spacer
spacer

PDBsum entry 1f6d

Go to PDB code: 
protein ligands metals Protein-protein interface(s) links
Isomerase PDB id
1f6d

 

 

 

 

Loading ...

 
JSmol PyMol  
Contents
Protein chains
376 a.a. *
Ligands
UDP ×4
Metals
_NA ×4
_CL ×4
Waters ×765
* Residue conservation analysis
PDB id:
1f6d
Name: Isomerase
Title: The structure of udp-n-acetylglucosamine 2-epimerase from e. Coli.
Structure: Udp-n-acetylglucosamine 2-epimerase. Chain: a, b, c, d. Synonym: udp-glcnac-2-epimerase, bacteriophage n4 adsorption protein c. Engineered: yes
Source: Escherichia coli. Organism_taxid: 562. Expressed in: escherichia coli. Expression_system_taxid: 562.
Biol. unit: Dimer (from PQS)
Resolution:
2.50Å     R-factor:   0.198     R-free:   0.271
Authors: R.E.Campbell,S.C.Mosimann,M.E.Tanner,N.C.J.Strynadka
Key ref:
R.E.Campbell et al. (2000). The structure of UDP-N-acetylglucosamine 2-epimerase reveals homology to phosphoglycosyl transferases. Biochemistry, 39, 14993-15001. PubMed id: 11106477 DOI: 10.1021/bi001627x
Date:
21-Jun-00     Release date:   13-Dec-00    
PROCHECK
Go to PROCHECK summary
 Headers
 References

Protein chains
Pfam   ArchSchema ?
P27828  (WECB_ECOLI) -  UDP-N-acetylglucosamine 2-epimerase from Escherichia coli (strain K12)
Seq:
Struc:
376 a.a.
376 a.a.
Key:    PfamA domain  Secondary structure  CATH domain

 Enzyme reactions 
   Enzyme class: E.C.5.1.3.14  - UDP-N-acetylglucosamine 2-epimerase (non-hydrolyzing).
[IntEnz]   [ExPASy]   [KEGG]   [BRENDA]

      Pathway:
UDP-N-acetylgalactosamine and UDP-N-acetylmannosamine Biosynthesis
      Reaction: UDP-N-acetyl-alpha-D-glucosamine = UDP-N-acetyl-alpha-D-mannosamine
UDP-N-acetyl-D-glucosamine
= UDP-N-acetyl-D-mannosamine
Molecule diagrams generated from .mol files obtained from the KEGG ftp site

 

 
    Added reference    
 
 
DOI no: 10.1021/bi001627x Biochemistry 39:14993-15001 (2000)
PubMed id: 11106477  
 
 
The structure of UDP-N-acetylglucosamine 2-epimerase reveals homology to phosphoglycosyl transferases.
R.E.Campbell, S.C.Mosimann, M.E.Tanner, N.C.Strynadka.
 
  ABSTRACT  
 
Bacterial UDP-N-acetylglucosamine 2-epimerase catalyzes the reversible epimerization at C-2 of UDP-N-acetylglucosamine (UDP-GlcNAc) and thereby provides bacteria with UDP-N-acetylmannosamine (UDP-ManNAc), the activated donor of ManNAc residues. ManNAc is critical for several processes in bacteria, including formation of the antiphagocytic capsular polysaccharide of pathogens such as Streptococcus pneumoniae types 19F and 19A. We have determined the X-ray structure (2.5 A) of UDP-GlcNAc 2-epimerase with bound UDP and identified a previously unsuspected structural homology with the enzymes glycogen phosphorylase and T4 phage beta-glucosyltransferase. The relationship to these phosphoglycosyl transferases is very intriguing in terms of possible similarities in the catalytic mechanisms. Specifically, this observation is consistent with the proposal that the UDP-GlcNAc 2-epimerase-catalyzed elimination and re-addition of UDP to the glycal intermediate may proceed through a transition state with significant oxocarbenium ion-like character. The homodimeric epimerase is composed of two similar alpha/beta/alpha sandwich domains with the active site located in the deep cleft at the domain interface. Comparison of the multiple copies in the asymmetric unit has revealed that the epimerase can undergo a 10 degrees interdomain rotation that is implicated in the regulatory mechanism. A structure-based sequence alignment has identified several basic residues in the active site that may be involved in the proton transfer at C-2 or stabilization of the proposed oxocarbenium ion-like transition state. This insight into the structure of the bacterial epimerase is applicable to the homologous N-terminal domain of the bifunctional mammalian UDP-GlcNAc "hydrolyzing" 2-epimerase/ManNAc kinase that catalyzes the rate-determining step in the sialic acid biosynthetic pathway.
 

Literature references that cite this PDB file's key reference

  PubMed id Reference
20400947 A.L.Lovering, L.Y.Lin, E.W.Sewell, T.Spreter, E.D.Brown, and N.C.Strynadka (2010).
Structure of the bacterial teichoic acid polymerase TagF provides insights into membrane association and catalysis.
  Nat Struct Mol Biol, 17, 582-589.
PDB codes: 3l7i 3l7j 3l7k 3l7l 3l7m
19917666 N.Kurochkina, T.Yardeni, and M.Huizing (2010).
Molecular modeling of the bifunctional enzyme UDP-GlcNAc 2-epimerase/ManNAc kinase and predictions of structural effects of mutations associated with HIBM and sialuria.
  Glycobiology, 20, 322-337.  
19483088 E.S.Rangarajan, A.Proteau, Q.Cui, S.M.Logan, Z.Potetinova, D.Whitfield, E.O.Purisima, M.Cygler, A.Matte, T.Sulea, and I.C.Schoenhofen (2009).
Structural and functional analysis of Campylobacter jejuni PseG: a udp-sugar hydrolase from the pseudaminic acid biosynthetic pathway.
  J Biol Chem, 284, 20989-21000.
PDB codes: 3hbm 3hbn
19262941 M.Rejzek, V.Sri Kannathasan, C.Wing, A.Preston, E.L.Westman, J.S.Lam, J.H.Naismith, D.J.Maskell, and R.A.Field (2009).
Chemical synthesis of UDP-Glc-2,3-diNAcA, a key intermediate in cell surface polysaccharide biosynthesis in the human respiratory pathogens B. pertussis and P. aeruginosa.
  Org Biomol Chem, 7, 1203-1210.  
18625334 A.Buschiazzo, and P.M.Alzari (2008).
Structural insights into sialic acid enzymology.
  Curr Opin Chem Biol, 12, 565-572.  
18422615 B.Liu, Y.A.Knirel, L.Feng, A.V.Perepelov, S.N.Senchenkova, Q.Wang, P.R.Reeves, and L.Wang (2008).
Structure and genetics of Shigella O antigens.
  FEMS Microbiol Rev, 32, 627-653.  
18518825 L.L.Lairson, B.Henrissat, G.J.Davies, and S.G.Withers (2008).
Glycosyltransferases: structures, functions, and mechanisms.
  Annu Rev Biochem, 77, 521-555.  
18188181 L.M.Velloso, S.S.Bhaskaran, R.Schuch, V.A.Fischetti, and C.E.Stebbins (2008).
A structural basis for the allosteric regulation of non-hydrolysing UDP-GlcNAc 2-epimerases.
  EMBO Rep, 9, 199-205.
PDB code: 3beo
18263721 S.C.Namboori, and D.E.Graham (2008).
Acetamido sugar biosynthesis in the Euryarchaea.
  J Bacteriol, 190, 2987-2996.  
17376874 D.N.Bolam, S.Roberts, M.R.Proctor, J.P.Turkenburg, E.J.Dodson, C.Martinez-Fleites, M.Yang, B.G.Davis, G.J.Davies, and H.J.Gilbert (2007).
The crystal structure of two macrolide glycosyltransferases provides a blueprint for host cell antibiotic immunity.
  Proc Natl Acad Sci U S A, 104, 5336-5341.
PDB codes: 2iya 2iyf
16728396 F.Liu, and M.E.Tanner (2006).
PseG of pseudaminic acid biosynthesis: a UDP-sugar hydrolase as a masked glycosyltransferase.
  J Biol Chem, 281, 20902-20909.  
16568715 S.Ikeno, D.Aoki, M.Hamada, M.Hori, and K.S.Tsuchiya (2006).
DNA sequencing and transcriptional analysis of the kasugamycin biosynthetic gene cluster from Streptomyces kasugaensis M338-M1.
  J Antibiot (Tokyo), 59, 18-28.  
17048257 W.B.Jeon, S.T.Allard, C.A.Bingman, E.Bitto, B.W.Han, G.E.Wesenberg, and G.N.Phillips (2006).
X-ray crystal structures of the conserved hypothetical proteins from Arabidopsis thaliana gene loci At5g11950 and AT2g37210.
  Proteins, 65, 1051-1054.
PDB codes: 1ydh 2a33
16105839 B.D.Lazarus, M.D.Roos, and J.A.Hanover (2005).
Mutational analysis of the catalytic domain of O-linked N-acetylglucosaminyl transferase.
  J Biol Chem, 280, 35537-35544.  
15778500 E.F.Mulrooney, K.K.Poon, D.J.McNally, J.R.Brisson, and J.S.Lam (2005).
Biosynthesis of UDP-N-acetyl-L-fucosamine, a precursor to the biosynthesis of lipopolysaccharide in Pseudomonas aeruginosa serotype O11.
  J Biol Chem, 280, 19535-19542.  
15498764 A.Blume, A.J.Benie, F.Stolz, R.R.Schmidt, W.Reutter, S.Hinderlich, and T.Peters (2004).
Characterization of ligand binding to the bifunctional key enzyme in the sialic acid biosynthesis by NMR: I. Investigation of the UDP-GlcNAc 2-epimerase functionality.
  J Biol Chem, 279, 55715-55721.  
12655644 B.Eisenhaber, S.Maurer-Stroh, M.Novatchkova, G.Schneider, and F.Eisenhaber (2003).
Enzymes and auxiliary factors for GPI lipid anchor biosynthesis and post-translational transfer to proteins.
  Bioessays, 25, 367-385.  
14617154 M.A.Ringenberg, S.M.Steenbergen, and E.R.Vimr (2003).
The first committed step in the biosynthesis of sialic acid by Escherichia coli K1 does not involve a phosphorylated N-acetylmannosamine intermediate.
  Mol Microbiol, 50, 961-975.  
12464611 M.Edman, S.Berg, P.Storm, M.Wikström, S.Vikström, A.Ohman, and A.Wieslander (2003).
Structural features of glycosyltransferases synthesizing major bilayer and nonbilayer-prone membrane lipids in Acholeplasma laidlawii and Streptococcus pneumoniae.
  J Biol Chem, 278, 8420-8428.  
12876312 N.Handa, T.Terada, Y.Kamewari, H.Hamana, J.R.Tame, S.Y.Park, K.Kinoshita, M.Ota, H.Nakamura, S.Kuramitsu, M.Shirouzu, and S.Yokoyama (2003).
Crystal structure of the conserved protein TT1542 from Thermus thermophilus HB8.
  Protein Sci, 12, 1621-1632.
PDB code: 1uan
12198310 L.Larivière, J.Kurzeck, U.Aschke-Sonnenborn, W.Rüger, and S.Moréra (2002).
Crystallization and preliminary crystallographic study of a ternary complex between the T4 phage beta-glucosyltransferase, uridine diphosphoglucose and a DNA fragment containing an abasic site.
  Acta Crystallogr D Biol Crystallogr, 58, 1484-1486.  
11785761 Y.Bourne, and B.Henrissat (2001).
Glycoside hydrolases and glycosyltransferases: families and functional modules.
  Curr Opin Struct Biol, 11, 593-600.  
The most recent references are shown first. Citation data come partly from CiteXplore and partly from an automated harvesting procedure. Note that this is likely to be only a partial list as not all journals are covered by either method. However, we are continually building up the citation data so more and more references will be included with time. Where a reference describes a PDB structure, the PDB codes are shown on the right.

 

spacer

spacer