spacer
spacer

PDBsum entry 1fj2

Go to PDB code: 
protein metals Protein-protein interface(s) links
Hydrolase PDB id
1fj2

 

 

 

 

Loading ...

 
JSmol PyMol  
Contents
Protein chain
229 a.a. *
Metals
_BR ×40
Waters ×465
* Residue conservation analysis
PDB id:
1fj2
Name: Hydrolase
Title: Crystal structure of the human acyl protein thioesterase 1 at 1.5 a resolution
Structure: Protein (acyl protein thioesterase 1). Chain: a, b. Engineered: yes
Source: Homo sapiens. Human. Organism_taxid: 9606. Expressed in: escherichia coli. Expression_system_taxid: 562
Biol. unit: Dimer (from PQS)
Resolution:
1.50Å     R-factor:   0.183     R-free:   0.237
Authors: Y.Devedjiev,Z.Dauter,S.Kuznetsov,T.Jones,Z.Derewenda
Key ref:
Y.Devedjiev et al. (2000). Crystal structure of the human acyl protein thioesterase I from a single X-ray data set to 1.5 A. Structure, 8, 1137-1146. PubMed id: 11080636 DOI: 10.1016/S0969-2126(00)00529-3
Date:
07-Aug-00     Release date:   29-Nov-00    
PROCHECK
Go to PROCHECK summary
 Headers
 References

Protein chains
Pfam   ArchSchema ?
O75608  (LYPA1_HUMAN) -  Acyl-protein thioesterase 1 from Homo sapiens
Seq:
Struc:
230 a.a.
229 a.a.*
Key:    PfamA domain  Secondary structure  CATH domain
* PDB and UniProt seqs differ at 4 residue positions (black crosses)

 Enzyme reactions 
   Enzyme class 2: E.C.3.1.2.-  - ?????
[IntEnz]   [ExPASy]   [KEGG]   [BRENDA]
   Enzyme class 3: E.C.3.1.2.22  - palmitoyl-protein hydrolase.
[IntEnz]   [ExPASy]   [KEGG]   [BRENDA]
      Reaction: S-hexadecanoyl-L-cysteinyl-[protein] + H2O = L-cysteinyl-[protein] + hexadecanoate + H+
S-hexadecanoyl-L-cysteinyl-[protein]
+ H2O
= L-cysteinyl-[protein]
+ hexadecanoate
+ H(+)
Note, where more than one E.C. class is given (as above), each may correspond to a different protein domain or, in the case of polyprotein precursors, to a different mature protein.
Molecule diagrams generated from .mol files obtained from the KEGG ftp site

 

 
    Key reference    
 
 
DOI no: 10.1016/S0969-2126(00)00529-3 Structure 8:1137-1146 (2000)
PubMed id: 11080636  
 
 
Crystal structure of the human acyl protein thioesterase I from a single X-ray data set to 1.5 A.
Y.Devedjiev, Z.Dauter, S.R.Kuznetsov, T.L.Jones, Z.S.Derewenda.
 
  ABSTRACT  
 
BACKGROUND: Many proteins undergo posttranslational modifications involving covalent attachment of lipid groups. Among them is palmitoylation, a dynamic, reversible process that affects trimeric G proteins and Ras and constitutes a regulatory mechanism for signal transduction pathways. Recently, an acylhydrolase previously identified as lysophospholipase has been shown to function as an acyl protein thioesterase, which catalyzes depalmitoylation of Galpha proteins as well as Ras. Its amino acid sequence suggested that the protein is evolutionarily related to neutral lipases and other thioesterases, but direct structural information was not available. RESULTS: We have solved the crystal structure of the human putative Galpha-regulatory protein acyl thioesterase (hAPT1) with a single data set collected from a crystal containing the wild-type protein. The phases were calculated to 1.8 A resolution based on anomalous scattering from Br(-) ions introduced in the cryoprotectant solution in which the crystal was soaked for 20 s. The model was refined against data extending to a resolution of 1.5 A to an R factor of 18.6%. The enzyme is a member of the ubiquitous alpha/beta hydrolase family, which includes other acylhydrolases such as the palmitoyl protein thioesterase (PPT1). CONCLUSIONS: The human APT1 is closely related to a previously described carboxylesterase from Pseudomonas fluorescens. The active site contains a catalytic triad of Ser-114, His-203, and Asp-169. Like carboxylesterase, hAPT1 appears to be dimeric, although the mutual disposition of molecules in the two dimers differs. Unlike carboxylesterase, the substrate binding pocket and the active site of hAPT1 are occluded by the dimer interface, suggesting that the enzyme must dissociate upon interaction with substrate.
 
  Selected figure(s)  
 
Figure 3.
Figure 3. Comparison of the Structures of hAPT1 and CPf(a) Ribbon presentation of the superposition of Ca atoms of carboxyl esterase (blue) onto the structure of hAPT1 (gold). Labeled active site residues are shown by ball and stick models.(b) Difference distance plot of the corresponding Ca atoms

 
  The above figure is reprinted by permission from Cell Press: Structure (2000, 8, 1137-1146) copyright 2000.  
  Figure was selected by an automated process.  

Literature references that cite this PDB file's key reference

  PubMed id Reference
21460451 N.S.Pannu, W.J.Waterreus, P.Skubák, I.Sikharulidze, J.P.Abrahams, and R.A.de Graaff (2011).
Recent advances in the CRANK software suite for experimental phasing.
  Acta Crystallogr D Biol Crystallogr, 67, 331-337.  
21460452 R.J.Read, and A.J.McCoy (2011).
Using SAD data in Phaser.
  Acta Crystallogr D Biol Crystallogr, 67, 338-344.  
20418879 F.J.Dekker, O.Rocks, N.Vartak, S.Menninger, C.Hedberg, R.Balamurugan, S.Wetzel, S.Renner, M.Gerauer, B.Schölermann, M.Rusch, J.W.Kramer, D.Rauh, G.W.Coates, L.Brunsveld, P.I.Bastiaens, and H.Waldmann (2010).
Small-molecule inhibition of APT1 affects Ras localization and signaling.
  Nat Chem Biol, 6, 449-456.  
20606258 P.Skubák, W.J.Waterreus, and N.S.Pannu (2010).
Multivariate phase combination improves automated crystallographic model building.
  Acta Crystallogr D Biol Crystallogr, 66, 783-788.  
19169353 S.K.Parker, R.M.Barkley, J.G.Rino, and M.L.Vasil (2009).
Mycobacterium tuberculosis Rv3802c encodes a phospholipase/thioesterase and is inhibited by the antimycobacterial agent tetrahydrolipstatin.
  PLoS ONE, 4, e4281.  
18645235 C.Dumas, and A.van der Lee (2008).
Macromolecular structure solution by charge flipping.
  Acta Crystallogr D Biol Crystallogr, 64, 864-873.  
17565660 A.Lyly, C.von Schantz, T.Salonen, O.Kopra, J.Saarela, M.Jauhiainen, A.Kyttälä, and A.Jalanko (2007).
Glycosylation, transport, and complex formation of palmitoyl protein thioesterase 1 (PPT1)--distinct characteristics in neurons.
  BMC Cell Biol, 8, 22.  
17490476 H.K.Saini, and D.Fischer (2007).
Structural and functional insights into Mimivirus ORFans.
  BMC Genomics, 8, 115.  
17485553 R.Flaumenhaft, N.Rozenvayn, D.Feng, and A.M.Dvorak (2007).
SNAP-23 and syntaxin-2 localize to the extracellular surface of the platelet plasma membrane.
  Blood, 110, 1492-1501.  
17663017 S.C.Vose, N.T.Holland, B.Eskenazi, and J.E.Casida (2007).
Lysophosphatidylcholine hydrolases of human erythrocytes, lymphocytes, and brain: sensitive targets of conserved specificity for organophosphorus delayed neurotoxicants.
  Toxicol Appl Pharmacol, 224, 98.  
16897798 B.M.Harvey, H.Hong, M.A.Jones, Z.A.Hughes-Thomas, R.M.Goss, M.L.Heathcote, V.M.Bolanos-Garcia, W.Kroutil, J.Staunton, P.F.Leadlay, and J.B.Spencer (2006).
Evidence that a novel thioesterase is responsible for polyketide chain release during biosynthesis of the polyether ionophore monensin.
  Chembiochem, 7, 1435-1442.  
16551354 G.Schneider, G.Neuberger, M.Wildpaner, S.Tian, I.Berezovsky, and F.Eisenhaber (2006).
Application of a sensitive collection heuristic for very large protein families: evolutionary relationship between adipose triglyceride lipase (ATGL) and classic mammalian lipases.
  BMC Bioinformatics, 7, 164.  
16969373 J.W.Giraldes, D.L.Akey, J.D.Kittendorf, D.H.Sherman, J.L.Smith, and R.A.Fecik (2006).
Structural and mechanistic insights into polyketide macrolactonization from polyketide-based affinity labels.
  Nat Chem Biol, 2, 531-536.
PDB codes: 2h7x 2h7y
16962139 S.Bencharit, C.C.Edwards, C.L.Morton, E.L.Howard-Williams, P.Kuhn, P.M.Potter, and M.R.Redinbo (2006).
Multisite promiscuity in the processing of endogenous substrates by human carboxylesterase 1.
  J Mol Biol, 363, 201-214.
PDB codes: 2dqy 2dqz 2dr0 2h7c
15717224 A.Pesaresi, G.Devescovi, D.Lamba, V.Venturi, and G.Degrassi (2005).
Isolation, characterization, and heterologous expression of a carboxylesterase of Pseudomonas aeruginosa PAO1.
  Curr Microbiol, 50, 102-109.  
16301796 P.Skubák, S.Ness, and N.S.Pannu (2005).
Extending the resolution and phase-quality limits in automated model building with iterative refinement.
  Acta Crystallogr D Biol Crystallogr, 61, 1626-1635.  
15858265 R.Caliandro, B.Carrozzini, G.L.Cascarano, L.De Caro, C.Giacovazzo, and D.Siliqi (2005).
Phasing at resolution higher than the experimental resolution.
  Acta Crystallogr D Biol Crystallogr, 61, 556-565.  
15507492 B.Chakravarty, Z.Gu, S.S.Chirala, S.J.Wakil, and F.A.Quiocho (2004).
Human fatty acid synthase: structure and substrate selectivity of the thioesterase domain.
  Proc Natl Acad Sci U S A, 101, 15567-15572.
PDB code: 1xkt
15159570 I.Janda, Y.Devedjiev, D.Cooper, M.Chruszcz, U.Derewenda, A.Gabrys, W.Minor, A.Joachimiak, and Z.S.Derewenda (2004).
Harvesting the high-hanging fruit: the structure of the YdeN gene product from Bacillus subtilis at 1.8 angstroms resolution.
  Acta Crystallogr D Biol Crystallogr, 60, 1101-1107.
PDB code: 1uxo
15502306 J.W.Wang, J.R.Chen, Y.X.Gu, C.D.Zheng, F.Jiang, and H.F.Fan (2004).
Optimizing the error term in direct-method SAD phasing.
  Acta Crystallogr D Biol Crystallogr, 60, 1987-1990.  
12855696 G.Calero, P.Gupta, M.C.Nonato, S.Tandel, E.R.Biehl, S.L.Hofmann, and J.Clardy (2003).
The crystal structure of palmitoyl protein thioesterase-2 (PPT2) reveals the basis for divergent substrate specificities of the two lysosomal thioesterases, PPT1 and PPT2.
  J Biol Chem, 278, 37957-37964.
PDB code: 1pja
12499540 I.Usón, B.Schmidt, R.von Bülow, S.Grimme, K.von Figura, M.Dauter, K.R.Rajashankar, Z.Dauter, and G.M.Sheldrick (2003).
Locating the anomalous scatterer substructures in halide and sulfur phasing.
  Acta Crystallogr D Biol Crystallogr, 59, 57-66.
PDB codes: 1e6f 1gqb
12493533 R.Qanbar, and M.Bouvier (2003).
Role of palmitoylation/depalmitoylation reactions in G-protein-coupled receptor function.
  Pharmacol Ther, 97, 1.  
11752774 E.Girard, L.Chantalat, J.Vicat, and R.Kahn (2002).
Gd-HPDO3A, a complex to obtain high-phasing-power heavy-atom derivatives for SAD and MAD experiments: results with tetragonal hen egg-white lysozyme.
  Acta Crystallogr D Biol Crystallogr, 58, 1-9.
PDB code: 1h87
12005429 S.D.Bruner, T.Weber, R.M.Kohli, D.Schwarzer, M.A.Marahiel, C.T.Walsh, and M.T.Stubbs (2002).
Structural basis for the cyclization of the lipopeptide antibiotic surfactin by the thioesterase domain SrfTE.
  Structure, 10, 301-310.
PDB code: 1jmk
11856836 Z.Dauter, M.Dauter, and E.Dodson (2002).
Jolly SAD.
  Acta Crystallogr D Biol Crystallogr, 58, 494-506.  
12393929 Z.Dauter (2002).
One-and-a-half wavelength approach.
  Acta Crystallogr D Biol Crystallogr, 58, 1958-1967.  
11752428 S.C.Tsai, L.J.Miercke, J.Krucinski, R.Gokhale, J.C.Chen, P.G.Foster, D.E.Cane, C.Khosla, and R.M.Stroud (2001).
Crystal structure of the macrocycle-forming thioesterase domain of the erythromycin polyketide synthase: versatility from a unique substrate channel.
  Proc Natl Acad Sci U S A, 98, 14808-14813.
PDB code: 1kez
11250204 Z.Dauter, and M.Dauter (2001).
Entering a new phase: using solvent halide ions in protein structure determination.
  Structure, 9, R21-R26.  
The most recent references are shown first. Citation data come partly from CiteXplore and partly from an automated harvesting procedure. Note that this is likely to be only a partial list as not all journals are covered by either method. However, we are continually building up the citation data so more and more references will be included with time. Where a reference describes a PDB structure, the PDB codes are shown on the right.

 

spacer

spacer