spacer
spacer

PDBsum entry 1gfp

Go to PDB code: 
protein ligands links
Transmembrane protein PDB id
1gfp

 

 

 

 

Loading ...

 
JSmol PyMol  
Contents
Protein chain
340 a.a. *
Ligands
C8E ×12
Waters ×149
* Residue conservation analysis
PDB id:
1gfp
Name: Transmembrane protein
Title: Ompf porin (mutant r42c)
Structure: Matrix porin outer membrane protein f. Chain: a. Synonym: matrix porin, ompf porin. Engineered: yes. Mutation: yes
Source: Escherichia coli. Organism_taxid: 562. Strain: ib 910. Expressed in: escherichia coli. Expression_system_taxid: 562
Biol. unit: Trimer (from PDB file)
Resolution:
2.70Å     R-factor:   0.164    
Authors: K.-L.Lou,T.Schirmer
Key ref:
K.L.Lou et al. (1996). Structural and functional characterization of OmpF porin mutants selected for larger pore size. I. Crystallographic analysis. J Biol Chem, 271, 20669-20675. PubMed id: 8702816 DOI: 10.1074/jbc.271.34.20676
Date:
08-May-96     Release date:   07-Dec-96    
PROCHECK
Go to PROCHECK summary
 Headers
 References

Protein chain
Pfam   ArchSchema ?
P02931  (OMPF_ECOLI) -  Outer membrane porin F from Escherichia coli (strain K12)
Seq:
Struc:
362 a.a.
340 a.a.*
Key:    PfamA domain  Secondary structure  CATH domain
* PDB and UniProt seqs differ at 1 residue position (black cross)

 Enzyme reactions 
   Enzyme class: E.C.?
[IntEnz]   [ExPASy]   [KEGG]   [BRENDA]

 

 
DOI no: 10.1074/jbc.271.34.20676 J Biol Chem 271:20669-20675 (1996)
PubMed id: 8702816  
 
 
Structural and functional characterization of OmpF porin mutants selected for larger pore size. I. Crystallographic analysis.
K.L.Lou, N.Saint, A.Prilipov, G.Rummel, S.A.Benson, J.P.Rosenbusch, T.Schirmer.
 
  ABSTRACT  
 
OmpF porin is a nonspecific pore protein from the outer membrane of Escherichia coli. Previously, a set of mutants was selected that allow the passage of long maltodextrins that do not translocate through the wild-type pore. Here, we describe the crystal structures of four point mutants and one deletion mutant from this set; their functional characterization is reported in the accompanying paper (Saint, N., Lou, K.-L., Widmer, C., Luckey, M., Schirmer, T., Rosenbusch, J. P. (1996) J. Biol. Chem. 271, 20676-20680). All mutations have a local effect on the structure of the pore constriction and result in a larger pore cross-section. Substitution of each of the three closely packed arginine residues at the pore constriction (Arg-42, Arg-82, and Arg-132) by shorter uncharged residues causes rearrangement of the adjacent basic residues. This demonstrates mutual stabilization of these residues in the wild-type porin. Deletion of six residues from the internal loop (Delta109-114) results in disorder of seven adjacent residues but does not alter the structure of the beta-barrel framework. Thus, the large hollow beta-barrel motif can be regarded as an autonomous structure.
 
  Selected figure(s)  
 
Figure 3.
Fig. 3. Stereo diagram of the model of porin mutant R42C with partial wild-type model superimposed. Only those side chains of the wild-type model that differ significantly from the mutant model (Arg-42 and Arg-82) are shown (in brown). The view is similar to that in Fig. 1.
Figure 4.
Fig. 4. Stereo diagrams of porin mutant R82C. a, 2F[o] F[c] electron density (contoured at 1 ) with model superimposed. b, model of R82C with partial wild-type model superimposed. Only those side chains of the wild-type model that differ significantly from the mutant model (Arg-42, Lys-80, Arg-82, and Arg-132) are shown (in brown). Both conformations of Lys-80 are shown (see text). Magenta, major conformation with side chain amino group forming a salt-bridge with Cys-82 (see also a); yellow, minor conformation.
 
  The above figures are reprinted by permission from the ASBMB: J Biol Chem (1996, 271, 20669-20675) copyright 1996.  
  Figures were selected by an automated process.  

Literature references that cite this PDB file's key reference

  PubMed id Reference
20196071 G.Kefala, C.Ahn, M.Krupa, L.Esquivies, I.Maslennikov, W.Kwiatkowski, and S.Choe (2010).
Structures of the OmpF porin crystallized in the presence of foscholine-12.
  Protein Sci, 19, 1117-1125.
PDB codes: 3k19 3k1b
20351243 M.Tanabe, C.M.Nimigean, and T.M.Iverson (2010).
Structural basis for solute transport, nucleotide regulation, and immunological recognition of Neisseria meningitidis PorB.
  Proc Natl Acad Sci U S A, 107, 6811-6816.
PDB codes: 3a2r 3a2s 3a2t 3a2u 3vzt 3vzu 3vzw
20521145 M.Vrouenraets, and H.Miedema (2010).
The ionization state of D37 in E. coli porin OmpF and the nature of conductance fluctuations in D37 mutants.
  Eur Biophys J, 39, 1563-1571.  
21104181 O.Dyachok, P.Zhabyeyev, and T.F.McDonald (2010).
Electroporation-induced inward current in voltage-clamped guinea pig ventricular myocytes.
  J Membr Biol, 238, 69-80.  
19100346 A.H.Delcour (2009).
Outer membrane permeability and antibiotic resistance.
  Biochim Biophys Acta, 1794, 808-816.  
17702945 B.Clantin, A.S.Delattre, P.Rucktooa, N.Saint, A.C.Méli, C.Locht, F.Jacob-Dubuisson, and V.Villeret (2007).
Structure of the membrane protein FhaC: a member of the Omp85-TpsB transporter superfamily.
  Science, 317, 957-961.
PDB code: 2qdz
16299071 M.Vrouenraets, J.Wierenga, W.Meijberg, and H.Miedema (2006).
Chemical modification of the bacterial porin OmpF: gain of selectivity by volume reduction.
  Biophys J, 90, 1202-1211.  
16927262 O.Onaca, M.Nallani, S.Ihle, A.Schenk, and U.Schwaneberg (2006).
Functionalized nanocompartments (Synthosomes): limitations and prospective applications in industrial biotechnology.
  Biotechnol J, 1, 795-805.  
14747308 S.Varma, and E.Jakobsson (2004).
Ionization states of residues in OmpF and mutants: effects of dielectric constant and interactions between residues.
  Biophys J, 86, 690-704.  
14645063 E.M.Nestorovich, T.K.Rostovtseva, and S.M.Bezrukov (2003).
Residue ionization and ion transport through OmpF channels.
  Biophys J, 85, 3718-3729.  
12899633 S.Conlan, and H.Bayley (2003).
Folding of a monomeric porin, OmpG, in detergent solution.
  Biochemistry, 42, 9453-9465.  
11867478 A.Philippsen, W.Im, A.Engel, T.Schirmer, B.Roux, and D.J.Müller (2002).
Imaging the electrostatic potential of transmembrane channels: atomic probe microscopy of OmpF porin.
  Biophys J, 82, 1667-1676.  
11751305 T.K.Rostovtseva, E.M.Nestorovich, and S.M.Bezrukov (2002).
Partitioning of differently sized poly(ethylene glycol)s into OmpF porin.
  Biophys J, 82, 160-169.  
11371193 P.S.Phale, A.Philippsen, C.Widmer, V.P.Phale, J.P.Rosenbusch, and T.Schirmer (2001).
Role of charged residues at the OmpF porin channel constriction probed by mutagenesis and simulation.
  Biochemistry, 40, 6319-6325.
PDB codes: 1hxt 1hxu 1hxx
10639355 V.Simonet, M.Malléa, and J.M.Pagès (2000).
Substitutions in the eyelet region disrupt cefepime diffusion through the Escherichia coli OmpF channel.
  Antimicrob Agents Chemother, 44, 311-315.  
10427722 E.Zhang, and T.Ferenci (1999).
OmpF changes and the complexity of Escherichia coli adaptation to prolonged lactose limitation.
  FEMS Microbiol Lett, 176, 395-401.  
  9684893 B.Schmid, L.Maveyraud, M.Krömer, and G.E.Schulz (1998).
Porin mutants with new channel properties.
  Protein Sci, 7, 1603-1611.
PDB codes: 1bh3 2prn 3prn 5prn 6prn 7prn 8prn
9843370 P.S.Phale, A.Philippsen, T.Kiefhaber, R.Koebnik, V.P.Phale, T.Schirmer, and J.P.Rosenbusch (1998).
Stability of trimeric OmpF porin: the contributions of the latching loop L2.
  Biochemistry, 37, 15663-15670.
PDB code: 1bt9
  9473046 W.Achouak, J.M.Pages, R.De Mot, G.Molle, and T.Heulin (1998).
A major outer membrane protein of Rahnella aquatilis functions as a porin and root adhesin.
  J Bacteriol, 180, 909-913.  
9192635 P.S.Phale, T.Schirmer, A.Prilipov, K.L.Lou, A.Hardmeyer, and J.P.Rosenbusch (1997).
Voltage gating of Escherichia coli porin channels: role of the constriction loop.
  Proc Natl Acad Sci U S A, 94, 6741-6745.  
The most recent references are shown first. Citation data come partly from CiteXplore and partly from an automated harvesting procedure. Note that this is likely to be only a partial list as not all journals are covered by either method. However, we are continually building up the citation data so more and more references will be included with time. Where a reference describes a PDB structure, the PDB codes are shown on the right.

 

spacer

spacer