spacer
spacer

PDBsum entry 1he5

Go to PDB code: 
protein ligands links
Biliverdin-ix beta reductase PDB id
1he5

 

 

 

 

Loading ...

 
JSmol PyMol  
Contents
Protein chain
205 a.a. *
Ligands
NAP
LUM
Waters ×271
* Residue conservation analysis
PDB id:
1he5
Name: Biliverdin-ix beta reductase
Title: Human biliverdin ix beta reductase: NADP/lumichrome ternary complex
Structure: Biliverdin ix beta reductase. Chain: a. Synonym: flavin reductase (ec 1.6.99.1), NADPH-dependent diaphorase, NADPH-flavin reductase, biliverdin reductase b, green heme binding protein. Engineered: yes
Source: Homo sapiens. Human. Organism_taxid: 9606. Expressed in: escherichia coli. Expression_system_taxid: 562
Resolution:
1.50Å     R-factor:   0.148     R-free:   0.192
Authors: P.J.B.Pereira,S.Macedo-Ribeiro,A.Parraga,R.Perez-Luque,O.Cunningham, K.Darcy,T.J.Mantle,M.Coll
Key ref:
P.J.Pereira et al. (2001). Structure of human biliverdin IXbeta reductase, an early fetal bilirubin IXbeta producing enzyme. Nat Struct Biol, 8, 215-220. PubMed id: 11224564 DOI: 10.1038/84948
Date:
19-Nov-00     Release date:   28-Feb-01    
PROCHECK
Go to PROCHECK summary
 Headers
 References

Protein chain
P30043  (BLVRB_HUMAN) -  Flavin reductase (NADPH) from Homo sapiens
Seq:
Struc:
206 a.a.
205 a.a.
Key:    Secondary structure  CATH domain

 Enzyme reactions 
   Enzyme class 2: E.C.1.3.1.-  - ?????
[IntEnz]   [ExPASy]   [KEGG]   [BRENDA]
   Enzyme class 3: E.C.1.5.1.30  - flavin reductase (NADPH).
[IntEnz]   [ExPASy]   [KEGG]   [BRENDA]
      Reaction: reduced riboflavin + NADP+ = riboflavin + NADPH + 2 H+
reduced riboflavin
Bound ligand (Het Group name = NAP)
corresponds exactly
+
NADP(+)
Bound ligand (Het Group name = LUM)
matches with 66.67% similarity
= riboflavin
+ NADPH
+ 2 × H(+)
   Enzyme class 4: E.C.2.6.99.-  - ?????
[IntEnz]   [ExPASy]   [KEGG]   [BRENDA]
Note, where more than one E.C. class is given (as above), each may correspond to a different protein domain or, in the case of polyprotein precursors, to a different mature protein.
Molecule diagrams generated from .mol files obtained from the KEGG ftp site

 

 
    reference    
 
 
DOI no: 10.1038/84948 Nat Struct Biol 8:215-220 (2001)
PubMed id: 11224564  
 
 
Structure of human biliverdin IXbeta reductase, an early fetal bilirubin IXbeta producing enzyme.
P.J.Pereira, S.Macedo-Ribeiro, A.Párraga, R.Pérez-Luque, O.Cunningham, K.Darcy, T.J.Mantle, M.Coll.
 
  ABSTRACT  
 
Biliverdin IXbeta reductase (BVR-B) catalyzes the pyridine nucleotide-dependent production of bilirubin-IXbeta, the major heme catabolite during early fetal development. BVR-B displays a preference for biliverdin isomers without propionates straddling the C10 position, in contrast to biliverdin IXalpha reductase (BVR-A), the major form of BVR in adult human liver. In addition to its tetrapyrrole clearance role in the fetus, BVR-B has flavin and ferric reductase activities in the adult. We have solved the structure of human BVR-B in complex with NADP+ at 1.15 A resolution. Human BVR-B is a monomer displaying an alpha/beta dinucleotide binding fold. The structures of ternary complexes with mesobiliverdin IValpha, biliverdin IXalpha, FMN and lumichrome show that human BVR-B has a single substrate binding site, to which substrates and inhibitors bind primarily through hydrophobic interactions, explaining its broad specificity. The reducible atom of both biliverdin and flavin substrates lies above the reactive C4 of the cofactor, an appropriate position for direct hydride transfer. BVR-B discriminates against the biliverdin IXalpha isomer through steric hindrance at the bilatriene side chain binding pockets. The structure also explains the enzyme's preference for NADP(H) and its B-face stereospecificity.
 
  Selected figure(s)  
 
Figure 2.
Figure 2. Human BVR-B binds specifically to NADP. a, Stereo view of the NADP+ cofactor binding site. Putative hydrogen bonds are shown as dotted green lines, and solvent molecules as red spheres. The atom color code is the same as in Fig. 1b. The 1.15 Å 2F[o] - F[c] electron density map for the cofactor, contoured at 1.5 , is shown in blue. Residues interacting with NADP+ are numbered. b, Solid surface representation of human BVR-B in complex with NADP+ showing the wide substrate binding site adjacent to the cofactor. Electrostatic surface potentials are contoured from -10 (red) to 10 (blue) k[B]T e^-1. The cofactor carbon atoms are shown in white, phosphorous in yellow, nitrogens in blue and oxygens in red.
Figure 3.
Figure 3. Structural formulas of some human BVR-B substrates and inhibitors. a, FMN is a BVR-B substrate, lumichrome an inhibitor. b, Tetrapyrrole biliverdin IX , mesobiliverdin IV and 12-ethyl-13-methyl-mesobiliverdin IV are substrates; biliverdin IX is an inhibitor. The formation of a bilirubin isomer results from the reduction of C10 of the corresponding biliverdin (numbering as indicated for biliverdin IX , which is conserved for the bilatriene skeleton in all other isomers). The ring nomenclature for all -isomers is that shown for biliverdin IX .
 
  The above figures are reprinted by permission from Macmillan Publishers Ltd: Nat Struct Biol (2001, 8, 215-220) copyright 2001.  
  Figures were selected by an automated process.  

Literature references that cite this PDB file's key reference

  PubMed id Reference
21467222 A.Hassaninasab, Y.Hashimoto, K.Tomita-Yokotani, and M.Kobayashi (2011).
Discovery of the curcumin metabolic pathway involving a unique enzyme in an intestinal microorganism.
  Proc Natl Acad Sci U S A, 108, 6615-6620.  
21376116 D.Méndez, M.Linares, A.Diez, A.Puyet, and J.M.Bautista (2011).
Stress response and cytoskeletal proteins involved in erythrocyte membrane remodeling upon Plasmodium falciparum invasion are differentially carbonylated in G6PD A- deficiency.
  Free Radic Biol Med, 50, 1305-1313.  
20233432 H.Chen, J.Feng, O.Kweon, H.Xu, and C.E.Cerniglia (2010).
Identification and molecular characterization of a novel flavin-free NADPH preferred azoreductase encoded by azoB in Pigmentiphaga kullae K24.
  BMC Biochem, 11, 13.  
19614742 E.M.Franklin, S.Browne, A.M.Horan, K.Inomata, M.A.Hammam, H.Kinoshita, T.Lamparter, G.Golfis, and T.J.Mantle (2009).
The use of synthetic linear tetrapyrroles to probe the verdin sites of human biliverdin-IXalpha reductase and human biliverdin-IXbeta reductase.
  FEBS J, 276, 4405-4413.  
19614741 J.M.Hayes, and T.J.Mantle (2009).
The effect of pH on the initial rate kinetics of the dimeric biliverdin-IXalpha reductase from the cyanobacterium Synechocystis PCC6803.
  FEBS J, 276, 4414-4425.  
18495927 A.K.Sendamarai, R.S.Ohgami, M.D.Fleming, and C.M.Lawrence (2008).
Structure of the membrane proximal oxidoreductase domain of human Steap3, the dominant ferrireductase of the erythroid transferrin cycle.
  Proc Natl Acad Sci U S A, 105, 7410-7415.
PDB codes: 2vns 2vq3
19011750 K.L.Kavanagh, H.Jörnvall, B.Persson, and U.Oppermann (2008).
Medium- and short-chain dehydrogenase/reductase gene and protein families : the SDR superfamily: functional and structural diversity within a family of metabolic and regulatory enzymes.
  Cell Mol Life Sci, 65, 3895-3906.  
17950751 J.D.King, N.J.Harmer, A.Preston, C.M.Palmer, M.Rejzek, R.A.Field, T.L.Blundell, and D.J.Maskell (2007).
Predicting protein function from structure--the roles of short-chain dehydrogenase/reductase enzymes in Bordetella O-antigen biosynthesis.
  J Mol Biol, 374, 749-763.
PDB codes: 2pzj 2pzk 2pzl 2pzm 2q1s 2q1t 2q1u 2q1w
17419765 M.S.Jang, N.Y.Kang, K.S.Kim, C.H.Kim, J.H.Lee, and Y.C.Lee (2007).
Mutational analysis of NADH-binding residues in triphenylmethane reductase from Citrobacter sp. strain KCTC 18061P.
  FEMS Microbiol Lett, 271, 78-82.  
17534530 M.Unno, T.Matsui, and M.Ikeda-Saito (2007).
Structure and catalytic mechanism of heme oxygenase.
  Nat Prod Rep, 24, 553-570.  
16633561 B.Youn, R.Camacho, S.G.Moinuddin, C.Lee, L.B.Davin, N.G.Lewis, and C.Kang (2006).
Crystal structures and catalytic mechanism of the Arabidopsis cinnamyl alcohol dehydrogenases AtCAD5 and AtCAD4.
  Org Biomol Chem, 4, 1687-1697.
PDB codes: 2cf5 2cf6
17028190 B.Youn, S.J.Kim, S.G.Moinuddin, C.Lee, D.L.Bedgar, A.R.Harper, L.B.Davin, N.G.Lewis, and C.Kang (2006).
Mechanistic and structural studies of apoform, binary, and ternary complexes of the Arabidopsis alkenal double bond reductase At5g16970.
  J Biol Chem, 281, 40076-40088.
PDB codes: 2j3h 2j3i 2j3j 2j3k
15653677 B.Youn, S.G.Moinuddin, L.B.Davin, N.G.Lewis, and C.Kang (2005).
Crystal structures of apo-form and binary/ternary complexes of Podophyllum secoisolariciresinol dehydrogenase, an enzyme involved in formation of health-protecting and plant defense lignans.
  J Biol Chem, 280, 12917-12926.
PDB codes: 2bgk 2bgl 2bgm
15728189 K.El Omari, L.E.Bird, C.E.Nichols, J.Ren, and D.K.Stammers (2005).
Crystal structure of CC3 (TIP30): implications for its role as a tumor suppressor.
  J Biol Chem, 280, 18229-18236.
PDB code: 2bka
15665092 L.W.Schultz, L.Liu, M.Cegielski, and J.W.Hastings (2005).
Crystal structure of a pH-regulated luciferase catalyzing the bioluminescent oxidation of an open tetrapyrrole.
  Proc Natl Acad Sci U S A, 102, 1378-1383.
PDB code: 1vpr
15459330 M.Kukimoto-Niino, K.Murayama, M.Kato-Murayama, M.Idaka, Y.Bessho, A.Tatsuguchi, R.Ushikoshi-Nakayama, T.Terada, S.Kuramitsu, M.Shirouzu, and S.Yokoyama (2004).
Crystal structures of possible lysine decarboxylases from Thermus thermophilus HB8.
  Protein Sci, 13, 3038-3042.
PDB codes: 1weh 1wek
14696187 S.Sarkhel, and G.R.Desiraju (2004).
N-H...O, O-H...O, and C-H...O hydrogen bonds in protein-ligand complexes: strong and weak interactions in molecular recognition.
  Proteins, 54, 247-259.  
14656434 J.Maclean, and S.Ali (2003).
The structure of chorismate synthase reveals a novel flavin binding site fundamental to a unique chemical reaction.
  Structure, 11, 1499-1511.
PDB code: 1qxo
12626517 J.Wang, and P.R.de Montellano (2003).
The binding sites on human heme oxygenase-1 for cytochrome p450 reductase and biliverdin reductase.
  J Biol Chem, 278, 20069-20076.  
12794075 M.Sugishima, H.Sakamoto, Y.Higashimoto, M.Noguchi, and K.Fukuyama (2003).
Crystal structure of rat heme oxygenase-1 in complex with biliverdin-iron chelate. Conformational change of the distal helix during the heme cleavage reaction.
  J Biol Chem, 278, 32352-32358.
PDB code: 1j2c
13129921 T.Min, H.Kasahara, D.L.Bedgar, B.Youn, P.K.Lawrence, D.R.Gang, S.C.Halls, H.Park, J.L.Hilsenbeck, L.B.Davin, N.G.Lewis, C.Kang, and N.G.Lewis (2003).
Crystal structures of pinoresinol-lariciresinol and phenylcoumaran benzylic ether reductases and their relationship to isoflavone reductases.
  J Biol Chem, 278, 50714-50723.
PDB codes: 1qyc 1qyd
12192068 C.A.Bottoms, P.E.Smith, and J.J.Tanner (2002).
A structurally conserved water molecule in Rossmann dinucleotide-binding domains.
  Protein Sci, 11, 2125-2137.  
12461187 D.A.Greenberg (2002).
The jaundice of the cell.
  Proc Natl Acad Sci U S A, 99, 15837-15839.  
The most recent references are shown first. Citation data come partly from CiteXplore and partly from an automated harvesting procedure. Note that this is likely to be only a partial list as not all journals are covered by either method. However, we are continually building up the citation data so more and more references will be included with time. Where a reference describes a PDB structure, the PDB codes are shown on the right.

 

spacer

spacer