 |
PDBsum entry 1fpv
|
|
|
|
 |
Contents |
 |
|
|
|
|
|
|
|
* Residue conservation analysis
|
|
|
|
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
|
|
|
| |
|
|
Proteins
16:155-171
(1993)
|
|
PubMed id:
|
|
|
|
|
| |
|
Structure determination of feline panleukopenia virus empty particles.
|
|
M.Agbandje,
R.McKenna,
M.G.Rossmann,
M.L.Strassheim,
C.R.Parrish.
|
|
|
|
| |
ABSTRACT
|
|
|
| |
|
Various crystal forms of the single-stranded DNA, feline panleukopenia virus
(FPV), a parvovirus, have been grown of both full virions and empty particles.
The structure of empty particles crystallized in an orthorhombic space group
P2(1)2(1)2(1), with unit cell dimensions a = 380.1 A, b = 379.3 A, and c = 350.9
A, has been determined to 3.3 A resolution. The data were collected using
oscillation photography with synchrotron radiation. The orientations of the
empty capsids in the unit cell were determined using a self-rotation function
and their positions were obtained with an R-factor search using canine
parvovirus (CPV) as a model. Phases were then calculated, based on the CPV
model, to 6.0 A resolution and gradually extended to 3.3 A resolution by
molecular replacement electron density averaging. The resultant electron density
was readily interpreted in terms of the known amino acid sequence. The structure
is contrasted to that of CPV in terms of host range, neutralization by
antibodies, hemagglutination properties, and binding of genomic DNA.
|
|
|
|
|
|
|
 |
 |
|
 |
 |
 |
 |
 |
 |
 |
 |
 |
|
Literature references that cite this PDB file's key reference
|
|
 |
| |
PubMed id
|
 |
Reference
|
 |
|
|
|
 |
L.B.Goodman,
S.M.Lyi,
N.C.Johnson,
J.O.Cifuente,
S.L.Hafenstein,
and
C.R.Parrish
(2010).
Binding site on the transferrin receptor for the parvovirus capsid and effects of altered affinity on cell uptake and infection.
|
| |
J Virol,
84,
4969-4978.
|
 |
|
|
|
|
 |
S.Taube,
J.R.Rubin,
U.Katpally,
T.J.Smith,
A.Kendall,
J.A.Stuckey,
and
C.E.Wobus
(2010).
High-resolution x-ray structure and functional analysis of the murine norovirus 1 capsid protein protruding domain.
|
| |
J Virol,
84,
5695-5705.
|
 |
|
PDB codes:
|
 |
|
|
|
|
|
 |
C.E.Harbison,
S.M.Lyi,
W.S.Weichert,
and
C.R.Parrish
(2009).
Early steps in cell infection by parvoviruses: host-specific differences in cell receptor binding but similar endosomal trafficking.
|
| |
J Virol,
83,
10504-10514.
|
 |
|
|
|
|
 |
S.Hafenstein,
V.D.Bowman,
T.Sun,
C.D.Nelson,
L.M.Palermo,
P.R.Chipman,
A.J.Battisti,
C.R.Parrish,
and
M.G.Rossmann
(2009).
Structural comparison of different antibodies interacting with parvovirus capsids.
|
| |
J Virol,
83,
5556-5566.
|
 |
|
PDB codes:
|
 |
|
|
|
|
|
 |
T.Virag,
S.Cecchini,
and
R.M.Kotin
(2009).
Producing recombinant adeno-associated virus in foster cells: overcoming production limitations using a baculovirus-insect cell expression strategy.
|
| |
Hum Gene Ther,
20,
807-817.
|
 |
|
|
|
|
 |
B.Kaufmann,
P.R.Chipman,
V.A.Kostyuchenko,
S.Modrow,
and
M.G.Rossmann
(2008).
Visualization of the externalized VP2 N termini of infectious human parvovirus B19.
|
| |
J Virol,
82,
7306-7312.
|
 |
|
|
|
|
 |
C.D.Nelson,
E.Minkkinen,
M.Bergkvist,
K.Hoelzer,
M.Fisher,
B.Bothner,
and
C.R.Parrish
(2008).
Detecting small changes and additional peptides in the canine parvovirus capsid structure.
|
| |
J Virol,
82,
10397-10407.
|
 |
|
|
|
|
 |
N.DiPrimio,
A.Asokan,
L.Govindasamy,
M.Agbandje-McKenna,
and
R.J.Samulski
(2008).
Surface loop dynamics in adeno-associated virus capsid assembly.
|
| |
J Virol,
82,
5178-5189.
|
 |
|
|
|
|
 |
C.D.Nelson,
L.M.Palermo,
S.L.Hafenstein,
and
C.R.Parrish
(2007).
Different mechanisms of antibody-mediated neutralization of parvoviruses revealed using the Fab fragments of monoclonal antibodies.
|
| |
Virology,
361,
283-293.
|
 |
|
|
|
|
 |
J.C.Grieger,
J.S.Johnson,
B.Gurda-Whitaker,
M.Agbandje-McKenna,
and
R.J.Samulski
(2007).
Surface-exposed adeno-associated virus Vp1-NLS capsid fusion protein rescues infectivity of noninfectious wild-type Vp2/Vp3 and Vp3-only capsids but not that of fivefold pore mutant virions.
|
| |
J Virol,
81,
7833-7843.
|
 |
|
|
|
|
 |
M.G.Rossmann,
F.Arisaka,
A.J.Battisti,
V.D.Bowman,
P.R.Chipman,
A.Fokine,
S.Hafenstein,
S.Kanamaru,
V.A.Kostyuchenko,
V.V.Mesyanzhinov,
M.M.Shneider,
M.C.Morais,
P.G.Leiman,
L.M.Palermo,
C.R.Parrish,
and
C.Xiao
(2007).
From structure of the complex to understanding of the biology.
|
| |
Acta Crystallogr D Biol Crystallogr,
63,
9.
|
 |
|
|
|
|
 |
S.Hafenstein,
L.M.Palermo,
V.A.Kostyuchenko,
C.Xiao,
M.C.Morais,
C.D.Nelson,
V.D.Bowman,
A.J.Battisti,
P.R.Chipman,
C.R.Parrish,
and
M.G.Rossmann
(2007).
Asymmetric binding of transferrin receptor to parvovirus capsids.
|
| |
Proc Natl Acad Sci U S A,
104,
6585-6589.
|
 |
|
PDB code:
|
 |
|
|
|
|
|
 |
A.López-Bueno,
M.P.Rubio,
N.Bryant,
R.McKenna,
M.Agbandje-McKenna,
and
J.M.Almendral
(2006).
Host-selected amino acid changes at the sialic acid binding pocket of the parvovirus capsid modulate cell binding affinity and determine virulence.
|
| |
J Virol,
80,
1563-1573.
|
 |
|
|
|
|
 |
K.Van Vliet,
V.Blouin,
M.Agbandje-McKenna,
and
R.O.Snyder
(2006).
Proteolytic mapping of the adeno-associated virus capsid.
|
| |
Mol Ther,
14,
809-821.
|
 |
|
|
|
|
 |
L.Gilbert,
J.Toivola,
O.Välilehto,
T.Saloniemi,
C.Cunningham,
D.White,
A.R.Mäkelä,
E.Korhonen,
M.Vuento,
and
C.Oker-Blom
(2006).
Truncated forms of viral VP2 proteins fused to EGFP assemble into fluorescent parvovirus-like particles.
|
| |
J Nanobiotechnology,
4,
13.
|
 |
|
|
|
|
 |
L.M.Palermo,
S.L.Hafenstein,
and
C.R.Parrish
(2006).
Purified feline and canine transferrin receptors reveal complex interactions with the capsids of canine and feline parvoviruses that correspond to their host ranges.
|
| |
J Virol,
80,
8482-8492.
|
 |
|
|
|
|
 |
M.Sitharam,
and
M.Agbandje-McKenna
(2006).
Modeling virus self-assembly pathways: avoiding dynamics using geometric constraint decomposition.
|
| |
J Comput Biol,
13,
1232-1265.
|
 |
|
|
|
|
 |
C.Li,
D.E.Bowles,
T.van Dyke,
and
R.J.Samulski
(2005).
Adeno-associated virus vectors: potential applications for cancer gene therapy.
|
| |
Cancer Gene Ther,
12,
913-925.
|
 |
|
|
|
|
 |
C.R.Parrish,
and
Y.Kawaoka
(2005).
The origins of new pandemic viruses: the acquisition of new host ranges by canine parvovirus and influenza A viruses.
|
| |
Annu Rev Microbiol,
59,
553-586.
|
 |
|
|
|
|
 |
E.Padron,
V.Bowman,
N.Kaludov,
L.Govindasamy,
H.Levy,
P.Nick,
R.McKenna,
N.Muzyczka,
J.A.Chiorini,
T.S.Baker,
and
M.Agbandje-McKenna
(2005).
Structure of adeno-associated virus type 4.
|
| |
J Virol,
79,
5047-5058.
|
 |
|
|
|
|
 |
M.Kontou,
L.Govindasamy,
H.J.Nam,
N.Bryant,
A.L.Llamas-Saiz,
C.Foces-Foces,
E.Hernando,
M.P.Rubio,
R.McKenna,
J.M.Almendral,
and
M.Agbandje-McKenna
(2005).
Structural determinants of tissue tropism and in vivo pathogenicity for the parvovirus minute virus of mice.
|
| |
J Virol,
79,
10931-10943.
|
 |
|
PDB codes:
|
 |
|
|
|
|
|
 |
S.Bleker,
F.Sonntag,
and
J.A.Kleinschmidt
(2005).
Mutational analysis of narrow pores at the fivefold symmetry axes of adeno-associated virus type 2 capsids reveals a dual role in genome packaging and activation of phospholipase A2 activity.
|
| |
J Virol,
79,
2528-2540.
|
 |
|
|
|
|
 |
V.W.Choi,
D.M.McCarty,
and
R.J.Samulski
(2005).
AAV hybrid serotypes: improved vectors for gene delivery.
|
| |
Curr Gene Ther,
5,
299-310.
|
 |
|
|
|
|
 |
A.Carreira,
M.Menéndez,
J.Reguera,
J.M.Almendral,
and
M.G.Mateu
(2004).
In vitro disassembly of a parvovirus capsid and effect on capsid stability of heterologous peptide insertions in surface loops.
|
| |
J Biol Chem,
279,
6517-6525.
|
 |
|
|
|
|
 |
B.Kaufmann,
A.A.Simpson,
and
M.G.Rossmann
(2004).
The structure of human parvovirus B19.
|
| |
Proc Natl Acad Sci U S A,
101,
11628-11633.
|
 |
|
PDB code:
|
 |
|
|
|
|
|
 |
J.Reguera,
A.Carreira,
L.Riolobos,
J.M.Almendral,
and
M.G.Mateu
(2004).
Role of interfacial amino acid residues in assembly, stability, and conformation of a spherical virus capsid.
|
| |
Proc Natl Acad Sci U S A,
101,
2724-2729.
|
 |
|
|
|
|
 |
K.Hueffer,
L.M.Palermo,
and
C.R.Parrish
(2004).
Parvovirus infection of cells by using variants of the feline transferrin receptor altering clathrin-mediated endocytosis, membrane domain localization, and capsid-binding domains.
|
| |
J Virol,
78,
5601-5611.
|
 |
|
|
|
|
 |
M.Vihinen-Ranta,
S.Suikkanen,
and
C.R.Parrish
(2004).
Pathways of cell infection by parvoviruses and adeno-associated viruses.
|
| |
J Virol,
78,
6709-6714.
|
 |
|
|
|
|
 |
D.E.Bowles,
J.E.Rabinowitz,
and
R.J.Samulski
(2003).
Marker rescue of adeno-associated virus (AAV) capsid mutants: a novel approach for chimeric AAV production.
|
| |
J Virol,
77,
423-432.
|
 |
|
|
|
|
 |
K.Hueffer,
and
C.R.Parrish
(2003).
Parvovirus host range, cell tropism and evolution.
|
| |
Curr Opin Microbiol,
6,
392-398.
|
 |
|
|
|
|
 |
K.Hueffer,
J.S.Parker,
W.S.Weichert,
R.E.Geisel,
J.Y.Sgro,
and
C.R.Parrish
(2003).
The natural host range shift and subsequent evolution of canine parvovirus resulted from virus-specific binding to the canine transferrin receptor.
|
| |
J Virol,
77,
1718-1726.
|
 |
|
|
|
|
 |
K.Hueffer,
L.Govindasamy,
M.Agbandje-McKenna,
and
C.R.Parrish
(2003).
Combinations of two capsid regions controlling canine host range determine canine transferrin receptor binding by canine and feline parvoviruses.
|
| |
J Virol,
77,
10099-10105.
|
 |
|
|
|
|
 |
L.Govindasamy,
K.Hueffer,
C.R.Parrish,
and
M.Agbandje-McKenna
(2003).
Structures of host range-controlling regions of the capsids of canine and feline parvoviruses and mutants.
|
| |
J Virol,
77,
12211-12221.
|
 |
|
PDB codes:
|
 |
|
|
|
|
|
 |
L.M.Palermo,
K.Hueffer,
and
C.R.Parrish
(2003).
Residues in the apical domain of the feline and canine transferrin receptors control host-specific binding and cell infection of canine and feline parvoviruses.
|
| |
J Virol,
77,
8915-8923.
|
 |
|
|
|
|
 |
S.Suikkanen,
T.Aaltonen,
M.Nevalainen,
O.Välilehto,
L.Lindholm,
M.Vuento,
and
M.Vihinen-Ranta
(2003).
Exploitation of microtubule cytoskeleton and dynein during parvoviral traffic toward the nucleus.
|
| |
J Virol,
77,
10270-10279.
|
 |
|
|
|
|
 |
M.Vihinen-Ranta,
D.Wang,
W.S.Weichert,
and
C.R.Parrish
(2002).
The VP1 N-terminal sequence of canine parvovirus affects nuclear transport of capsids and efficient cell infection.
|
| |
J Virol,
76,
1884-1891.
|
 |
|
|
|
|
 |
Q.Xie,
W.Bu,
S.Bhatia,
J.Hare,
T.Somasundaram,
A.Azzi,
and
M.S.Chapman
(2002).
The atomic structure of adeno-associated virus (AAV-2), a vector for human gene therapy.
|
| |
Proc Natl Acad Sci U S A,
99,
10405-10410.
|
 |
|
PDB code:
|
 |
|
|
|
|
|
 |
M.A.Stevenson,
J.M.Fox,
J.B.Wolfinbarger,
and
M.E.Bloom
(2001).
Effect of a valine residue at codon 352 of the VP2 capsid protein on in vivo replication and pathogenesis of Aleutian disease parvovirus in mink.
|
| |
Am J Vet Res,
62,
1658-1663.
|
 |
|
|
|
|
 |
B.Maroto,
J.C.Ramírez,
and
J.M.Almendral
(2000).
Phosphorylation status of the parvovirus minute virus of mice particle: mapping and biological relevance of the major phosphorylation sites.
|
| |
J Virol,
74,
10892-10902.
|
 |
|
|
|
|
 |
M.Vihinen-Ranta,
W.Yuan,
and
C.R.Parrish
(2000).
Cytoplasmic trafficking of the canine parvovirus capsid and its role in infection and nuclear transport.
|
| |
J Virol,
74,
4853-4859.
|
 |
|
|
|
|
 |
P.Wu,
W.Xiao,
T.Conlon,
J.Hughes,
M.Agbandje-McKenna,
T.Ferkol,
T.Flotte,
and
N.Muzyczka
(2000).
Mutational analysis of the adeno-associated virus type 2 (AAV2) capsid gene and construction of AAV2 vectors with altered tropism.
|
| |
J Virol,
74,
8635-8647.
|
 |
|
|
|
|
 |
C.R.Parrish
(1999).
Host range relationships and the evolution of canine parvovirus.
|
| |
Vet Microbiol,
69,
29-40.
|
 |
|
|
|
|
 |
R.McKenna,
N.H.Olson,
P.R.Chipman,
T.S.Baker,
T.F.Booth,
J.Christensen,
B.Aasted,
J.M.Fox,
M.E.Bloom,
J.B.Wolfinbarger,
and
M.Agbandje-McKenna
(1999).
Three-dimensional structure of Aleutian mink disease parvovirus: implications for disease pathogenicity.
|
| |
J Virol,
73,
6882-6891.
|
 |
|
|
|
|
 |
A.A.Simpson,
P.R.Chipman,
T.S.Baker,
P.Tijssen,
and
M.G.Rossmann
(1998).
The structure of an insect parvovirus (Galleria mellonella densovirus) at 3.7 A resolution.
|
| |
Structure,
6,
1355-1367.
|
 |
|
PDB code:
|
 |
|
|
|
|
|
 |
H.Kasamatsu,
and
A.Nakanishi
(1998).
How do animal DNA viruses get to the nucleus?
|
| |
Annu Rev Microbiol,
52,
627-686.
|
 |
|
|
|
|
 |
M.Agbandje-McKenna,
A.L.Llamas-Saiz,
F.Wang,
P.Tattersall,
and
M.G.Rossmann
(1998).
Functional implications of the structure of the murine parvovirus, minute virus of mice.
|
| |
Structure,
6,
1369-1381.
|
 |
|
|
|
|
 |
M.S.Chapman
(1998).
Watching one's P's and Q's: promiscuity, plasticity, and quasiequivalence in a T = 1 virus.
|
| |
Biophys J,
74,
639-644.
|
 |
|
|
|
|
 |
M.Vihinen-Ranta,
A.Kalela,
P.Mäkinen,
L.Kakkola,
V.Marjomäki,
and
M.Vuento
(1998).
Intracellular route of canine parvovirus entry.
|
| |
J Virol,
72,
802-806.
|
 |
|
|
|
|
 |
P.R.Chipman,
M.Agbandje-McKenna,
J.Renaudin,
T.S.Baker,
and
R.McKenna
(1998).
Structural analysis of the Spiroplasma virus, SpV4: implications for evolutionary variation to obtain host diversity among the Microviridae.
|
| |
Structure,
6,
135-145.
|
 |
|
PDB code:
|
 |
|
|
|
|
|
 |
S.Munshi,
L.Liljas,
and
J.E.Johnson
(1998).
Structure determination of Nudaurelia capensis omega virus.
|
| |
Acta Crystallogr D Biol Crystallogr,
54,
1295-1305.
|
 |
|
|
|
|
 |
M.Horiuchi,
M.Mochizuki,
N.Ishiguro,
H.Nagasawa,
and
M.Shinagawa
(1997).
Epitope mapping of a monoclonal antibody specific to feline panleukopenia virus and mink enteritis virus.
|
| |
J Vet Med Sci,
59,
133-136.
|
 |
|
|
|
|
 |
P.R.Chipman,
M.Agbandje-McKenna,
S.Kajigaya,
K.E.Brown,
N.S.Young,
T.S.Baker,
and
M.G.Rossmann
(1996).
Cryo-electron microscopy studies of empty capsids of human parvovirus B19 complexed with its cellular receptor.
|
| |
Proc Natl Acad Sci U S A,
93,
7502-7506.
|
 |
|
|
|
|
 |
T.Stehle,
S.J.Gamblin,
Y.Yan,
and
S.C.Harrison
(1996).
The structure of simian virus 40 refined at 3.1 A resolution.
|
| |
Structure,
4,
165-182.
|
 |
|
PDB code:
|
 |
|
|
|
|
|
 |
J.I.Casal,
J.P.Langeveld,
E.Cortés,
W.W.Schaaper,
E.van Dijk,
C.Vela,
S.Kamstrup,
and
R.H.Meloen
(1995).
Peptide vaccine against canine parvovirus: identification of two neutralization subsites in the N terminus of VP2 and optimization of the amino acid sequence.
|
| |
J Virol,
69,
7274-7277.
|
 |
|
|
|
|
 |
M.Kawase,
M.Momoeda,
N.S.Young,
and
S.Kajigaya
(1995).
Modest truncation of the major capsid protein abrogates B19 parvovirus capsid formation.
|
| |
J Virol,
69,
6567-6571.
|
 |
|
|
|
|
 |
U.Truyen,
A.Gruenberg,
S.F.Chang,
B.Obermaier,
P.Veijalainen,
and
C.R.Parrish
(1995).
Evolution of the feline-subgroup parvoviruses and the control of canine host range in vivo.
|
| |
J Virol,
69,
4702-4710.
|
 |
|
|
|
|
 |
J.P.Langeveld,
J.I.Casal,
A.D.Osterhaus,
E.Cortés,
R.de Swart,
C.Vela,
K.Dalsgaard,
W.C.Puijk,
W.M.Schaaper,
and
R.H.Meloen
(1994).
First peptide vaccine providing protection against viral infection in the target animal: studies of canine parvovirus in dogs.
|
| |
J Virol,
68,
4506-4513.
|
 |
|
|
|
|
 |
W.R.Wikoff,
G.Wang,
C.R.Parrish,
R.H.Cheng,
M.L.Strassheim,
T.S.Baker,
and
M.G.Rossmann
(1994).
The structure of a neutralized virus: canine parvovirus complexed with neutralizing antibody fragment.
|
| |
Structure,
2,
595-607.
|
 |
|
 |
 |
|
The most recent references are shown first.
Citation data come partly from CiteXplore and partly
from an automated harvesting procedure. Note that this is likely to be
only a partial list as not all journals are covered by
either method. However, we are continually building up the citation data
so more and more references will be included with time.
Where a reference describes a PDB structure, the PDB
codes are
shown on the right.
|
');
}
}
 |