spacer
spacer

PDBsum entry 1exs

Go to PDB code: 
protein ligands metals links
Lipid binding protein PDB id
1exs

 

 

 

 

Loading ...

 
JSmol PyMol  
Contents
Protein chain
160 a.a. *
Ligands
GOL
Metals
_NA
Waters ×154
* Residue conservation analysis
PDB id:
1exs
Name: Lipid binding protein
Title: Structure of porcine beta-lactoglobulin
Structure: Beta-lactoglobulin. Chain: a. Fragment: variant 1a. Other_details: a putative but biologically functional dimer is created by the crystallographic 2-fold axis
Source: Sus scrofa. Pig. Organism_taxid: 9823. Secretion: milk
Biol. unit: Dimer (from PDB file)
Resolution:
2.39Å     R-factor:   0.219     R-free:   0.282
Authors: J.P.Abrahams,F.J.Hoedemaeker
Key ref:
F.J.Hoedemaeker et al. (2002). A novel pH-dependent dimerization motif in beta-lactoglobulin from pig (Sus scrofa). Acta Crystallogr D Biol Crystallogr, 58, 480-486. PubMed id: 11856834 DOI: 10.1107/S0907444902000616
Date:
04-May-00     Release date:   15-Nov-00    
PROCHECK
Go to PROCHECK summary
 Headers
 References

Protein chain
Pfam   ArchSchema ?
P04119  (LACB_PIG) -  Beta-lactoglobulin-1A/1C from Sus scrofa
Seq:
Struc:
178 a.a.
160 a.a.
Key:    PfamA domain  Secondary structure  CATH domain

 

 
DOI no: 10.1107/S0907444902000616 Acta Crystallogr D Biol Crystallogr 58:480-486 (2002)
PubMed id: 11856834  
 
 
A novel pH-dependent dimerization motif in beta-lactoglobulin from pig (Sus scrofa).
F.J.Hoedemaeker, R.W.Visschers, A.C.Alting, K.G.de Kruif, M.E.Kuil, J.P.Abrahams.
 
  ABSTRACT  
 
beta-Lactoglobulin (BLG) is a lipocalin and is the major protein in the whey of the milk of cows and other ruminants, but not in all mammalian species. The biological function of BLG is not clear, but a potential role in carrying fatty acids through the digestive tract has been proposed. The capability of BLG to aggregate and form gels is often used to thicken foodstuffs. The structure of the porcine form is sufficiently different from other known BLG structures that SIRAS phases had to be measured in order to solve the crystal structure to 2.4 A resolution. The r.m.s. deviation of C(alpha) atoms is 2.8 A between porcine and bovine BLG. Nevertheless, the typical lipocalin fold is conserved. Compared with bovine BLG, the tilted alpha-helix alters the arrangement of surface residues of the porcine form, completely changing the dimerization behaviour. Through a unique pH-dependent domain-swapping mechanism involving the first ten residues, a novel dimer interface is formed at the N-terminus of porcine BLG. The existence of this novel dimer at low pH is supported by gel-filtration experiments. These results provide a rationale for the difference in physicochemical behaviour between bovine and porcine BLG and point the way towards engineering such dimerization motifs into other members of the lipocalin family.
 
  Selected figure(s)  
 
Figure 3.
Figure 3 (Divergent) stereo image of the dimer interface. Residues forming side-chain interactions, as well as residues 1 and 13, are labelled. This figure was produced with SETOR (Evans, 1993[Evans, S. V. (1993). J. Mol. Graph. 11, 134-138.]) [199][Figure 4]
Figure 4.
Figure 4 Different (putative) dimeric forms of lipocalins. Disulfide bridges are indicated in yellow; free cysteines are indicated in green. The dimers were automatically generated from the original PDB entries by the PQS server ([201]http://pqs.ebi.ac.uk ). (a) Bovine odorant-binding protein ([202]1obp ; Tegoni et al., 1996[203] [Tegoni, M., Ramoni, R., Bignetti, E., Spinelli, S. & Cambillau, C. (1996). Nature Struct. Biol. 3, 863-867.]-[204][bluearr.gif] ), buried surface area 2399.7 Å2. (b) Porcine BLG ([205]1exs ; this paper), buried surface area 1757.7 Å2. (c) Major horse allergen (1ew3; Lascombe et al., 2000[206] [Lascombe, M. B., Gregoire, C., Poncet, P., Tavares, G. A., Rosinski-Chupin, I., Rabillon, J., Goubran-Botros, H., Mazie, J. C., David, B. & Alzari, P. M. (2000). J. Biol. Chem. 275, 21572-21577.]-[207][bluearr.gif] ), buried surface area 1023.3 Å2. (d) Porcine odorant-binding protein ([208]1e06 ; Spinelli et al., 1998[209] [Spinelli, S., Ramoni, R., Grolli, S., Bonicel, J., Cambillau, C. & Tegoni, M. (1998). Biochemistry, 37, 7913-7918.]-[210][bluearr.gif] ), buried surface area 848.2 Å2. (e) Nitrophorin 4 ([211]1eqd ; Weichsel et al., 2000[212] [Weichsel, A., Andersen, J. F., Roberts, S. A. & Montfort, W. R. (2000). Nature Struct. Biol. 7, 551-554.]-[213][bluearr.gif] ), buried surface area 789.1 Å2. (f) Bovine BLG ([214]1b0o ; Wu et al., 1999[215] [Wu, S. Y., Perez, M. D., Puyol, P. & Sawyer, L. (1999). J. Biol. Chem. 274, 170-174.]-[216][bluearr.gif] ), buried surface area 484.1 Å2. The figure was produced with Weblab Viewer Lite (MSI).
 
  The above figures are reprinted by permission from the IUCr: Acta Crystallogr D Biol Crystallogr (2002, 58, 480-486) copyright 2002.  
  Figures were selected by an automated process.  

Literature references that cite this PDB file's key reference

  PubMed id Reference
19137619 S.Tsukamoto, T.Yamashita, Y.Yamada, K.Fujiwara, K.Maki, K.Kuwajima, Y.Matsumura, H.Kihara, H.Tsuge, and M.Ikeguchi (2009).
Non-native alpha-helix formation is not necessary for folding of lipocalin: comparison of burst-phase folding between tear lipocalin and beta-lactoglobulin.
  Proteins, 76, 226-236.  
18190694 B.Adam, B.Charloteaux, J.Beaufays, L.Vanhamme, E.Godfroid, R.Brasseur, and L.Lins (2008).
Distantly related lipocalins share two conserved clusters of hydrophobic residues: use in homology modeling.
  BMC Struct Biol, 8, 1.  
17932936 L.Vijayalakshmi, R.Krishna, R.Sankaranarayanan, and M.Vijayan (2008).
An asymmetric dimer of beta-lactoglobulin in a low humidity crystal form--structural changes that accompany partial dehydration and protein action.
  Proteins, 71, 241-249.
PDB codes: 2q2m 2q2p 2q39
16770828 G.Invernizzi, M.Samalikova, S.Brocca, M.Lotti, H.Molinari, and R.Grandori (2006).
Comparison of bovine and porcine beta-lactoglobulin: a mass spectrometric analysis.
  J Mass Spectrom, 41, 717-727.  
15526300 L.D'Alfonso, M.Collini, L.Ragona, R.Ugolini, G.Baldini, and H.Molinari (2005).
Porcine beta-lactoglobulin chemical unfolding: identification of a non-native alpha-helical intermediate.
  Proteins, 58, 70-79.  
14579350 C.Venclovas, A.Zemla, K.Fidelis, and J.Moult (2003).
Assessment of progress over the CASP experiments.
  Proteins, 53, 585-595.  
12180972 T.V.Burova, N.V.Grinberg, R.W.Visschers, V.Y.Grinberg, and C.G.De Kruif (2002).
Thermodynamic stability of porcine beta-lactoglobulin. A structural relevance.
  Eur J Biochem, 269, 3958-3968.  
The most recent references are shown first. Citation data come partly from CiteXplore and partly from an automated harvesting procedure. Note that this is likely to be only a partial list as not all journals are covered by either method. However, we are continually building up the citation data so more and more references will be included with time. Where a reference describes a PDB structure, the PDB codes are shown on the right.

 

spacer

spacer