|
|
|
|
 |
Contents |
 |
|
|
|
|
|
|
|
* Residue conservation analysis
|
|
|
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
|
|
|
| |
|
DOI no:
|
Nature
405:1073-1077
(2000)
|
|
PubMed id:
|
|
|
|
|
| |
|
Crystal structure of enteropathogenic Escherichia coli intimin-receptor complex.
|
|
Y.Luo,
E.A.Frey,
R.A.Pfuetzner,
A.L.Creagh,
D.G.Knoechel,
C.A.Haynes,
B.B.Finlay,
N.C.Strynadka.
|
|
|
|
| |
ABSTRACT
|
|
|
| |
|
Intimin and its translocated intimin receptor (Tir) are bacterial proteins that
mediate adhesion between mammalian cells and attaching and effacing (A/E)
pathogens. Enteropathogenic Escherichia coli (EPEC) causes significant
paediatric morbidity and mortality world-wide. A related A/E pathogen,
enterohaemorrhagic E. coli (EHEC; O157:H7) is one of the most important
food-borne pathogens in North America, Europe and Japan. A unique and essential
feature of A/E bacterial pathogens is the formation of actin-rich pedestals
beneath the intimately adherent bacteria and localized destruction of the
intestinal brush border. The bacterial outer membrane adhesin, intimin, is
necessary for the production of the A/E lesion and diarrhoea. The A/E bacteria
translocate their own receptor for intimin, Tir, into the membrane of mammalian
cells using the type III secretion system. The translocated Tir triggers
additional host signalling events and actin nucleation, which are essential for
lesion formation. Here we describe the the crystal structures of an EPEC intimin
carboxy-terminal fragment alone and in complex with the EPEC Tir intimin-binding
domain, giving insight into the molecular mechanisms of adhesion of A/E
pathogens.
|
|
|
|
|
| |
Selected figure(s)
|
|
|
| |
 |
 |
|
 |
|
 |
Figure 1.
Figure 1: The EPEC/host-cell adhesion interface. The model is
based on our structural data of the complex of the C-terminal
fragment of intimin (domains D1, D2 and D3) and the
extracellular Tir IBD. Intimin is shown in green with domains
labelled and boundary residues numbered. The Ig-like domains D0,
D1 and D2 are shown as rectangles, and the lectin-like domain
D3, which binds to the Tir IBD, as an oval. Tir is shown as a
dimer (in pink and dark blue) in the host-cell membrane, and is
also labelled and numbered as described for intimin. The Tir IBD
is the extracellular component of Tir flanked by the two
predicted transmembrane (TM) domains. We observe a dimeric Tir
IBD, with the two helices in each monomer forming a four-helix
bundle that is stabilized by multiple hydrophobic and
hydrogen-bonded interactions. The N-terminal domain of Tir
anchors host cytoskeletal components (such as actin) that are
needed to form the characteristic A/E lesion on the host-cell
surface upon bacterial adhesion.
|
 |
Figure 3.
Figure 3: GRASP11 surface representation of the dimeric
intimin-Tir IBD complex. The viewing direction is
approximately parallel to the dimerization dyad. Accessible
surfaces colour-coded with electrostatic potential (-15 for red,
+10 for blue) are shown for one intimin (on the left) and one
Tir IBD (in the centre). The other intimin (in blue) and Tir IBD
(in pink) are shown as worm models. Although Tir IBD has an
overall net negative charge (seven net negative charges) the
dimerization interface between the two Tir molecules is
minimally charged. Intimin has a complementary overall positive
charge (six net positive charges) with a positively charged tip
close to the -helices
of the Tir IBD dimer.
|
 |
|
|
|
| |
The above figures are
reprinted
by permission from Macmillan Publishers Ltd:
Nature
(2000,
405,
1073-1077)
copyright 2000.
|
|
| |
Figures were
selected
by an automated process.
|
|
|
|
|
 |
 |
|
 |
 |
 |
 |
 |
 |
 |
 |
 |
|
Literature references that cite this PDB file's key reference
|
|
 |
| |
PubMed id
|
 |
Reference
|
 |
|
|
|
 |
H.A.Choy,
M.M.Kelley,
J.Croda,
J.Matsunaga,
J.T.Babbitt,
A.I.Ko,
M.Picardeau,
and
D.A.Haake
(2011).
The Multifunctional LigB Adhesin Binds Homeostatic Proteins with Potential Roles in Cutaneous Infection by Pathogenic Leptospira interrogans.
|
| |
PLoS One,
6,
e16879.
|
 |
|
|
|
|
 |
H.Sasaki,
H.Ishikawa,
T.Sato,
S.Sekiguchi,
H.Amao,
E.Kawamoto,
T.Matsumoto,
and
K.Shirama
(2011).
Molecular and virulence characteristics of an outer membrane-associated RTX exoprotein in Pasteurella pneumotropica.
|
| |
BMC Microbiol,
11,
55.
|
 |
|
|
|
|
 |
J.S.Pearson,
P.Riedmaier,
O.Marchès,
G.Frankel,
and
E.L.Hartland
(2011).
A type III effector protease NleC from enteropathogenic Escherichia coli targets NF-κB for degradation.
|
| |
Mol Microbiol,
80,
219-230.
|
 |
|
|
|
|
 |
H.P.Su,
K.Singh,
A.G.Gittis,
and
D.N.Garboczi
(2010).
The structure of the poxvirus A33 protein reveals a dimer of unique C-type lectin-like domains.
|
| |
J Virol,
84,
2502-2510.
|
 |
|
PDB code:
|
 |
|
|
|
|
|
 |
J.C.Tsai,
M.R.Yen,
R.Castillo,
D.L.Leyton,
I.R.Henderson,
and
M.H.Saier
(2010).
The bacterial intimins and invasins: a large and novel family of secreted proteins.
|
| |
PLoS One,
5,
e14403.
|
 |
|
|
|
|
 |
K.V.Evangelista,
and
J.Coburn
(2010).
Leptospira as an emerging pathogen: a review of its biology, pathogenesis and host immune responses.
|
| |
Future Microbiol,
5,
1413-1425.
|
 |
|
|
|
|
 |
R.Keller,
T.D.Hilton,
H.Rios,
E.C.Boedeker,
and
J.B.Kaper
(2010).
Development of a live oral attaching and effacing Escherichia coli vaccine candidate using Vibrio cholerae CVD 103-HgR as antigen vector.
|
| |
Microb Pathog,
48,
1-8.
|
 |
|
|
|
|
 |
R.M.Humphries,
and
G.D.Armstrong
(2010).
Sticky situation: localized adherence of enteropathogenic Escherichia coli to the small intestine epithelium.
|
| |
Future Microbiol,
5,
1645-1661.
|
 |
|
|
|
|
 |
R.S.Reis,
and
F.Horn
(2010).
Enteropathogenic Escherichia coli, Samonella, Shigella and Yersinia: cellular aspects of host-bacteria interactions in enteric diseases.
|
| |
Gut Pathog,
2,
8.
|
 |
|
|
|
|
 |
A.J.McBride,
G.M.Cerqueira,
M.A.Suchard,
A.N.Moreira,
R.L.Zuerner,
M.G.Reis,
D.A.Haake,
A.I.Ko,
and
O.A.Dellagostin
(2009).
Genetic diversity of the Leptospiral immunoglobulin-like (Lig) genes in pathogenic Leptospira spp.
|
| |
Infect Genet Evol,
9,
196-205.
|
 |
|
|
|
|
 |
D.Vingadassalom,
A.Kazlauskas,
B.Skehan,
H.C.Cheng,
L.Magoun,
D.Robbins,
M.K.Rosen,
K.Saksela,
and
J.M.Leong
(2009).
Insulin receptor tyrosine kinase substrate links the E. coli O157:H7 actin assembly effectors Tir and EspF(U) during pedestal formation.
|
| |
Proc Natl Acad Sci U S A,
106,
6754-6759.
|
 |
|
|
|
|
 |
G.Bodelón,
E.Marín,
and
L.A.Fernández
(2009).
Role of periplasmic chaperones and BamA (YaeT/Omp85) in folding and secretion of intimin from enteropathogenic Escherichia coli strains.
|
| |
J Bacteriol,
191,
5169-5179.
|
 |
|
|
|
|
 |
S.Brandt,
B.Kenny,
M.Rohde,
N.Martinez-Quiles,
and
S.Backert
(2009).
Dual infection system identifies a crucial role for PKA-mediated serine phosphorylation of the EPEC-Tir-injected effector protein in regulating Rac1 function.
|
| |
Cell Microbiol,
11,
1254-1271.
|
 |
|
|
|
|
 |
S.R.Milillo,
and
M.Wiedmann
(2009).
Contributions of six lineage-specific internalin-like genes to invasion efficiency of Listeria monocytogenes.
|
| |
Foodborne Pathog Dis,
6,
57-70.
|
 |
|
|
|
|
 |
Z.N.Yang,
H.J.Xu,
S.M.Thiem,
Y.P.Xu,
J.Q.Ge,
X.D.Tang,
C.H.Tian,
and
C.X.Zhang
(2009).
Bombyx mori nucleopolyhedrovirus ORF9 is a gene involved in the budded virus production and infectivity.
|
| |
J Gen Virol,
90,
162-169.
|
 |
|
|
|
|
 |
C.Horejs,
D.Pum,
U.B.Sleytr,
and
R.Tscheliessnig
(2008).
Structure prediction of an S-layer protein by the mean force method.
|
| |
J Chem Phys,
128,
065106.
|
 |
|
|
|
|
 |
C.R.Mace,
C.C.Striemer,
and
B.L.Miller
(2008).
Detection of human proteins using arrayed imaging reflectometry.
|
| |
Biosens Bioelectron,
24,
334-337.
|
 |
|
|
|
|
 |
G.Meng,
J.W.St Geme,
and
G.Waksman
(2008).
Repetitive architecture of the Haemophilus influenzae Hia trimeric autotransporter.
|
| |
J Mol Biol,
384,
824-836.
|
 |
|
PDB codes:
|
 |
|
|
|
|
|
 |
K.M.Das,
and
L.Biancone
(2008).
Is IBD an autoimmune disorder?
|
| |
Inflamm Bowel Dis,
14,
S97-101.
|
 |
|
|
|
|
 |
L.Biancone,
E.Calabrese,
G.Palmieri,
C.Petruzziello,
S.Onali,
G.S.Sica,
M.Cossignani,
G.Condino,
K.M.Das,
and
F.Pallone
(2008).
Ileal lesions in patients with ulcerative colitis after ileo-rectal anastomosis: relationship with colonic metaplasia.
|
| |
World J Gastroenterol,
14,
5290-5300.
|
 |
|
|
|
|
 |
N.M.Alto
(2008).
Mimicking small G-proteins: an emerging theme from the bacterial virulence arsenal.
|
| |
Cell Microbiol,
10,
566-575.
|
 |
|
|
|
|
 |
T.Pavkov,
E.M.Egelseer,
M.Tesarz,
D.I.Svergun,
U.B.Sleytr,
and
W.Keller
(2008).
The structure and binding behavior of the bacterial cell surface layer protein SbsC.
|
| |
Structure,
16,
1226-1237.
|
 |
|
PDB code:
|
 |
|
|
|
|
|
 |
Y.T.Yen,
M.Bhattacharya,
and
C.Stathopoulos
(2008).
Genome-wide in silico mapping of the secretome in pathogenic Yersinia pestis KIM.
|
| |
FEMS Microbiol Lett,
279,
56-63.
|
 |
|
|
|
|
 |
B.Bommarius,
D.Maxwell,
A.Swimm,
S.Leung,
A.Corbett,
W.Bornmann,
and
D.Kalman
(2007).
Enteropathogenic Escherichia coli Tir is an SH2/3 ligand that recruits and activates tyrosine kinases required for pedestal formation.
|
| |
Mol Microbiol,
63,
1748-1768.
|
 |
|
|
|
|
 |
D.W.Lacher,
H.Steinsland,
T.E.Blank,
M.S.Donnenberg,
and
T.S.Whittam
(2007).
Molecular evolution of typical enteropathogenic Escherichia coli: clonal analysis by multilocus sequence typing and virulence gene allelic profiling.
|
| |
J Bacteriol,
189,
342-350.
|
 |
|
|
|
|
 |
J.Croda,
J.G.Ramos,
J.Matsunaga,
A.Queiroz,
A.Homma,
L.W.Riley,
D.A.Haake,
M.G.Reis,
and
A.I.Ko
(2007).
Leptospira immunoglobulin-like proteins as a serodiagnostic marker for acute leptospirosis.
|
| |
J Clin Microbiol,
45,
1528-1534.
|
 |
|
|
|
|
 |
J.Dong,
Y.Tamaru,
and
T.Araki
(2007).
A unique beta-agarase, AgaA, from a marine bacterium, Vibrio sp. strain PO-303.
|
| |
Appl Microbiol Biotechnol,
74,
1248-1255.
|
 |
|
|
|
|
 |
J.L.Bono,
J.E.Keen,
M.L.Clawson,
L.M.Durso,
M.P.Heaton,
and
W.W.Laegreid
(2007).
Association of Escherichia coli O157:H7 tir polymorphisms with human infection.
|
| |
BMC Infect Dis,
7,
98.
|
 |
|
|
|
|
 |
J.S.Fraser,
K.L.Maxwell,
and
A.R.Davidson
(2007).
Immunoglobulin-like domains on bacteriophage: weapons of modest damage?
|
| |
Curr Opin Microbiol,
10,
382-387.
|
 |
|
|
|
|
 |
L.C.Antunes,
A.L.Schaefer,
R.B.Ferreira,
N.Qin,
A.M.Stevens,
E.G.Ruby,
and
E.P.Greenberg
(2007).
Transcriptome analysis of the Vibrio fischeri LuxR-LuxI regulon.
|
| |
J Bacteriol,
189,
8387-8391.
|
 |
|
|
|
|
 |
L.S.Burall,
Z.Liu,
R.Rank,
and
P.M.Bavoil
(2007).
The chlamydial invasin-like protein gene conundrum.
|
| |
Microbes Infect,
9,
873-880.
|
 |
|
|
|
|
 |
M.Hanajima-Ozawa,
T.Matsuzawa,
A.Fukui,
S.Kamitani,
H.Ohnishi,
A.Abe,
Y.Horiguchi,
and
M.Miyake
(2007).
Enteropathogenic Escherichia coli, Shigella flexneri, and Listeria monocytogenes recruit a junctional protein, zonula occludens-1, to actin tails and pedestals.
|
| |
Infect Immun,
75,
565-573.
|
 |
|
|
|
|
 |
N.Sukumar,
M.Mishra,
G.P.Sloan,
T.Ogi,
and
R.Deora
(2007).
Differential Bvg phase-dependent regulation and combinatorial role in pathogenesis of two Bordetella paralogs, BipA and BcfA.
|
| |
J Bacteriol,
189,
3695-3704.
|
 |
|
|
|
|
 |
N.T.Ross,
and
B.L.Miller
(2007).
Characterization of the binding surface of the translocated intimin receptor, an essential protein for EPEC and EHEC cell adhesion.
|
| |
Protein Sci,
16,
2677-2683.
|
 |
|
|
|
|
 |
R.Mundy,
S.Schüller,
F.Girard,
J.M.Fairbrother,
A.D.Phillips,
and
G.Frankel
(2007).
Functional studies of intimin in vivo and ex vivo: implications for host specificity and tissue tropism.
|
| |
Microbiology,
153,
959-967.
|
 |
|
|
|
|
 |
S.C.Hardies,
J.A.Thomas,
and
P.Serwer
(2007).
Comparative genomics of Bacillus thuringiensis phage 0305phi8-36: defining patterns of descent in a novel ancient phage lineage.
|
| |
Virol J,
4,
97.
|
 |
|
|
|
|
 |
Z.Liu,
R.Rank,
B.Kaltenboeck,
S.Magnino,
D.Dean,
L.Burall,
R.D.Plaut,
T.D.Read,
G.Myers,
and
P.M.Bavoil
(2007).
Genomic plasticity of the rrn-nqrF intergenic segment in the Chlamydiaceae.
|
| |
J Bacteriol,
189,
2128-2132.
|
 |
|
|
|
|
 |
A.Patel,
N.Cummings,
M.Batchelor,
P.J.Hill,
T.Dubois,
K.H.Mellits,
G.Frankel,
and
I.Connerton
(2006).
Host protein interactions with enteropathogenic Escherichia coli (EPEC): 14-3-3tau binds Tir and has a role in EPEC-induced actin polymerization.
|
| |
Cell Microbiol,
8,
55-71.
|
 |
|
|
|
|
 |
A.Roussel,
J.Lescar,
M.C.Vaney,
G.Wengler,
G.Wengler,
and
F.A.Rey
(2006).
Structure and interactions at the viral surface of the envelope protein E1 of Semliki Forest virus.
|
| |
Structure,
14,
75-86.
|
 |
|
PDB code:
|
 |
|
|
|
|
|
 |
C.Perrier,
N.Sprenger,
and
B.Corthésy
(2006).
Glycans on secretory component participate in innate protection against mucosal pathogens.
|
| |
J Biol Chem,
281,
14280-14287.
|
 |
|
|
|
|
 |
D.W.Lacher,
H.Steinsland,
and
T.S.Whittam
(2006).
Allelic subtyping of the intimin locus (eae) of pathogenic Escherichia coli by fluorescent RFLP.
|
| |
FEMS Microbiol Lett,
261,
80-87.
|
 |
|
|
|
|
 |
J.L.Mellies,
A.M.Barron,
K.R.Haack,
A.S.Korson,
and
D.A.Oldridge
(2006).
The global regulator Ler is necessary for enteropathogenic Escherichia coli colonization of Caenorhabditis elegans.
|
| |
Infect Immun,
74,
64-72.
|
 |
|
|
|
|
 |
J.W.Chen,
P.Romero,
V.N.Uversky,
and
A.K.Dunker
(2006).
Conservation of intrinsic disorder in protein domains and families: II. functions of conserved disorder.
|
| |
J Proteome Res,
5,
888-898.
|
 |
|
|
|
|
 |
K.G.Campellone,
M.J.Brady,
J.G.Alamares,
D.C.Rowe,
B.M.Skehan,
D.J.Tipper,
and
J.M.Leong
(2006).
Enterohaemorrhagic Escherichia coli Tir requires a C-terminal 12-residue peptide to initiate EspF-mediated actin assembly and harbours N-terminal sequences that influence pedestal length.
|
| |
Cell Microbiol,
8,
1488-1503.
|
 |
|
|
|
|
 |
P.R.Race,
J.H.Lakey,
and
M.J.Banfield
(2006).
Insertion of the enteropathogenic Escherichia coli Tir virulence protein into membranes in vitro.
|
| |
J Biol Chem,
281,
7842-7849.
|
 |
|
|
|
|
 |
R.D.Hayward,
J.M.Leong,
V.Koronakis,
and
K.G.Campellone
(2006).
Exploiting pathogenic Escherichia coli to model transmembrane receptor signalling.
|
| |
Nat Rev Microbiol,
4,
358-370.
|
 |
|
|
|
|
 |
S.Frese,
W.D.Schubert,
A.C.Findeis,
T.Marquardt,
Y.S.Roske,
T.E.Stradal,
and
D.W.Heinz
(2006).
The phosphotyrosine peptide binding specificity of Nck1 and Nck2 Src homology 2 domains.
|
| |
J Biol Chem,
281,
18236-18245.
|
 |
|
PDB codes:
|
 |
|
|
|
|
|
 |
S.R.Horner,
C.R.Mace,
L.J.Rothberg,
and
B.L.Miller
(2006).
A proteomic biosensor for enteropathogenic E. coli.
|
| |
Biosens Bioelectron,
21,
1659-1663.
|
 |
|
|
|
|
 |
A.G.Torres,
X.Zhou,
and
J.B.Kaper
(2005).
Adherence of diarrheagenic Escherichia coli strains to epithelial cells.
|
| |
Infect Immun,
73,
18-29.
|
 |
|
|
|
|
 |
A.N.Zelensky,
and
J.E.Gready
(2005).
The C-type lectin-like domain superfamily.
|
| |
FEBS J,
272,
6179-6217.
|
 |
|
|
|
|
 |
E.Allen-Vercoe,
M.C.Toh,
B.Waddell,
H.Ho,
and
R.DeVinney
(2005).
A carboxy-terminal domain of Tir from enterohemorrhagic Escherichia coli O157:H7 (EHEC O157:H7) required for efficient type III secretion.
|
| |
FEMS Microbiol Lett,
243,
355-364.
|
 |
|
|
|
|
 |
G.Lindahl,
M.Stålhammar-Carlemalm,
and
T.Areschoug
(2005).
Surface proteins of Streptococcus agalactiae and related proteins in other bacterial pathogens.
|
| |
Clin Microbiol Rev,
18,
102-127.
|
 |
|
|
|
|
 |
H.D.Chen,
and
G.Frankel
(2005).
Enteropathogenic Escherichia coli: unravelling pathogenesis.
|
| |
FEMS Microbiol Rev,
29,
83-98.
|
 |
|
|
|
|
 |
J.Garmendia,
G.Frankel,
and
V.F.Crepin
(2005).
Enteropathogenic and enterohemorrhagic Escherichia coli infections: translocation, translocation, translocation.
|
| |
Infect Immun,
73,
2573-2585.
|
 |
|
|
|
|
 |
J.Matsunaga,
Y.Sanchez,
X.Xu,
and
D.A.Haake
(2005).
Osmolarity, a key environmental signal controlling expression of leptospiral proteins LigA and LigB and the extracellular release of LigA.
|
| |
Infect Immun,
73,
70-78.
|
 |
|
|
|
|
 |
K.E.Hyma,
D.W.Lacher,
A.M.Nelson,
A.C.Bumbaugh,
J.M.Janda,
N.A.Strockbine,
V.B.Young,
and
T.S.Whittam
(2005).
Evolutionary genetics of a new pathogenic Escherichia species: Escherichia albertii and related Shigella boydii strains.
|
| |
J Bacteriol,
187,
619-628.
|
 |
|
|
|
|
 |
K.W.Wong,
and
R.R.Isberg
(2005).
Emerging views on integrin signaling via Rac1 during invasin-promoted bacterial uptake.
|
| |
Curr Opin Microbiol,
8,
4-9.
|
 |
|
|
|
|
 |
N.A.Thomas,
W.Deng,
J.L.Puente,
E.A.Frey,
C.K.Yip,
N.C.Strynadka,
and
B.B.Finlay
(2005).
CesT is a multi-effector chaperone and recruitment factor required for the efficient type III secretion of both LEE- and non-LEE-encoded effectors of enteropathogenic Escherichia coli.
|
| |
Mol Microbiol,
57,
1762-1779.
|
 |
|
|
|
|
 |
S.A.McMahon,
J.L.Miller,
J.A.Lawton,
D.E.Kerkow,
A.Hodes,
M.A.Marti-Renom,
S.Doulatov,
E.Narayanan,
A.Sali,
J.F.Miller,
and
P.Ghosh
(2005).
The C-type lectin fold as an evolutionary solution for massive sequence variation.
|
| |
Nat Struct Mol Biol,
12,
886-892.
|
 |
|
PDB codes:
|
 |
|
|
|
|
|
 |
T.M.Adams,
A.Wentzel,
and
H.Kolmar
(2005).
Intimin-mediated export of passenger proteins requires maintenance of a translocation-competent conformation.
|
| |
J Bacteriol,
187,
522-533.
|
 |
|
|
|
|
 |
T.S.Agin,
C.Zhu,
L.A.Johnson,
T.E.Thate,
Z.Yang,
and
E.C.Boedeker
(2005).
Protection against hemorrhagic colitis in an animal model by oral immunization with isogeneic rabbit enteropathogenic Escherichia coli attenuated by truncating intimin.
|
| |
Infect Immun,
73,
6608-6619.
|
 |
|
|
|
|
 |
A.P.Tampakaki,
V.E.Fadouloglou,
A.D.Gazi,
N.J.Panopoulos,
and
M.Kokkinidis
(2004).
Conserved features of type III secretion.
|
| |
Cell Microbiol,
6,
805-816.
|
 |
|
|
|
|
 |
C.B.O'Connell,
E.A.Creasey,
S.Knutton,
S.Elliott,
L.J.Crowther,
W.Luo,
M.J.Albert,
J.B.Kaper,
G.Frankel,
and
M.S.Donnenberg
(2004).
SepL, a protein required for enteropathogenic Escherichia coli type III translocation, interacts with secretion component SepD.
|
| |
Mol Microbiol,
52,
1613-1625.
|
 |
|
|
|
|
 |
H.Remaut,
and
G.Waksman
(2004).
Structural biology of bacterial pathogenesis.
|
| |
Curr Opin Struct Biol,
14,
161-170.
|
 |
|
|
|
|
 |
J.F.Sinclair,
and
A.D.O'Brien
(2004).
Intimin types alpha, beta, and gamma bind to nucleolin with equivalent affinity but lower avidity than to the translocated intimin receptor.
|
| |
J Biol Chem,
279,
33751-33758.
|
 |
|
|
|
|
 |
T.Touzé,
R.D.Hayward,
J.Eswaran,
J.M.Leong,
and
V.Koronakis
(2004).
Self-association of EPEC intimin mediated by the beta-barrel-containing anchor domain: a role in clustering of the Tir receptor.
|
| |
Mol Microbiol,
51,
73-87.
|
 |
|
|
|
|
 |
A.Blocker,
K.Komoriya,
and
S.Aizawa
(2003).
Type III secretion systems and bacterial flagella: insights into their function from structural similarities.
|
| |
Proc Natl Acad Sci U S A,
100,
3027-3030.
|
 |
|
|
|
|
 |
A.Gauthier,
and
B.B.Finlay
(2003).
Translocated intimin receptor and its chaperone interact with ATPase of the type III secretion apparatus of enteropathogenic Escherichia coli.
|
| |
J Bacteriol,
185,
6747-6755.
|
 |
|
|
|
|
 |
A.Hawrani,
C.E.Dempsey,
M.J.Banfield,
D.J.Scott,
A.R.Clarke,
and
B.Kenny
(2003).
Effect of protein kinase A-mediated phosphorylation on the structure and association properties of the enteropathogenic Escherichia coli Tir virulence protein.
|
| |
J Biol Chem,
278,
25839-25846.
|
 |
|
|
|
|
 |
E.Veiga,
V.de Lorenzo,
and
L.A.Fernández
(2003).
Autotransporters as scaffolds for novel bacterial adhesins: surface properties of Escherichia coli cells displaying Jun/Fos dimerization domains.
|
| |
J Bacteriol,
185,
5585-5590.
|
 |
|
|
|
|
 |
J.Matsunaga,
M.A.Barocchi,
J.Croda,
T.A.Young,
Y.Sanchez,
I.Siqueira,
C.A.Bolin,
M.G.Reis,
L.W.Riley,
D.A.Haake,
and
A.I.Ko
(2003).
Pathogenic Leptospira species express surface-exposed proteins belonging to the bacterial immunoglobulin superfamily.
|
| |
Mol Microbiol,
49,
929-945.
|
 |
|
|
|
|
 |
L.Biancone,
G.Palmieri,
A.Lombardi,
A.Colantoni,
F.Tonelli,
K.M.Das,
and
F.Pallone
(2003).
Tropomyosin expression in the ileal pouch: a relationship with the development of pouchitis in ulcerative colitis.
|
| |
Am J Gastroenterol,
98,
2719-2726.
|
 |
|
|
|
|
 |
M.M.Barnhart,
F.G.Sauer,
J.S.Pinkner,
and
S.J.Hultgren
(2003).
Chaperone-subunit-usher interactions required for donor strand exchange during bacterial pilus assembly.
|
| |
J Bacteriol,
185,
2723-2730.
|
 |
|
|
|
|
 |
S.C.Clarke,
R.D.Haigh,
P.P.Freestone,
and
P.H.Williams
(2003).
Virulence of enteropathogenic Escherichia coli, a global pathogen.
|
| |
Clin Microbiol Rev,
16,
365-378.
|
 |
|
|
|
|
 |
V.Ramachandran,
K.Brett,
M.A.Hornitzky,
M.Dowton,
K.A.Bettelheim,
M.J.Walker,
and
S.P.Djordjevic
(2003).
Distribution of intimin subtypes among Escherichia coli isolates from ruminant and human sources.
|
| |
J Clin Microbiol,
41,
5022-5032.
|
 |
|
|
|
|
 |
C.Horne,
B.A.Vallance,
W.Deng,
and
B.B.Finlay
(2002).
Current progress in enteropathogenic and enterohemorrhagic Escherichia coli vaccines.
|
| |
Expert Rev Vaccines,
1,
483-493.
|
 |
|
|
|
|
 |
C.L.Tarr,
and
T.S.Whittam
(2002).
Molecular evolution of the intimin gene in O111 clones of pathogenic Escherichia coli.
|
| |
J Bacteriol,
184,
479-487.
|
 |
|
|
|
|
 |
H.Liu,
P.Radhakrishnan,
L.Magoun,
M.Prabu,
K.G.Campellone,
P.Savage,
F.He,
C.A.Schiffer,
and
J.M.Leong
(2002).
Point mutants of EHEC intimin that diminish Tir recognition and actin pedestal formation highlight a putative Tir binding pocket.
|
| |
Mol Microbiol,
45,
1557-1573.
|
 |
|
|
|
|
 |
L.Huang,
B.Mittal,
J.W.Sanger,
and
J.M.Sanger
(2002).
Host focal adhesion protein domains that bind to the translocated intimin receptor (Tir) of enteropathogenic Escherichia coli (EPEC).
|
| |
Cell Motil Cytoskeleton,
52,
255-265.
|
 |
|
|
|
|
 |
R.J.Fitzhenry,
S.Reece,
L.R.Trabulsi,
R.Heuschkel,
S.Murch,
M.Thomson,
G.Frankel,
and
A.D.Phillips
(2002).
Tissue tropism of enteropathogenic Escherichia coli strains belonging to the O55 serogroup.
|
| |
Infect Immun,
70,
4362-4368.
|
 |
|
|
|
|
 |
R.U.Palaniappan,
Y.F.Chang,
S.S.Jusuf,
S.Artiushin,
J.F.Timoney,
S.P.McDonough,
S.C.Barr,
T.J.Divers,
K.W.Simpson,
P.L.McDonough,
and
H.O.Mohammed
(2002).
Cloning and molecular characterization of an immunogenic LigA protein of Leptospira interrogans.
|
| |
Infect Immun,
70,
5924-5930.
|
 |
|
|
|
|
 |
S.Laarmann,
D.Cutter,
T.Juehne,
S.J.Barenkamp,
and
J.W.St Geme
(2002).
The Haemophilus influenzae Hia autotransporter harbours two adhesive pockets that reside in the passenger domain and recognize the same host cell receptor.
|
| |
Mol Microbiol,
46,
731-743.
|
 |
|
|
|
|
 |
W.L.Zhang,
B.Köhler,
E.Oswald,
L.Beutin,
H.Karch,
S.Morabito,
A.Caprioli,
S.Suerbaum,
and
H.Schmidt
(2002).
Genetic diversity of intimin genes of attaching and effacing Escherichia coli strains.
|
| |
J Clin Microbiol,
40,
4486-4492.
|
 |
|
|
|
|
 |
A.Wentzel,
A.Christmann,
T.Adams,
and
H.Kolmar
(2001).
Display of passenger proteins on the surface of Escherichia coli K-12 by the enterohemorrhagic E. coli intimin EaeA.
|
| |
J Bacteriol,
183,
7273-7284.
|
 |
|
|
|
|
 |
B.Kenny,
and
J.Warawa
(2001).
Enteropathogenic Escherichia coli (EPEC) Tir receptor molecule does not undergo full modification when introduced into host cells by EPEC-independent mechanisms.
|
| |
Infect Immun,
69,
1444-1453.
|
 |
|
|
|
|
 |
D.L.Goosney,
R.DeVinney,
and
B.B.Finlay
(2001).
Recruitment of cytoskeletal and signaling proteins to enteropathogenic and enterohemorrhagic Escherichia coli pedestals.
|
| |
Infect Immun,
69,
3315-3322.
|
 |
|
|
|
|
 |
J.Pieters
(2001).
Evasion of host cell defense mechanisms by pathogenic bacteria.
|
| |
Curr Opin Immunol,
13,
37-44.
|
 |
|
|
|
|
 |
J.Warawa,
and
B.Kenny
(2001).
Phosphoserine modification of the enteropathogenic Escherichia coli Tir molecule is required to trigger conformational changes in Tir and efficient pedestal elongation.
|
| |
Mol Microbiol,
42,
1269-1280.
|
 |
|
|
|
|
 |
K.E.Stockbauer,
B.Fuchslocher,
J.F.Miller,
and
P.A.Cotter
(2001).
Identification and characterization of BipA, a Bordetella Bvg-intermediate phase protein.
|
| |
Mol Microbiol,
39,
65-78.
|
 |
|
|
|
|
 |
M.Ghaem-Maghami,
C.P.Simmons,
S.Daniell,
M.Pizza,
D.Lewis,
G.Frankel,
and
G.Dougan
(2001).
Intimin-specific immune responses prevent bacterial colonization by the attaching-effacing pathogen Citrobacter rodentium.
|
| |
Infect Immun,
69,
5597-5605.
|
 |
|
|
|
|
 |
M.S.Donnenberg,
and
T.S.Whittam
(2001).
Pathogenesis and evolution of virulence in enteropathogenic and enterohemorrhagic Escherichia coli.
|
| |
J Clin Invest,
107,
539-548.
|
 |
|
|
|
|
 |
R.DeVinney,
J.L.Puente,
A.Gauthier,
D.Goosney,
and
B.B.Finlay
(2001).
Enterohaemorrhagic and enteropathogenic Escherichia coli use a different Tir-based mechanism for pedestal formation.
|
| |
Mol Microbiol,
41,
1445-1458.
|
 |
|
|
|
|
 |
R.Deora,
H.J.Bootsma,
J.F.Miller,
and
P.A.Cotter
(2001).
Diversity in the Bordetella virulence regulon: transcriptional control of a Bvg-intermediate phase gene.
|
| |
Mol Microbiol,
40,
669-683.
|
 |
|
|
|
|
 |
S.Backert,
S.Moese,
M.Selbach,
V.Brinkmann,
and
T.F.Meyer
(2001).
Phosphorylation of tyrosine 972 of the Helicobacter pylori CagA protein is essential for induction of a scattering phenotype in gastric epithelial cells.
|
| |
Mol Microbiol,
42,
631-644.
|
 |
|
|
|
|
 |
S.Reece,
C.P.Simmons,
R.J.Fitzhenry,
S.Matthews,
A.D.Phillips,
G.Dougan,
and
G.Frankel
(2001).
Site-directed mutagenesis of intimin alpha modulates intimin-mediated tissue tropism and host specificity.
|
| |
Mol Microbiol,
40,
86-98.
|
 |
|
 |
 |
|
The most recent references are shown first.
Citation data come partly from CiteXplore and partly
from an automated harvesting procedure. Note that this is likely to be
only a partial list as not all journals are covered by
either method. However, we are continually building up the citation data
so more and more references will be included with time.
Where a reference describes a PDB structure, the PDB
code is
shown on the right.
|
');
}
}
 |