of RNase HIII from Bacillus subtilis.
|
| |
Acta Crystallogr D Biol Crystallogr,
57,
438-440.
|
 |
|
|
|
|
 |
J.G.Julias,
A.L.Ferris,
P.L.Boyer,
and
S.H.Hughes
(2001).
Replication of phenotypically mixed human immunodeficiency virus type 1 virions containing catalytically active and catalytically inactive reverse transcriptase.
|
| |
J Virol,
75,
6537-6546.
|
 |
|
|
|
|
 |
L.Fan,
and
L.S.Kaguni
(2001).
Multiple regions of subunit interaction in Drosophila mitochondrial DNA polymerase: three functional domains in the accessory subunit.
|
| |
Biochemistry,
40,
4780-4791.
|
 |
|
|
|
|
 |
M.L.Li,
P.Rao,
and
R.M.Krug
(2001).
The active sites of the influenza cap-dependent endonuclease are on different polymerase subunits.
|
| |
EMBO J,
20,
2078-2086.
|
 |
|
|
|
|
 |
S.G.Sarafianos,
K.Das,
C.Tantillo,
A.D.Clark,
J.Ding,
J.M.Whitcomb,
P.L.Boyer,
S.H.Hughes,
and
E.Arnold
(2001).
Crystal structure of HIV-1 reverse transcriptase in complex with a polypurine tract RNA:DNA.
|
| |
EMBO J,
20,
1449-1461.
|
 |
|
PDB code:
|
 |
|
|
|
|
|
 |
H.Jonckheere,
J.Anné,
and
E.De Clercq
(2000).
The HIV-1 reverse transcription (RT) process as target for RT inhibitors.
|
| |
Med Res Rev,
20,
129-154.
|
 |
|
|
|
|
 |
L.Lai,
H.Yokota,
L.W.Hung,
R.Kim,
and
S.H.Kim
(2000).
Crystal structure of archaeal RNase HII: a homologue of human major RNase H.
|
| |
Structure,
8,
897-904.
|
 |
|
PDB code:
|
 |
|
|
|
|
|
 |
S.A.Stewart,
and
R.A.Weinberg
(2000).
Telomerase and human tumorigenesis.
|
| |
Semin Cancer Biol,
10,
399-406.
|
 |
|
|
|
|
 |
W.R.Davis,
J.Tomsho,
S.Nikam,
E.M.Cook,
D.Somand,
and
J.A.Peliska
(2000).
Inhibition of HIV-1 reverse transcriptase-catalyzed DNA strand transfer reactions by 4-chlorophenylhydrazone of mesoxalic acid.
|
| |
Biochemistry,
39,
14279-14291.
|
 |
|
|
|
|
 |
C.A.Brautigam,
S.Sun,
J.A.Piccirilli,
and
T.A.Steitz
(1999).
Structures of normal single-stranded DNA and deoxyribo-3'-S-phosphorothiolates bound to the 3'-5' exonucleolytic active site of DNA polymerase I from Escherichia coli.
|
| |
Biochemistry,
38,
696-704.
|
 |
|
PDB codes:
|
 |
|
|
|
|
|
 |
D.K.Gavin,
S.M.Young,
W.Xiao,
B.Temple,
C.R.Abernathy,
D.J.Pereira,
N.Muzyczka,
and
R.J.Samulski
(1999).
Charge-to-alanine mutagenesis of the adeno-associated virus type 2 Rep78/68 proteins yields temperature-sensitive and magnesium-dependent variants.
|
| |
J Virol,
73,
9433-9445.
|
 |
|
|
|
|
 |
E.Sabbioni,
N.Blanch,
K.Baricevic,
and
M.A.Serra
(1999).
Effects of trace metal compounds on HIV-1 reverse transcriptase: an in vitro study.
|
| |
Biol Trace Elem Res,
68,
107-119.
|
 |
|
|
|
|
 |
J.Greenwald,
V.Le,
S.L.Butler,
F.D.Bushman,
and
S.Choe
(1999).
The mobility of an HIV-1 integrase active site loop is correlated with catalytic activity.
|
| |
Biochemistry,
38,
8892-8898.
|
 |
|
PDB codes:
|
 |
|
|
|
|
|
 |
X.Wu,
H.Liu,
H.Xiao,
J.A.Conway,
E.Hehl,
G.V.Kalpana,
V.Prasad,
and
J.C.Kappes
(1999).
Human immunodeficiency virus type 1 integrase protein promotes reverse transcription through specific interactions with the nucleoprotein reverse transcription complex.
|
| |
J Virol,
73,
2126-2135.
|
 |
|
|
|
|
 |
B.McDougall,
P.J.King,
B.W.Wu,
Z.Hostomsky,
M.G.Reinecke,
and
W.E.Robinson
(1998).
Dicaffeoylquinic and dicaffeoyltartaric acids are selective inhibitors of human immunodeficiency virus type 1 integrase.
|
| |
Antimicrob Agents Chemother,
42,
140-146.
|
 |
|
|
|
|
 |
G.Kern,
T.Handel,
and
S.Marqusee
(1998).
Characterization of a folding intermediate from HIV-1 ribonuclease H.
|
| |
Protein Sci,
7,
2164-2174.
|
 |
|
|
|
|
 |
J.M.Ryter,
and
S.C.Schultz
(1998).
Molecular basis of double-stranded RNA-protein interactions: structure of a dsRNA-binding domain complexed with dsRNA.
|
| |
EMBO J,
17,
7505-7513.
|
 |
|
PDB code:
|
 |
|
|
|
|
|
 |
K.Ichiyanagi,
H.Iwasaki,
T.Hishida,
and
H.Shinagawa
(1998).
Mutational analysis on structure-function relationship of a holliday junction specific endonuclease RuvC.
|
| |
Genes Cells,
3,
575-586.
|
 |
|
|
|
|
 |
L.Menéndez-Arias
(1998).
Studies on the effects of truncating alpha-helix E' of p66 human immunodeficiency virus type 1 reverse transcriptase on template-primer binding and fidelity of DNA synthesis.
|
| |
Biochemistry,
37,
16636-16644.
|
 |
|
|
|
|
 |
M.Klutch,
A.M.Woerner,
C.J.Marcus-Sekura,
and
J.G.Levin
(1998).
Generation of HIV-1/HIV-2 cross-reactive peptide antisera by small sequence changes in HIV-1 reverse transcriptase and integrase immunizing peptides.
|
| |
J Biomed Sci,
5,
192-202.
|
 |
|
|
|
|
 |
P.Frank,
C.Braunshofer-Reiter,
U.Wintersberger,
R.Grimm,
and
W.Büsen
(1998).
Cloning of the cDNA encoding the large subunit of human RNase HI, a homologue of the prokaryotic RNase HII.
|
| |
Proc Natl Acad Sci U S A,
95,
12872-12877.
|
 |
|
|
|
|
 |
S.M.Cerritelli,
O.Y.Fedoroff,
B.R.Reid,
and
R.J.Crouch
(1998).
A common 40 amino acid motif in eukaryotic RNases H1 and caulimovirus ORF VI proteins binds to duplex RNAs.
|
| |
Nucleic Acids Res,
26,
1834-1840.
|
 |
|
|
|
|
 |
Y.Goldgur,
F.Dyda,
A.B.Hickman,
T.M.Jenkins,
R.Craigie,
and
D.R.Davies
(1998).
Three new structures of the core domain of HIV-1 integrase: an active site that binds magnesium.
|
| |
Proc Natl Acad Sci U S A,
95,
9150-9154.
|
 |
|
PDB codes:
|
 |
|
|
|
|
|
 |
A.G.Filler,
and
A.M.Lever
(1997).
Effects of cation substitutions on reverse transcriptase and on human immunodeficiency virus production.
|
| |
AIDS Res Hum Retroviruses,
13,
291-299.
|
 |
|
|
|
|
 |
A.T.Daniher,
J.Xie,
S.Mathur,
and
J.K.Bashkin
(1997).
Modulation of RNase H activity by modified DNA probes: major groove vs minor groove effects.
|
| |
Bioorg Med Chem,
5,
1037-1042.
|
 |
|
|
|
|
 |
A.Wlodawer
(1997).
Deposition of macromolecular coordinates resulting from crystallographic and NMR studies.
|
| |
Nat Struct Biol,
4,
173-174.
|
 |
|
|
|
|
 |
B.Hallet,
and
D.J.Sherratt
(1997).
Transposition and site-specific recombination: adapting DNA cut-and-paste mechanisms to a variety of genetic rearrangements.
|
| |
FEMS Microbiol Rev,
21,
157-178.
|
 |
|
|
|
|
 |
E.R.Goedken,
T.M.Raschke,
and
S.Marqusee
(1997).
Importance of the C-terminal helix to the stability and enzymatic activity of Escherichia coli ribonuclease H.
|
| |
Biochemistry,
36,
7256-7263.
|
 |
|
|
|
|
 |
G.Borkow,
R.S.Fletcher,
J.Barnard,
D.Arion,
D.Motakis,
G.I.Dmitrienko,
and
M.A.Parniak
(1997).
Inhibition of the ribonuclease H and DNA polymerase activities of HIV-1 reverse transcriptase by N-(4-tert-butylbenzoyl)-2-hydroxy-1-naphthaldehyde hydrazone.
|
| |
Biochemistry,
36,
3179-3185.
|
 |
|
|
|
|
 |
G.Chen,
T.Edwards,
V.M.D'souza,
and
R.C.Holz
(1997).
Mechanistic studies on the aminopeptidase from Aeromonas proteolytica: a two-metal ion mechanism for peptide hydrolysis.
|
| |
Biochemistry,
36,
4278-4286.
|
 |
|
|
|
|
 |
G.Heinisch,
E.Huber,
B.Matuszczak,
A.Maurer,
and
U.Prillinger
(1997).
Pyridazines 82. Synthesis of pyridazino [3,4-b][1,5]benzodiazepin-5-ones and their biological evaluation as non-nucleoside HIV reverse transcriptase inhibitors.
|
| |
Arch Pharm (Weinheim),
330,
29-34.
|
 |
|
|
|
|
 |
J.Ding,
S.H.Hughes,
and
E.Arnold
(1997).
Protein-nucleic acid interactions and DNA conformation in a complex of human immunodeficiency virus type 1 reverse transcriptase with a double-stranded DNA template-primer.
|
| |
Biopolymers,
44,
125-138.
|
 |
|
|
|
|
 |
K.Noma,
R.Nakajima,
H.Ohtsubo,
and
E.Ohtsubo
(1997).
RIRE1, a retrotransposon from wild rice Oryza australiensis.
|
| |
Genes Genet Syst,
72,
131-140.
|
 |
|
|
|
|
 |
M.Thomas,
and
L.Brady
(1997).
HIV integrase: a target for AIDS therapeutics.
|
| |
Trends Biotechnol,
15,
167-172.
|
 |
|
|
|
|
 |
S.C.West
(1997).
Processing of recombination intermediates by the RuvABC proteins.
|
| |
Annu Rev Genet,
31,
213-244.
|
 |
|
|
|
|
 |
T.Shirai,
and
M.Go
(1997).
Adaptive amino acid replacements accompanied by domain fusion in reverse transcriptase.
|
| |
J Mol Evol,
44,
S155-S162.
|
 |
|
|
|
|
 |
A.M.Mandel,
M.Akke,
and
A.G.Palmer
(1996).
Dynamics of ribonuclease H: temperature dependence of motions on multiple time scales.
|
| |
Biochemistry,
35,
16009-16023.
|
 |
|
|
|
|
 |
D.Hüsken,
G.Goodall,
M.J.Blommers,
W.Jahnke,
J.Hall,
R.Häner,
and
H.E.Moser
(1996).
Creating RNA bulges: cleavage of RNA in RNA/DNA duplexes by metal ion catalysis.
|
| |
Biochemistry,
35,
16591-16600.
|
 |
|
|
|
|
 |
E.J.Arts,
S.R.Stetor,
X.Li,
J.W.Rausch,
K.J.Howard,
B.Ehresmann,
T.W.North,
B.M.Wöhrl,
R.S.Goody,
M.A.Wainberg,
and
S.F.Grice
(1996).
Initiation of (-) strand DNA synthesis from tRNA(3Lys) on lentiviral RNAs: implications of specific HIV-1 RNA-tRNA(3Lys) interactions inhibiting primer utilization by retroviral reverse transcriptases.
|
| |
Proc Natl Acad Sci U S A,
93,
10063-10068.
|
 |
|
|
|
|
 |
G.Bujacz,
M.Jaskólski,
J.Alexandratos,
A.Wlodawer,
G.Merkel,
R.A.Katz,
and
A.M.Skalka
(1996).
The catalytic domain of avian sarcoma virus integrase: conformation of the active-site residues in the presence of divalent cations.
|
| |
Structure,
4,
89-96.
|
 |
|
PDB codes:
|
 |
|
|
|
|
|
 |
H.L.Levin
(1996).
An unusual mechanism of self-primed reverse transcription requires the RNase H domain of reverse transcriptase to cleave an RNA duplex.
|
| |
Mol Cell Biol,
16,
5645-5654.
|
 |
|
|
|
|
 |
H.Nakamura
(1996).
Roles of electrostatic interaction in proteins.
|
| |
Q Rev Biophys,
29,
1.
|
 |
|
|
|
|
 |
H.Pelletier,
M.R.Sawaya,
W.Wolfle,
S.H.Wilson,
and
J.Kraut
(1996).
A structural basis for metal ion mutagenicity and nucleotide selectivity in human DNA polymerase beta.
|
| |
Biochemistry,
35,
12762-12777.
|
 |
|
PDB codes:
|
 |
|
|
|
|
|
 |
H.Shinagawa,
and
H.Iwasaki
(1996).
Processing the holliday junction in homologous recombination.
|
| |
Trends Biochem Sci,
21,
107-111.
|
 |
|
|
|
|
 |
M.S.Junop,
and
D.B.Haniford
(1996).
Multiple roles for divalent metal ions in DNA transposition: distinct stages of Tn10 transposition have different Mg2+ requirements.
|
| |
EMBO J,
15,
2547-2555.
|
 |
|
|
|
|
 |
P.Rice,
R.Craigie,
and
D.R.Davies
(1996).
Retroviral integrases and their cousins.
|
| |
Curr Opin Struct Biol,
6,
76-83.
|
 |
|
|
|
|
 |
S.J.Schultz,
and
J.J.Champoux
(1996).
RNase H domain of Moloney murine leukemia virus reverse transcriptase retains activity but requires the polymerase domain for specificity.
|
| |
J Virol,
70,
8630-8638.
|
 |
|
|
|
|
 |
V.Mizrahi,
and
P.Huberts
(1996).
Deoxy- and dideoxynucleotide discrimination and identification of critical 5' nuclease domain residues of the DNA polymerase I from Mycobacterium tuberculosis.
|
| |
Nucleic Acids Res,
24,
4845-4852.
|
 |
|
|
|
|
 |
V.Pavone,
G.Gaeta,
A.Lombardi,
F.Nastri,
O.Maglio,
C.Isernia,
and
M.Saviano
(1996).
Discovering protein secondary structures: classification and description of isolated alpha-turns.
|
| |
Biopolymers,
38,
705-721.
|
 |
|
|
|
|
 |
Y.Chen,
and
P.L.Marion
(1996).
Amino acids essential for RNase H activity of hepadnaviruses are also required for efficient elongation of minus-strand viral DNA.
|
| |
J Virol,
70,
6151-6156.
|
 |
|
|
|
|
 |
Y.F.Melekhovets,
and
S.Joshi
(1996).
Fusion with an RNA binding domain to confer target RNA specificity to an RNase: design and engineering of Tat-RNase H that specifically recognizes and cleaves HIV-1 RNA in vitro.
|
| |
Nucleic Acids Res,
24,
1908-1912.
|
 |
|
|
|
|
 |
Y.M.Henskens,
E.C.Veerman,
and
A.V.Nieuw Amerongen
(1996).
Cystatins in health and disease.
|
| |
Biol Chem Hoppe Seyler,
377,
71-86.
|
 |
|
|
|
|
 |
A.E.Sauer-Eriksson,
G.J.Kleywegt,
M.Uhlén,
and
T.A.Jones
(1995).
Crystal structure of the C2 fragment of streptococcal protein G in complex with the Fc domain of human IgG.
|
| |
Structure,
3,
265-278.
|
 |
|
PDB code:
|
 |
|
|
|
|
|
 |
A.Saito,
H.Iwasaki,
M.Ariyoshi,
K.Morikawa,
and
H.Shinagawa
(1995).
Identification of four acidic amino acids that constitute the catalytic center of the RuvC Holliday junction resolvase.
|
| |
Proc Natl Acad Sci U S A,
92,
7470-7474.
|
 |
|
|
|
|
 |
C.M.Joyce,
and
T.A.Steitz
(1995).
Polymerase structures and function: variations on a theme?
|
| |
J Bacteriol,
177,
6321-6329.
|
 |
|
|
|
|
 |
C.Venclovas,
and
V.Siksnys
(1995).
Different enzymes with similar structures involved in Mg(2+)-mediated polynucleotidyl transfer.
|
| |
Nat Struct Biol,
2,
838-841.
|
 |
|
|
|
|
 |
E.Arnold,
J.Ding,
S.H.Hughes,
and
Z.Hostomsky
(1995).
Structures of DNA and RNA polymerases and their interactions with nucleic acid substrates.
|
| |
Curr Opin Struct Biol,
5,
27-38.
|
 |
|
|
|
|
 |
J.Ding,
K.Das,
C.Tantillo,
W.Zhang,
A.D.Clark,
S.Jessen,
X.Lu,
Y.Hsiou,
A.Jacobo-Molina,
and
K.Andries
(1995).
Structure of HIV-1 reverse transcriptase in a complex with the non-nucleoside inhibitor alpha-APA R 95845 at 2.8 A resolution.
|
| |
Structure,
3,
365-379.
|
 |
|
PDB code:
|
 |
|
|
|
|
|
 |
J.L.Keck,
and
S.Marqusee
(1995).
Substitution of a highly basic helix/loop sequence into the RNase H domain of human immunodeficiency virus reverse transcriptase restores its Mn(2+)-dependent RNase H activity.
|
| |
Proc Natl Acad Sci U S A,
92,
2740-2744.
|
 |
|
|
|
|
 |
J.Ren,
R.Esnouf,
A.Hopkins,
C.Ross,
Y.Jones,
D.Stammers,
and
D.Stuart
(1995).
The structure of HIV-1 reverse transcriptase complexed with 9-chloro-TIBO: lessons for inhibitor design.
|
| |
Structure,
3,
915-926.
|
 |
|
PDB code:
|
 |
|
|
|
|
|
 |
J.Ren,
R.Esnouf,
E.Garman,
D.Somers,
C.Ross,
I.Kirby,
J.Keeling,
G.Darby,
Y.Jones,
and
D.Stuart
(1995).
High resolution structures of HIV-1 RT from four RT-inhibitor complexes.
|
| |
Nat Struct Biol,
2,
293-302.
|
 |
|
PDB codes:
|
 |
|
|
|
|
|
 |
M.E.Quiñones-Mateu,
J.Dopazo,
J.A.Esté,
T.R.Rota,
and
E.Domingo
(1995).
Molecular characterization of human immunodeficiency virus type 1 isolates from Venezuela.
|
| |
AIDS Res Hum Retroviruses,
11,
605-616.
|
 |
|
|
|
|
 |
M.Mizuuchi,
T.A.Baker,
and
K.Mizuuchi
(1995).
Assembly of phage Mu transpososomes: cooperative transitions assisted by protein and DNA scaffolds.
|
| |
Cell,
83,
375-385.
|
 |
|
|
|
|
 |
N.D.Grindley,
and
A.E.Leschziner
(1995).
DNA transposition: from a black box to a color monitor.
|
| |
Cell,
83,
1063-1066.
|
 |
|
|
|
|
 |
P.Rice,
and
K.Mizuuchi
(1995).
Structure of the bacteriophage Mu transposase core: a common structural motif for DNA transposition and retroviral integration.
|
| |
Cell,
82,
209-220.
|
 |
|
PDB codes:
|
 |
|
|
|
|
|
 |
R.A.Puras Lutzke,
N.A.Eppens,
P.A.Weber,
R.A.Houghten,
and
R.H.Plasterk
(1995).
Identification of a hexapeptide inhibitor of the human immunodeficiency virus integrase protein by using a combinatorial chemical library.
|
| |
Proc Natl Acad Sci U S A,
92,
11456-11460.
|
 |
|
|
|
|
 |
S.W.Blain,
and
S.P.Goff
(1995).
Effects on DNA synthesis and translocation caused by mutations in the RNase H domain of Moloney murine leukemia virus reverse transcriptase.
|
| |
J Virol,
69,
4440-4452.
|
 |
|
|
|
|
 |
S.W.Blain,
W.A.Hendrickson,
and
S.P.Goff
(1995).
Reversion of a Moloney murine leukemia virus RNase H mutant at a second site restores enzyme function and infectivity.
|
| |
J Virol,
69,
5113-5116.
|
 |
|
|
|
|
 |
W.Yang,
and
T.A.Steitz
(1995).
Recombining the structures of HIV integrase, RuvC and RNase H.
|
| |
Structure,
3,
131-134.
|
 |
|
|
|
|
 |
F.Gao,
L.Yue,
D.L.Robertson,
S.C.Hill,
H.Hui,
R.J.Biggar,
A.E.Neequaye,
T.M.Whelan,
D.D.Ho,
and
G.M.Shaw
(1994).
Genetic diversity of human immunodeficiency virus type 2: evidence for distinct sequence subtypes with differences in virus biology.
|
| |
J Virol,
68,
7433-7447.
|
 |
|
|
|
|
 |
H.W.Huang,
and
J.A.Cowan
(1994).
Metallobiochemistry of the magnesium ion. Characterization of the essential metal-binding site in Escherichia coli ribonuclease H.
|
| |
Eur J Biochem,
219,
253-260.
|
 |
|
|
|
|
 |
J.F.Davies,
R.J.Almassy,
Z.Hostomska,
R.A.Ferre,
and
Z.Hostomsky
(1994).
2.3 A crystal structure of the catalytic domain of DNA polymerase beta.
|
| |
Cell,
76,
1123-1133.
|
 |
|
PDB code:
|
 |
|
|
|
|
|
 |
J.Jäger,
S.J.Smerdon,
J.Wang,
D.C.Boisvert,
and
T.A.Steitz
(1994).
Comparison of three different crystal forms shows HIV-1 reverse transcriptase displays an internal swivel motion.
|
| |
Structure,
2,
869-876.
|
 |
|
|
|
|
 |
J.M.Dabora,
and
S.Marqusee
(1994).
Equilibrium unfolding of Escherichia coli ribonuclease H: characterization of a partially folded state.
|
| |
Protein Sci,
3,
1401-1408.
|
 |
|
|
|
|
 |
J.S.Smith,
K.Gritsman,
and
M.J.Roth
(1994).
Contributions of DNA polymerase subdomains to the RNase H activity of human immunodeficiency virus type 1 reverse transcriptase.
|
| |
J Virol,
68,
5721-5729.
|
 |
|
|
|
|
 |
J.Wang,
S.J.Smerdon,
J.Jäger,
L.A.Kohlstaedt,
P.A.Rice,
J.M.Friedman,
and
T.A.Steitz
(1994).
Structural basis of asymmetry in the human immunodeficiency virus type 1 reverse transcriptase heterodimer.
|
| |
Proc Natl Acad Sci U S A,
91,
7242-7246.
|
 |
|
PDB code:
|
 |
|
|
|
|
|
 |
M.Haruki,
E.Noguchi,
C.Nakai,
Y.Y.Liu,
M.Oobatake,
M.Itaya,
and
S.Kanaya
(1994).
Investigating the role of conserved residue Asp134 in Escherichia coli ribonuclease HI by site-directed random mutagenesis.
|
| |
Eur J Biochem,
220,
623-631.
|
 |
|
|
|
|
 |
P.Friedhoff,
O.Gimadutdinow,
and
A.Pingoud
(1994).
Identification of catalytically relevant amino acids of the extracellular Serratia marcescens endonuclease by alignment-guided mutagenesis.
|
| |
Nucleic Acids Res,
22,
3280-3287.
|
 |
|
|
|
|
 |
S.D.Malley,
J.M.Grange,
F.Hamedi-Sangsari,
and
J.R.Vila
(1994).
Synergistic anti-human immunodeficiency virus type 1 effect of hydroxamate compounds with 2',3'-dideoxyinosine in infected resting human lymphocytes.
|
| |
Proc Natl Acad Sci U S A,
91,
11017-11021.
|
 |
|
|
|
|
 |
T.Hermann,
T.Meier,
M.Götte,
and
H.Heumann
(1994).
The 'helix clamp' in HIV-1 reverse transcriptase: a new nucleic acid binding motif common in nucleic acid polymerases.
|
| |
Nucleic Acids Res,
22,
4625-4633.
|
 |
|
|
|
|
 |
T.Rubinek,
S.Loya,
M.Shaharabany,
S.H.Hughes,
P.K.Clark,
and
A.Hizi
(1994).
The catalytic properties of the reverse transcriptase of the lentivirus equine infectious anemia virus.
|
| |
Eur J Biochem,
219,
977-983.
|
 |
|
|
|
|
 |
Y.Chen,
W.S.Robinson,
and
P.L.Marion
(1994).
Selected mutations of the duck hepatitis B virus P gene RNase H domain affect both RNA packaging and priming of minus-strand DNA synthesis.
|
| |
J Virol,
68,
5232-5238.
|
 |
|
|
|
|
 |
A.G.Tomasselli,
J.L.Sarcich,
L.J.Barrett,
I.M.Reardon,
W.J.Howe,
D.B.Evans,
S.K.Sharma,
and
R.L.Heinrikson
(1993).
Human immunodeficiency virus type-1 reverse transcriptase and ribonuclease H as substrates of the viral protease.
|
| |
Protein Sci,
2,
2167-2176.
|
 |
|
|
|
|
 |
A.Jacobo-Molina,
J.Ding,
R.G.Nanni,
A.D.Clark,
X.Lu,
C.Tantillo,
R.L.Williams,
G.Kamer,
A.L.Ferris,
and
P.Clark
(1993).
Crystal structure of human immunodeficiency virus type 1 reverse transcriptase complexed with double-stranded DNA at 3.0 A resolution shows bent DNA.
|
| |
Proc Natl Acad Sci U S A,
90,
6320-6324.
|
 |
|
PDB code:
|
 |
|
|
|
|
|
 |
A.M.Szilvay,
S.Nornes,
A.Kannapiran,
B.I.Haukanes,
C.Endresen,
and
D.E.Helland
(1993).
Characterization of HIV-1 reverse transcriptase with antibodies indicates conformational differences between the RNAse H domains of p 66 and p 15.
|
| |
Arch Virol,
131,
393-403.
|
 |
|
|
|
|
 |
A.N.Lane,
S.Ebel,
and
T.Brown
(1993).
NMR assignments and solution conformation of the DNA.RNA hybrid duplex d(GTGAACTT).r(AAGUUCAC).
|
| |
Eur J Biochem,
215,
297-306.
|
 |
|
|
|
|
 |
C.A.Orengo,
and
J.M.Thornton
(1993).
Alpha plus beta folds revisited: some favoured motifs.
|
| |
Structure,
1,
105-120.
|
 |
|
|
|
|
 |
E.Björling,
C.A.Boucher,
A.Samuelsson,
T.F.Wolfs,
G.Utter,
E.Norrby,
and
F.Chiodi
(1993).
Two highly antigenic sites in the human immunodeficiency virus type 1 reverse transcriptase.
|
| |
J Clin Microbiol,
31,
588-592.
|
 |
|
|
|
|
 |
J.S.Smith,
and
M.J.Roth
(1993).
Purification and characterization of an active human immunodeficiency virus type 1 RNase H domain.
|
| |
J Virol,
67,
4037-4049.
|
 |
|
|
|
|
 |
K.Katayanagi,
M.Okumura,
and
K.Morikawa
(1993).
Crystal structure of Escherichia coli RNase HI in complex with Mg2+ at 2.8 A resolution: proof for a single Mg(2+)-binding site.
|
| |
Proteins,
17,
337-346.
|
 |
|
PDB code:
|
 |
|
|
|
|
|
 |
M.Okumura,
K.Ishikawa,
S.Kanaya,
M.Itaya,
and
K.Morikawa
(1993).
Crystallization and preliminary crystallographic analysis of ribonuclease H from Thermus thermophilus HB8.
|
| |
Proteins,
15,
108-111.
|
 |
|
|
|
|
 |
S.K.Drake,
R.B.Bourret,
L.A.Luck,
M.I.Simon,
and
J.J.Falke
(1993).
Activation of the phosphosignaling protein CheY. I. Analysis of the phosphorylated conformation by 19F NMR and protein engineering.
|
| |
J Biol Chem,
268,
13081-13088.
|
 |
|
|
|
|
 |
T.A.Steitz,
and
J.A.Steitz
(1993).
A general two-metal-ion mechanism for catalytic RNA.
|
| |
Proc Natl Acad Sci U S A,
90,
6498-6502.
|
 |
|
|
|
|
 |
Y.Oda,
S.Iwai,
E.Ohtsuka,
M.Ishikawa,
M.Ikehara,
and
H.Nakamura
(1993).
Binding of nucleic acids to E. coli RNase HI observed by NMR and CD spectroscopy.
|
| |
Nucleic Acids Res,
21,
4690-4695.
|
 |
|
|
|
|
 |
A.Telesnitsky,
S.W.Blain,
and
S.P.Goff
(1992).
Defects in Moloney murine leukemia virus replication caused by a reverse transcriptase mutation modeled on the structure of Escherichia coli RNase H.
|
| |
J Virol,
66,
615-622.
|
 |
|
|
|
|
 |
C.Tuerk,
S.MacDougal,
and
L.Gold
(1992).
RNA pseudoknots that inhibit human immunodeficiency virus type 1 reverse transcriptase.
|
| |
Proc Natl Acad Sci U S A,
89,
6988-6992.
|
 |
|
|
|
|
 |
E.Arnold,
A.Jacobo-Molina,
R.G.Nanni,
R.L.Williams,
X.Lu,
J.Ding,
A.D.Clark,
A.Zhang,
A.L.Ferris,
and
P.Clark
(1992).
Structure of HIV-1 reverse transcriptase/DNA complex at 7 A resolution showing active site locations.
|
| |
Nature,
357,
85-89.
|
 |
|
|
|
|
 |
H.Lederer,
O.Schatz,
R.May,
H.Crespi,
J.L.Darlix,
S.F.Le Grice,
and
H.Heumann
(1992).
Domain structure of the human immunodeficiency virus reverse transcriptase.
|
| |
EMBO J,
11,
1131-1139.
|
 |
|
|
|
|
 |
J.A.Tainer,
V.A.Roberts,
and
E.D.Getzoff
(1992).
Protein metal-binding sites.
|
| |
Curr Opin Biotechnol,
3,
378-387.
|
 |
|
|
|
|
 |
J.Kulkosky,
K.S.Jones,
R.A.Katz,
J.P.Mack,
and
A.M.Skalka
(1992).
Residues critical for retroviral integrative recombination in a region that is highly conserved among retroviral/retrotransposon integrases and bacterial insertion sequence transposases.
|
| |
Mol Cell Biol,
12,
2331-2338.
|
 |
|
|
|
|
 |
K.J.Connolly,
and
S.M.Hammer
(1992).
Antiretroviral therapy: strategies beyond single-agent reverse transcriptase inhibition.
|
| |
Antimicrob Agents Chemother,
36,
509-520.
|
 |
|
|
|
|
 |
M.D.Walkinshaw
(1992).
Protein targets for structure-based drug design.
|
| |
Med Res Rev,
12,
317-372.
|
 |
|
|
|
|
 |
M.F.Summers,
L.E.Henderson,
M.R.Chance,
J.W.Bess,
T.L.South,
P.R.Blake,
I.Sagi,
G.Perez-Alvarado,
R.C.Sowder,
and
D.R.Hare
(1992).
Nucleocapsid zinc fingers detected in retroviruses: EXAFS studies of intact viruses and the solution-state structure of the nucleocapsid protein from HIV-1.
|
| |
Protein Sci,
1,
563-574.
|
 |
|
PDB code:
|
 |
|
|
|
|
|
 |
P.L.Boyer,
A.L.Ferris,
and
S.H.Hughes
(1992).
Cassette mutagenesis of the reverse transcriptase of human immunodeficiency virus type 1.
|
| |
J Virol,
66,
1031-1039.
|
 |
|
|
|
|
 |
R.A.Katz,
J.P.Mack,
G.Merkel,
J.Kulkosky,
Z.Ge,
J.Leis,
and
A.M.Skalka
(1992).
Requirement for a conserved serine in both processing and joining activities of retroviral integrase.
|
| |
Proc Natl Acad Sci U S A,
89,
6741-6745.
|
 |
|
|
|
|
 |
R.F.Schinazi,
J.R.Mead,
and
P.M.Feorino
(1992).
Insights into HIV chemotherapy.
|
| |
AIDS Res Hum Retroviruses,
8,
963-990.
|
 |
|
|
|
|
 |
T.B.Fu,
and
J.Taylor
(1992).
When retroviral reverse transcriptases reach the end of their RNA templates.
|
| |
J Virol,
66,
4271-4278.
|
 |
|
|
|
|
 |
W.E.Harte,
S.Swaminathan,
and
D.L.Beveridge
(1992).
Molecular dynamics of HIV-1 protease.
|
| |
Proteins,
13,
175-194.
|
 |
|
|
|
|
 |
Z.Hostomsky,
G.O.Hudson,
S.Rahmati,
and
Z.Hostomska
(1992).
RNase D, a reported new activity associated with HIV-1 reverse transcriptase, displays the same cleavage specificity as Escherichia coli RNase III.
|
| |
Nucleic Acids Res,
20,
5819-5824.
|
 |
|
|
|
|
 |
Z.Hostomsky,
Z.Hostomska,
T.B.Fu,
and
J.Taylor
(1992).
Reverse transcriptase of human immunodeficiency virus type 1: functionality of subunits of the heterodimer in DNA synthesis.
|
| |
J Virol,
66,
3179-3182.
|
 |
|
|
|
|
 |
A.Jacobo-Molina,
A.D.Clark,
R.L.Williams,
R.G.Nanni,
P.Clark,
A.L.Ferris,
S.H.Hughes,
and
E.Arnold
(1991).
Crystals of a ternary complex of human immunodeficiency virus type 1 reverse transcriptase with a monoclonal antibody Fab fragment and double-stranded DNA diffract x-rays to 3.5-A resolution.
|
| |
Proc Natl Acad Sci U S A,
88,
10895-10899.
|
 |
|
|
|
|
 |
H.Nakamura,
Y.Oda,
S.Iwai,
H.Inoue,
E.Ohtsuka,
S.Kanaya,
S.Kimura,
C.Katsuda,
K.Katayanagi,
and
K.Morikawa
(1991).
How does RNase H recognize a DNA.RNA hybrid?
|
| |
Proc Natl Acad Sci U S A,
88,
11535-11539.
|
 |
|
|
|
|
 |
J.A.Tainer,
V.A.Roberts,
and
E.D.Getzoff
(1991).
Metal-binding sites in proteins.
|
| |
Curr Opin Biotechnol,
2,
582-591.
|
 |
|
|
|
|
 |
S.H.Hughes
(1991).
The destiny of reverse transcriptase anatomy.
|
| |
Curr Biol,
1,
323-325.
|
 |
|
 |
 |
|
The most recent references are shown first.
Citation data come partly from CiteXplore and partly
from an automated harvesting procedure. Note that this is likely to be
only a partial list as not all journals are covered by
either method. However, we are continually building up the citation data
so more and more references will be included with time.
Where a reference describes a PDB structure, the PDB
codes are
shown on the right.
|
');
}
}
 |