spacer
spacer

PDBsum entry 1ea0

Go to PDB code: 
protein ligands Protein-protein interface(s) links
Oxidoreductase PDB id
1ea0

 

 

 

 

Loading ...

 
JSmol PyMol  
Contents
Protein chains
1452 a.a. *
Ligands
OMT ×2
FMN ×2
AKG ×2
F3S ×2
* Residue conservation analysis
PDB id:
1ea0
Name: Oxidoreductase
Title: Alpha subunit of a. Brasilense glutamate synthase
Structure: Glutamate synthase [nadph] large chain. Chain: a, b. Synonym: glutamate synthase alpha subunit, NADPH-gogat, glts alpha chain. Engineered: yes
Source: Azospirillum brasilense. Organism_taxid: 192. Expressed in: escherichia coli. Expression_system_taxid: 469008.
Resolution:
3.00Å     R-factor:   0.256     R-free:   0.287
Authors: C.Binda,R.T.Bossi,M.A.Vanoni,A.Mattevi
Key ref:
C.Binda et al. (2000). Cross-talk and ammonia channeling between active centers in the unexpected domain arrangement of glutamate synthase. Structure, 8, 1299-1308. PubMed id: 11188694 DOI: 10.1016/S0969-2126(00)00540-2
Date:
02-Nov-00     Release date:   01-Nov-01    
PROCHECK
Go to PROCHECK summary
 Headers
 References

Protein chains
Pfam   ArchSchema ?
Q05755  (GLTB_AZOBR) -  Glutamate synthase [NADPH] large chain from Azospirillum brasilense
Seq:
Struc:
 
Seq:
Struc:
 
Seq:
Struc:
1515 a.a.
1452 a.a.
Key:    PfamA domain  Secondary structure  CATH domain

 Enzyme reactions 
   Enzyme class: E.C.1.4.1.13  - glutamate synthase (NADPH).
[IntEnz]   [ExPASy]   [KEGG]   [BRENDA]
      Reaction: 2 L-glutamate + NADP+ = L-glutamine + 2-oxoglutarate + NADPH + H+
2 × L-glutamate
+ NADP(+)
=
L-glutamine
Bound ligand (Het Group name = AKG)
corresponds exactly
+ 2-oxoglutarate
+ NADPH
+ H(+)
      Cofactor: FAD; FMN; Iron-sulfur
FAD
FMN
Bound ligand (Het Group name = FMN) corresponds exactly
Iron-sulfur
Molecule diagrams generated from .mol files obtained from the KEGG ftp site

 

 
    reference    
 
 
DOI no: 10.1016/S0969-2126(00)00540-2 Structure 8:1299-1308 (2000)
PubMed id: 11188694  
 
 
Cross-talk and ammonia channeling between active centers in the unexpected domain arrangement of glutamate synthase.
C.Binda, R.T.Bossi, S.Wakatsuki, S.Arzt, A.Coda, B.Curti, M.A.Vanoni, A.Mattevi.
 
  ABSTRACT  
 
INTRODUCTION: The complex iron-sulfur flavoprotein glutamate synthase catalyses the reductive synthesis of L-glutamate from 2-oxoglutarate and L-glutamine, a reaction in the plant and bacterial pathway for ammonia assimilation. The enzyme functions through three distinct active centers carrying out L-glutamine hydrolysis, conversion of 2-oxoglutarate into L-glutamate, and electron uptake from an electron donor. RESULTS: The 3.0 A crystal structure of the dimeric 324 kDa core protein of a bacterial glutamate synthase was solved by the MAD method, using the very weak anomalous signal of the two 3Fe-4S clusters present in the asymmetric unit. The 1,472 amino acids of the monomer fold into a four-domain architecture. The two catalytic domains have canonical Ntn-amidotransferase and FMN binding (beta/alpha)8 barrel folds, respectively. The other two domains have an unusual "cut (beta/alpha)8 barrel" topology and an unexpected novel beta-helix structure. Channeling of the ammonia intermediate is brought about by an internal tunnel of 31 A length, which runs from the site of L-glutamine hydrolysis to the site of L-glutamate synthesis. CONCLUSIONS: The outstanding property of glutamate synthase is the ability to coordinate the activity of its various functional sites to avoid wasteful consumption of L-glutamine. The structure reveals two polypeptide segments that connect the catalytic centers and embed the ammonia tunnel, thus being ideally suited to function in interdomain signaling. Depending on the enzyme redox and ligation states, these signal-transducing elements may affect the active site geometry and control ammonia diffusion through a gating mechanism.
 
  Selected figure(s)  
 
Figure 1.
Figure 1. Scheme of the Overall Reaction Catalyzed by the a Subunit of A. brasilense GltS

 
  The above figure is reprinted by permission from Cell Press: Structure (2000, 8, 1299-1308) copyright 2000.  
  Figure was selected by the author.  

Literature references that cite this PDB file's key reference

  PubMed id Reference
20630732 H.B.Dincturk, R.Cunin, and H.Akce (2011).
Expression and functional analysis of glutamate synthase small subunit-like proteins from archaeon Pyrococcus horikoshii.
  Microbiol Res, 166, 294-303.  
19320747 J.B.Glass, F.Wolfe-Simon, and A.D.Anbar (2009).
Coevolution of metal availability and nitrogen assimilation in cyanobacteria and algae.
  Geobiology, 7, 100-123.  
18421771 M.A.Vanoni, and B.Curti (2008).
Structure-function studies of glutamate synthases: a class of self-regulated iron-sulfur flavoenzymes essential for nitrogen assimilation.
  IUBMB Life, 60, 287-300.  
18199747 M.Cottevieille, E.Larquet, S.Jonic, M.V.Petoukhov, G.Caprini, S.Paravisi, D.I.Svergun, M.A.Vanoni, and N.Boisset (2008).
The subnanometer resolution structure of the glutamate synthase 1.2-MDa hexamer by cryoelectron microscopy and its oligomerization behavior in solution: functional implications.
  J Biol Chem, 283, 8237-8249.
PDB code: 2vdc
19000309 M.Podar, I.Anderson, K.S.Makarova, J.G.Elkins, N.Ivanova, M.A.Wall, A.Lykidis, K.Mavromatis, H.Sun, M.E.Hudson, W.Chen, C.Deciu, D.Hutchison, J.R.Eads, A.Anderson, F.Fernandes, E.Szeto, A.Lapidus, N.C.Kyrpides, M.H.Saier, P.M.Richardson, R.Rachel, H.Huber, J.A.Eisen, E.V.Koonin, M.Keller, and K.O.Stetter (2008).
A genomic analysis of the archaeal system Ignicoccus hospitalis-Nanoarchaeum equitans.
  Genome Biol, 9, R158.  
19094041 S.Jonić, C.O.Sorzano, and N.Boisset (2008).
Comparison of single-particle analysis and electron tomography approaches: an overview.
  J Microsc, 232, 562-579.  
17611751 C.O.Sorzano, S.Jonic, M.Cottevieille, E.Larquet, N.Boisset, and S.Marco (2007).
3D electron microscopy of biological nanomachines: principles and applications.
  Eur Biophys J, 36, 995.  
17237175 M.Kameya, T.Ikeda, M.Nakamura, H.Arai, M.Ishii, and Y.Igarashi (2007).
A novel ferredoxin-dependent glutamate synthase from the hydrogen-oxidizing chemoautotrophic bacterium Hydrogenobacter thermophilus TK-6.
  J Bacteriol, 189, 2805-2812.  
  17077485 A.Cámara-Artigas, M.Hirasawa, D.B.Knaff, M.Wang, and J.P.Allen (2006).
Crystallization and structural analysis of GADPH from Spinacia oleracea in a new form.
  Acta Crystallogr Sect F Struct Biol Cryst Commun, 62, 1087-1092.
PDB code: 2hki
16862623 B.van Breukelen, A.Barendregt, A.J.Heck, and R.H.van den Heuvel (2006).
Resolving stoichiometries and oligomeric states of glutamate synthase protein complexes with curve fitting and simulation of electrospray mass spectra.
  Rapid Commun Mass Spectrom, 20, 2490-2496.  
16636918 V.Demir, and H.B.Dincturk (2006).
Semi-anaerobic growth conditions are favoured by some Escherichia coli strains during heterologous expression of some archaeal proteins.
  Mol Biol Rep, 33, 59-63.  
16143852 A.Suzuki, and D.B.Knaff (2005).
Glutamate synthase: structural, mechanistic and regulatory properties, and role in the amino acid metabolism.
  Photosynth Res, 83, 191-217.  
15911615 J.Zhu, J.W.Burgner, E.Harms, B.R.Belitsky, and J.L.Smith (2005).
A new arrangement of (beta/alpha)8 barrels in the synthase subunit of PLP synthase.
  J Biol Chem, 280, 27914-27923.
PDB code: 1znn
16143853 M.A.Vanoni, L.Dossena, R.H.van den Heuvel, and B.Curti (2005).
Structure-function studies on the complex iron-sulfur flavoprotein glutamate synthase: the key enzyme of ammonia assimilation.
  Photosynth Res, 83, 219-238.  
15498940 V.M.Coiro, A.Di Nola, M.A.Vanoni, M.Aschi, A.Coda, B.Curti, and D.Roccatano (2004).
Molecular dynamics simulation of the interaction between the complex iron-sulfur flavoprotein glutamate synthase and its substrates.
  Protein Sci, 13, 2979-2991.  
14622288 M.H.Hefti, J.Vervoort, and W.J.van Berkel (2003).
Deflavination and reconstitution of flavoproteins.
  Eur J Biochem, 270, 4227-4242.  
12777402 M.V.Petoukhov, D.I.Svergun, P.V.Konarev, S.Ravasio, R.H.van den Heuvel, B.Curti, and M.A.Vanoni (2003).
Quaternary structure of Azospirillum brasilense NADPH-dependent glutamate synthase in solution as revealed by synchrotron radiation x-ray scattering.
  J Biol Chem, 278, 29933-29939.  
11967268 R.H.van den Heuvel, D.Ferrari, R.T.Bossi, S.Ravasio, B.Curti, M.A.Vanoni, F.J.Florencio, and A.Mattevi (2002).
Structural studies on the synchronization of catalytic centers in glutamate synthase.
  J Biol Chem, 277, 24579-24583.
PDB codes: 1llw 1llz 1lm1
11331018 S.Ravasio, B.Curti, and M.A.Vanoni (2001).
Determination of the midpoint potential of the FAD and FMN flavin cofactors and of the 3Fe-4S cluster of glutamate synthase.
  Biochemistry, 40, 5533-5541.  
The most recent references are shown first. Citation data come partly from CiteXplore and partly from an automated harvesting procedure. Note that this is likely to be only a partial list as not all journals are covered by either method. However, we are continually building up the citation data so more and more references will be included with time. Where a reference describes a PDB structure, the PDB code is shown on the right.

 

spacer

spacer