spacer
spacer

PDBsum entry 1fvq

Go to PDB code: 
protein links
Hydrolase PDB id
1fvq

 

 

 

 

Loading ...

 
JSmol PyMol  
Contents
Protein chain
72 a.a. *
* Residue conservation analysis
PDB id:
1fvq
Name: Hydrolase
Title: Solution structure of the yeast copper transporter domain ccc2a in the apo and cu(i) loaded states
Structure: Copper-transporting atpase. Chain: a. Fragment: ccc2a domain. Engineered: yes
Source: Saccharomyces cerevisiae. Baker's yeast. Organism_taxid: 4932. Expressed in: escherichia coli. Expression_system_taxid: 562.
NMR struc: 1 models
Authors: L.Banci,I.Bertini,S.Ciofi Baffoni,D.L.Huffman,T.V.O'Halloran
Key ref:
L.Banci et al. (2001). Solution structure of the yeast copper transporter domain Ccc2a in the apo and Cu(I)-loaded states. J Biol Chem, 276, 8415-8426. PubMed id: 11083871 DOI: 10.1074/jbc.M008389200
Date:
20-Sep-00     Release date:   14-Mar-01    
PROCHECK
Go to PROCHECK summary
 Headers
 References

Protein chain
Pfam   ArchSchema ?
P38995  (ATU2_YEAST) -  Copper-transporting ATPase from Saccharomyces cerevisiae (strain ATCC 204508 / S288c)
Seq:
Struc:
 
Seq:
Struc:
1004 a.a.
72 a.a.*
Key:    PfamA domain  Secondary structure  CATH domain
* PDB and UniProt seqs differ at 1 residue position (black cross)

 Enzyme reactions 
   Enzyme class: E.C.7.2.2.8  - P-type Cu(+) transporter.
[IntEnz]   [ExPASy]   [KEGG]   [BRENDA]
      Reaction: Cu+(in) + ATP + H2O = Cu+(out) + ADP + phosphate + H+
Cu(+)(in)
+ ATP
+ H2O
= Cu(+)(out)
+ ADP
+ phosphate
+ H(+)
Molecule diagrams generated from .mol files obtained from the KEGG ftp site

 

 
    reference    
 
 
DOI no: 10.1074/jbc.M008389200 J Biol Chem 276:8415-8426 (2001)
PubMed id: 11083871  
 
 
Solution structure of the yeast copper transporter domain Ccc2a in the apo and Cu(I)-loaded states.
L.Banci, I.Bertini, S.Ciofi-Baffoni, D.L.Huffman, T.V.O'Halloran.
 
  ABSTRACT  
 
Ccc2 is an intracellular copper transporter in Saccharomyces cerevisiae and is a physiological target of the copper chaperone Atx1. Here we describe the solution structure of the first N-terminal MTCXXC metal-binding domain, Ccc2a, both in the presence and absence of Cu(I). For Cu(I)-Ccc2a, 1944 meaningful nuclear Overhauser effects were used to obtain a family of 35 structures with root mean square deviation to the average structure of 0.36 +/- 0.06 A for the backbone and 0.79 +/- 0.05 A for the heavy atoms. For apo-Ccc2a, 1970 meaningful nuclear Overhauser effects have been used with 35 (3)J(HNHalpha) to obtain a family of 35 structures with root mean square deviation to the average structure of 0.38 +/- 0.06 A for the backbone and 0.82 +/- 0.07 A for the heavy atoms. The protein exhibits a betaalphabetabetaalphabeta, ferrodoxin-like fold similar to that of its target Atx1 and that of a human counterpart, the fourth metal-binding domain of the Menkes protein. The overall fold remains unchanged upon copper loading, but the copper-binding site itself becomes less disordered. The helical context of the copper-binding site, and the copper-induced conformational changes in Ccc2a differ from those in Atx1. Ccc2a presents a conserved acidic surface which complements the basic surface of Atx1 and a hydrophobic surface. These results open new mechanistic aspects of copper transporter domains with physiological copper donor and acceptor proteins.
 
  Selected figure(s)  
 
Figure 2.
Fig. 2. Schematic representation of the sequential and medium range NOE connectivities involving NH, H , and H protons for apo-Ccc2a (A) and Cu(I)-Ccc2a (B). The thickness of the bar indicates the intensity of NOEs.
Figure 13.
Fig. 13. Electrostatic potential surface of the Cu(I)-Ccc2a (A), Ag(I)-mdb4 (B), and Cu(I)-Atx1 (C). The positively charged, negatively charged, and neutral amino acids are represented in blue, red, and white, respectively. Copper ion is represented in green, silver ion in teal, and cysteine sulfur in yellow. In A and C, the residues that might have a role in molecular recognition and copper transfer are indicated. In B, the negative residues that form a negative region close to metal binding loop are indicated. The figure was generated with the program MOLMOL (45).
 
  The above figures are reprinted by permission from the ASBMB: J Biol Chem (2001, 276, 8415-8426) copyright 2001.  
  Figures were selected by an automated process.  

Literature references that cite this PDB file's key reference

  PubMed id Reference
21716286 P.Gourdon, X.Y.Liu, T.Skjørringe, J.P.Morth, L.B.Møller, B.P.Pedersen, and P.Nissen (2011).
Crystal structure of a copper-transporting PIB-type ATPase.
  Nature, 475, 59-64.
PDB code: 3rfu
20437064 J.T.Rubino, P.Riggs-Gelasco, and K.J.Franz (2010).
Methionine motifs of copper transport proteins provide general and flexible thioether-only binding sites for Cu(I) and Ag(I).
  J Biol Inorg Chem, 15, 1033-1049.  
20333435 L.Banci, I.Bertini, F.Cantini, and S.Ciofi-Baffoni (2010).
Cellular copper distribution: a mechanistic systems biology approach.
  Cell Mol Life Sci, 67, 2563-2589.  
19609573 L.Banci, I.Bertini, S.Ciofi-Baffoni, L.Poggi, M.Vanarotti, S.Tottey, K.J.Waldron, and N.J.Robinson (2010).
NMR structural analysis of the soluble domain of ZiaA-ATPase and the basis of selective interactions with copper metallochaperone Atx1.
  J Biol Inorg Chem, 15, 87-98.
PDB codes: 2ofg 2ofh
19412907 T.Ansbacher, H.K.Srivastava, J.M.Martin, and A.Shurki (2010).
Can DFT methods correctly and efficiently predict the coordination number of copper(I) complexes? A case study.
  J Comput Chem, 31, 75-83.  
19824702 A.K.Boal, and A.C.Rosenzweig (2009).
Structural biology of copper trafficking.
  Chem Rev, 109, 4760-4779.  
19076719 C.K.Wong, R.S.Jarvis, S.M.Sherson, and C.S.Cobbett (2009).
Functional analysis of the heavy metal binding domains of the Zn/Cd-transporting ATPase, HMA2, in Arabidopsis thaliana.
  New Phytol, 181, 79-88.  
19949444 L.Banci, I.Bertini, and S.Ciofi-Baffoni (2009).
Copper trafficking in biology: an NMR approach.
  HFSP J, 3, 165-175.  
18979168 M.Lübben, R.Portmann, G.Kock, R.Stoll, M.M.Young, and M.Solioz (2009).
Structural model of the CopA copper ATPase of Enterococcus hirae based on chemical cross-linking.
  Biometals, 22, 363-375.  
19124158 R.Safaei, M.H.Maktabi, B.G.Blair, C.A.Larson, and S.B.Howell (2009).
Effects of the loss of Atox1 on the cellular pharmacology of cisplatin.
  J Inorg Biochem, 103, 333-341.  
18704523 D.Poger, C.Fillaux, R.Miras, S.Crouzy, P.Delangle, E.Mintz, C.Den Auwer, and M.Ferrand (2008).
Interplay between glutathione, Atx1 and copper: X-ray absorption spectroscopy determination of Cu(I) environment in an Atx1 dimer.
  J Biol Inorg Chem, 13, 1239-1248.  
18685091 F.Hussain, J.S.Olson, and P.Wittung-Stafshede (2008).
Conserved residues modulate copper release in human copper chaperone Atox1.
  Proc Natl Acad Sci U S A, 105, 11158-11163.  
17987327 I.Bertini, and G.Cavallaro (2008).
Metals in the "omics" world: copper homeostasis and cytochrome c oxidase assembly in a new light.
  J Biol Inorg Chem, 13, 3.  
17225061 C.Singleton, and N.E.Le Brun (2007).
Atx1-like chaperones and their cognate P-type ATPases: copper-binding and transfer.
  Biometals, 20, 275-289.  
17219055 J.M.Argüello, E.Eren, and M.González-Guerrero (2007).
The structure and function of heavy metal transport P1B-ATPases.
  Biometals, 20, 233-248.  
17609202 M.H.Sazinsky, B.LeMoine, M.Orofino, R.Davydov, K.Z.Bencze, T.L.Stemmler, B.M.Hoffman, J.M.Argüello, and A.C.Rosenzweig (2007).
Characterization and structure of a Zn2+ and [2Fe-2S]-containing copper chaperone from Archaeoglobus fulgidus.
  J Biol Chem, 282, 25950-25959.
PDB code: 2hu9
17013682 I.Bertini, I.C.Felli, L.Gonnelli, R.Pierattelli, Z.Spyranti, and G.A.Spyroulias (2006).
Mapping protein-protein interaction by 13C'-detected heteronuclear NMR spectroscopy.
  J Biomol NMR, 36, 111-122.  
16732294 L.Banci, I.Bertini, F.Cantini, I.C.Felli, L.Gonnelli, N.Hadjiliadis, R.Pierattelli, A.Rosato, and P.Voulgaris (2006).
The Atx1-Ccc2 complex is a metal-mediated protein-protein interaction.
  Nat Chem Biol, 2, 367-368.
PDB code: 2ggp
16707580 L.Banci, I.Bertini, S.Ciofi-Baffoni, N.G.Kandias, N.J.Robinson, G.A.Spyroulias, X.C.Su, S.Tottey, and M.Vanarotti (2006).
The delivery of copper for thylakoid import observed by NMR.
  Proc Natl Acad Sci U S A, 103, 8320-8325.
PDB code: 2gcf
15670166 L.Banci, I.Bertini, S.Ciofi-Baffoni, C.T.Chasapis, N.Hadjiliadis, and A.Rosato (2005).
An NMR study of the interaction between the human copper(I) chaperone and the second and fifth metal-binding domains of the Menkes protein.
  FEBS J, 272, 865-871.
PDB codes: 1y3j 1y3k
16211579 T.M.DeSilva, G.Veglia, and S.J.Opella (2005).
Solution structures of the reduced and Cu(I) bound forms of the first metal binding sequence of ATP7A associated with Menkes disease.
  Proteins, 61, 1038-1049.
PDB codes: 1kvi 1kvj
15062089 F.Arnesano, L.Banci, I.Bertini, and A.M.Bonvin (2004).
A docking approach to the study of copper trafficking proteins; interaction between metallochaperones and soluble domains of copper ATPases.
  Structure, 12, 669-676.
PDB codes: 1uv1 1uv2
12644235 D.S.Radford, M.A.Kihlken, G.P.Borrelly, C.R.Harwood, N.E.Le Brun, and J.S.Cavet (2003).
CopZ from Bacillus subtilis interacts in vivo with a copper exporting CPx-type ATPase CopA.
  FEMS Microbiol Lett, 220, 105-112.  
12655048 I.Bertini, and A.Rosato (2003).
Bioinorganic chemistry in the postgenomic era.
  Proc Natl Acad Sci U S A, 100, 3601-3604.  
12590580 L.Banci, I.Bertini, S.Ciofi-Baffoni, R.Del Conte, and L.Gonnelli (2003).
Understanding copper trafficking in bacteria: interaction between the copper transport protein CopZ and the N-terminal domain of the copper ATPase CopA from Bacillus subtilis.
  Biochemistry, 42, 1939-1949.  
12829275 T.Barkay, S.M.Miller, and A.O.Summers (2003).
Bacterial mercury resistance from atoms to ecosystems.
  FEMS Microbiol Rev, 27, 355-384.  
11980486 P.A.Cobine, G.N.George, C.E.Jones, W.A.Wickramasinghe, M.Solioz, and C.T.Dameron (2002).
Copper transfer from the Cu(I) chaperone, CopZ, to the repressor, Zn(II)CopY: metal coordination environments and protein interactions.
  Biochemistry, 41, 5822-5829.  
12039007 S.J.Opella, T.M.DeSilva, and G.Veglia (2002).
Structural biology of metal-binding sequences.
  Curr Opin Chem Biol, 6, 217-223.  
12039001 S.Puig, and D.J.Thiele (2002).
Molecular mechanisms of copper uptake and distribution.
  Curr Opin Chem Biol, 6, 171-180.  
11395420 D.L.Huffman, and T.V.O'Halloran (2001).
Function, structure, and mechanism of intracellular copper trafficking proteins.
  Annu Rev Biochem, 70, 677-701.  
The most recent references are shown first. Citation data come partly from CiteXplore and partly from an automated harvesting procedure. Note that this is likely to be only a partial list as not all journals are covered by either method. However, we are continually building up the citation data so more and more references will be included with time. Where a reference describes a PDB structure, the PDB code is shown on the right.

 

spacer

spacer