spacer
spacer

PDBsum entry 1g0b

Go to PDB code: 
protein ligands Protein-protein interface(s) links
Oxygen storage/transport PDB id
1g0b

 

 

 

 

Loading ...

 
JSmol PyMol  
Contents
Protein chains
141 a.a. *
146 a.a. *
Ligands
HEM-CMO ×2
Waters ×72
* Residue conservation analysis
PDB id:
1g0b
Name: Oxygen storage/transport
Title: Carbonmonoxy liganded equine hemoglobin ph 8.5
Structure: Hemoglobin alpha chain. Chain: a. Hemoglobin beta chain. Chain: b
Source: Equus caballus. Horse. Organism_taxid: 9796. Tissue: blood. Tissue: blood
Biol. unit: Tetramer (from PDB file)
Resolution:
1.90Å     R-factor:   0.178    
Authors: T.C.Mueser,P.H.Rogers,A.Arnone
Key ref:
T.C.Mueser et al. (2000). Interface sliding as illustrated by the multiple quaternary structures of liganded hemoglobin. Biochemistry, 39, 15353-15364. PubMed id: 11112521 DOI: 10.1021/bi0012944
Date:
05-Oct-00     Release date:   27-Dec-00    
PROCHECK
Go to PROCHECK summary
 Headers
 References

Protein chain
Pfam   ArchSchema ?
P01958  (HBA_HORSE) -  Hemoglobin subunit alpha from Equus caballus
Seq:
Struc:
142 a.a.
141 a.a.*
Protein chain
Pfam   ArchSchema ?
P02062  (HBB_HORSE) -  Hemoglobin subunit beta from Equus caballus
Seq:
Struc:
146 a.a.
146 a.a.
Key:    PfamA domain  Secondary structure  CATH domain
* PDB and UniProt seqs differ at 2 residue positions (black crosses)

 

 
DOI no: 10.1021/bi0012944 Biochemistry 39:15353-15364 (2000)
PubMed id: 11112521  
 
 
Interface sliding as illustrated by the multiple quaternary structures of liganded hemoglobin.
T.C.Mueser, P.H.Rogers, A.Arnone.
 
  ABSTRACT  
 
Initial crystallographic studies suggested that fully liganded mammalian hemoglobin can adopt only a single quaternary structure, the quaternary R structure. However, more recent crystallographic studies revealed the existence of a second quaternary structure for liganded hemoglobin, the quaternary R2 structure. Since these quaternary structures can be crystallized, both must be energetically accessible structures that coexist in solution. Unanswered questions include (i) the relative abundance of the R and R2 structures under various solution conditions and (ii) whether other quaternary structures are energetically accessible for the liganded alpha(2)beta(2) hemoglobin tetramer. Although crystallographic methods cannot directly answer the first question, they represent the most direct and most accurate approach to answering the second question. We now have determined and refined three different crystal structures of bovine carbonmonoxyhemoglobin. These structures provide clear evidence that the dimer-dimer interface of liganded hemoglobin has a wide range of energetically accessible structures that are related to each other by a simple sliding motion. The dimer-dimer interface acts as a "molecular slide bearing" that allows the two alpha beta dimers to slide back and forth without greatly altering the number or the nature of the intersubunit contacts. Since the general stereochemical features of this interface are not unusual, it is likely that interface sliding of the kind displayed by fully liganded hemoglobin plays important structural and functional roles in many other protein assemblies.
 

Literature references that cite this PDB file's key reference

  PubMed id Reference
21420976 L.Makowski, J.Bardhan, D.Gore, J.Lal, S.Mandava, S.Park, D.J.Rodi, N.T.Ho, C.Ho, and R.F.Fischetti (2011).
WAXS studies of the structural diversity of hemoglobin in solution.
  J Mol Biol, 408, 909-921.  
21340585 M.S.Appavou, S.Busch, W.Doster, A.Gaspar, and T.Unruh (2011).
The influence of 2 kbar pressure on the global and internal dynamics of human hemoglobin observed by quasielastic neutron scattering.
  Eur Biophys J, 40, 705-714.  
21317871 M.Sukumaran, M.Rossmann, I.Shrivastava, A.Dutta, I.Bahar, and I.H.Greger (2011).
Dynamics and allosteric potential of the AMPA receptor N-terminal domain.
  EMBO J, 30, 972-982.
PDB codes: 3o21 3p3w
21543841 V.S.Bhatt, S.Zaldívar-López, D.R.Harris, C.G.Couto, P.G.Wang, and A.F.Palmer (2011).
Structure of Greyhound hemoglobin: origin of high oxygen affinity.
  Acta Crystallogr D Biol Crystallogr, 67, 395-402.
PDB code: 3pel
  20383026 A.Y.Kovalevsky, S.Z.Fisher, S.Seaver, M.Mustyakimov, N.Sukumar, P.Langan, T.C.Mueser, and B.L.Hanson (2010).
Preliminary neutron and X-ray crystallographic studies of equine cyanomethemoglobin.
  Acta Crystallogr Sect F Struct Biol Cryst Commun, 66, 474-477.  
  19255493 M.Balasubramanian, P.S.Moorthy, K.Neelagandan, and M.N.Ponnuswamy (2009).
Purification, crystallization and preliminary crystallographic study of low oxygen-affinity haemoglobin from cat (Felis silvestris catus) in two different crystal forms.
  Acta Crystallogr Sect F Struct Biol Cryst Commun, 65, 313-316.  
18831041 R.Aranda, H.Cai, C.E.Worley, E.J.Levin, R.Li, J.S.Olson, G.N.Phillips, and M.P.Richards (2009).
Structural analysis of fish versus mammalian hemoglobins: effect of the heme pocket environment on autooxidation and hemin loss.
  Proteins, 75, 217-230.
PDB codes: 2qsp 2qss 2r1h 3bj1 3bj2 3bj3
19191451 X.Hong, and Q.Hao (2009).
Measurements of accurate x-ray scattering data of protein solutions using small stationary sample cells.
  Rev Sci Instrum, 80, 014303.  
18717535 A.D.Patel, J.M.Nocek, and B.M.Hoffman (2008).
Kinetic-dynamic model for conformational control of an electron transfer photocycle: mixed-metal hemoglobin hybrids.
  J Phys Chem B, 112, 11827-11837.  
18380000 C.Ciaccio, A.Coletta, G.De Sanctis, S.Marini, and M.Coletta (2008).
Cooperativity and allostery in haemoglobin function.
  IUBMB Life, 60, 112-123.  
  18540052 P.S.Kaushal, R.Sankaranarayanan, and M.Vijayan (2008).
Water-mediated variability in the structure of relaxed-state haemoglobin.
  Acta Crystallogr Sect F Struct Biol Cryst Commun, 64, 463-469.
PDB codes: 2zlt 2zlu 2zlv 2zlw 2zlx
18519045 T.Yonetani, and M.Laberge (2008).
Protein dynamics explain the allosteric behaviors of hemoglobin.
  Biochim Biophys Acta, 1784, 1146-1158.  
18376851 X.J.Song, V.Simplaceanu, N.T.Ho, and C.Ho (2008).
Effector-induced structural fluctuation regulates the ligand affinity of an allosteric protein: binding of inositol hexaphosphate has distinct dynamic consequences for the T and R states of hemoglobin.
  Biochemistry, 47, 4907-4915.  
18925771 Y.Zhang, V.S.Bhatt, G.Sun, P.G.Wang, and A.F.Palmer (2008).
Site-selective glycosylation of hemoglobin on Cys beta93.
  Bioconjug Chem, 19, 2221-2230.  
16979901 B.L.Boys, and L.Konermann (2007).
Folding and assembly of hemoglobin monitored by electrospray mass spectrometry using an on-line dialysis system.
  J Am Soc Mass Spectrom, 18, 8.  
  17909297 K.Neelagandan, P.S.Moorthy, M.Balasubramanian, and M.N.Ponnuswamy (2007).
Crystallization of sheep (Ovis aries) and goat (Capra hircus) haemoglobins under unbuffered low-salt conditions.
  Acta Crystallogr Sect F Struct Biol Cryst Commun, 63, 887-889.  
17691822 S.C.Sahu, V.Simplaceanu, Q.Gong, N.T.Ho, F.Tian, J.H.Prestegard, and C.Ho (2007).
Insights into the solution structure of human deoxyhemoglobin in the absence and presence of an allosteric effector.
  Biochemistry, 46, 9973-9980.  
17497935 X.J.Song, Y.Yuan, V.Simplaceanu, S.C.Sahu, N.T.Ho, and C.Ho (2007).
A comparative NMR study of the polypeptide backbone dynamics of hemoglobin in the deoxy and carbonmonoxy forms.
  Biochemistry, 46, 6795-6803.  
16790940 A.Izaac, C.A.Schall, and T.C.Mueser (2006).
Assessment of a preliminary solubility screen to improve crystallization trials: uncoupling crystal condition searches.
  Acta Crystallogr D Biol Crystallogr, 62, 833-842.  
16984908 C.J.Roche, D.Dantsker, U.Samuni, and J.M.Friedman (2006).
Nitrite reductase activity of sol-gel-encapsulated deoxyhemoglobin. Influence of quaternary and tertiary structure.
  J Biol Chem, 281, 36874-36882.  
16044460 H.X.Zhou (2005).
Interactions of macromolecules with salt ions: an electrostatic theory for the Hofmeister effect.
  Proteins, 61, 69-78.  
15475581 K.Victor, A.Van-Quynh, and R.G.Bryant (2005).
High frequency dynamics in hemoglobin measured by magnetic relaxation dispersion.
  Biophys J, 88, 443-454.  
15858266 L.N.Patskovska, Y.V.Patskovsky, S.C.Almo, and R.E.Hirsch (2005).
COHbC and COHbS crystallize in the R2 quaternary state at neutral pH in the presence of PEG 4000.
  Acta Crystallogr D Biol Crystallogr, 61, 566-573.
PDB codes: 1m9p 1nej
15887226 R.Sankaranarayanan, B.K.Biswal, and M.Vijayan (2005).
A new relaxed state in horse methemoglobin characterized by crystallographic studies.
  Proteins, 60, 547-551.
PDB codes: 1y8h 1y8i 1y8k
16302974 S.V.Lepeshkevich, and B.M.Dzhagarov (2005).
Mutual effects of proton and sodium chloride on oxygenation of liganded human hemoglobin.
  FEBS J, 272, 6109-6119.  
15333952 B.K.Collins, S.J.Tomanicek, N.Lyamicheva, M.W.Kaiser, and T.C.Mueser (2004).
A preliminary solubility screen used to improve crystallization trials: crystallization and preliminary X-ray structure determination of Aeropyrum pernix flap endonuclease-1.
  Acta Crystallogr D Biol Crystallogr, 60, 1674-1678.  
15220346 V.Baudin-Creuza, C.Vasseur-Godbillon, C.Pato, C.Préhu, H.Wajcman, and M.C.Marden (2004).
Transfer of human alpha- to beta-hemoglobin via its chaperone protein: evidence for a new state.
  J Biol Chem, 279, 36530-36533.  
15630562 Y.Zheng, J.L.Giovannelli, N.T.Ho, C.Ho, and D.Yang (2004).
Side-chain assignments of methyl-containing residues in a uniformly 13C-labeled hemoglobin in the carbonmonoxy form.
  J Biomol NMR, 30, 423-429.  
12524309 A.G.Salvay, J.R.Grigera, and M.F.Colombo (2003).
The role of hydration on the mechanism of allosteric regulation: in situ measurements of the oxygen-linked kinetics of water binding to hemoglobin.
  Biophys J, 84, 564-570.  
12525687 J.A.Lukin, G.Kontaxis, V.Simplaceanu, Y.Yuan, A.Bax, and C.Ho (2003).
Quaternary structure of hemoglobin in solution.
  Proc Natl Acad Sci U S A, 100, 517-520.  
12093902 A.Riccio, L.Vitagliano, G.di Prisco, A.Zagari, and L.Mazzarella (2002).
The crystal structure of a tetrameric hemoglobin in a partial hemichrome state.
  Proc Natl Acad Sci U S A, 99, 9801-9806.
PDB code: 1la6
12077435 B.K.Biswal, and M.Vijayan (2002).
Structures of human oxy- and deoxyhaemoglobin at different levels of humidity: variability in the T state.
  Acta Crystallogr D Biol Crystallogr, 58, 1155-1161.
PDB codes: 1jy7 1jyp 1lfl 1lfq 1lft 1lfv 1lfy 1lfz
12023247 L.Mouawad, D.Perahia, C.H.Robert, and C.Guilbert (2002).
New insights into the allosteric mechanism of human hemoglobin from molecular dynamics simulations.
  Biophys J, 82, 3224-3245.  
12122004 N.Shibayama, S.Miura, J.R.Tame, T.Yonetani, and S.Y.Park (2002).
Crystal structure of horse carbonmonoxyhemoglobin-bezafibrate complex at 1.55-A resolution. A novel allosteric binding site in R-state hemoglobin.
  J Biol Chem, 277, 38791-38796.
PDB code: 1iwh
11976324 U.Samuni, D.Dantsker, I.Khan, A.J.Friedman, E.Peterson, and J.M.Friedman (2002).
Spectroscopically and kinetically distinct conformational populations of sol-gel-encapsulated carbonmonoxy myoglobin. A comparison with hemoglobin.
  J Biol Chem, 277, 25783-25790.  
11468400 A.Riccio, L.Vitagliano, G.di Prisco, A.Zagari, and L.Mazzarella (2001).
Liganded and unliganded forms of Antarctic fish haemoglobins in polyethylene glycol: crystallization of an R-state haemichrome intermediate.
  Acta Crystallogr D Biol Crystallogr, 57, 1144-1146.  
11343922 W.E.Royer, J.E.Knapp, K.Strand, and H.A.Heaslet (2001).
Cooperative hemoglobins: conserved fold, diverse quaternary assemblies and allosteric mechanisms.
  Trends Biochem Sci, 26, 297-304.  
The most recent references are shown first. Citation data come partly from CiteXplore and partly from an automated harvesting procedure. Note that this is likely to be only a partial list as not all journals are covered by either method. However, we are continually building up the citation data so more and more references will be included with time. Where a reference describes a PDB structure, the PDB codes are shown on the right.

 

spacer

spacer