spacer
spacer

PDBsum entry 1e67

Go to PDB code: 
protein ligands metals Protein-protein interface(s) links
Electron transport PDB id
1e67

 

 

 

 

Loading ...

 
JSmol PyMol  
Contents
Protein chains
128 a.a. *
Ligands
NO3
Metals
_ZN ×4
Waters ×322
* Residue conservation analysis
PDB id:
1e67
Name: Electron transport
Title: Zn-azurin from pseudomonas aeruginosa
Structure: Azurin. Chain: a, b, c, d. Engineered: yes
Source: Pseudomonas aeruginosa. Organism_taxid: 287. Expressed in: escherichia coli. Expression_system_taxid: 83333. Expression_system_variant: kmbl1164
Biol. unit: Monomer (from PDB file)
Resolution:
2.14Å     R-factor:   0.172    
Authors: H.Nar,A.Messerschmidt
Key ref: H.Nar et al. (1992). Characterization and crystal structure of zinc azurin, a by-product of heterologous expression in Escherichia coli of Pseudomonas aeruginosa copper azurin. Eur J Biochem, 205, 1123-1129. PubMed id: 1576995
Date:
09-Aug-00     Release date:   16-Aug-00    
PROCHECK
Go to PROCHECK summary
 Headers
 References

Protein chains
Pfam   ArchSchema ?
P00282  (AZUR_PSEAE) -  Azurin from Pseudomonas aeruginosa (strain ATCC 15692 / DSM 22644 / CIP 104116 / JCM 14847 / LMG 12228 / 1C / PRS 101 / PAO1)
Seq:
Struc:
148 a.a.
128 a.a.
Key:    PfamA domain  Secondary structure  CATH domain

 

 
Eur J Biochem 205:1123-1129 (1992)
PubMed id: 1576995  
 
 
Characterization and crystal structure of zinc azurin, a by-product of heterologous expression in Escherichia coli of Pseudomonas aeruginosa copper azurin.
H.Nar, R.Huber, A.Messerschmidt, A.C.Filippou, M.Barth, M.Jaquinod, M.van de Kamp, G.W.Canters.
 
  ABSTRACT  
 
Azurin*, a by-product of heterologous expression of the gene encoding the blue copper protein azurin from Pseudomonas aeruginosa in Escherichia coli, was characterized by chemical analysis and electrospray ionization mass spectrometry, and its structure determined by X-ray crystallography. It was shown that azurin* is native azurin with its copper atom replaced by zinc in the metal binding site. Zinc is probably incorporated in the apo-protein after its expression and transport into the periplasm. Holo-azurin can be reconstituted from azurin* by prolonged exposure of the protein to high copper ion concentrations or unfolding of the protein and refolding in the presence of copper ions. An X-ray crystallographic analysis of azurin* at 0.21-nm resolution revealed that the overall structure of azurin is not perturbed by the metal exchange. However, the geometry of the co-ordination sphere changes from trigonal bipyramidal in the case of copper azurin to distorted tetrahedral for the zinc protein. The copper ligand Met121 is no longer co-ordinated to zinc which adopts a position close to the carbonyl oxygen atom from residue Gly45. The polypeptide structure surrounding the metal site undergoes moderate reorganization upon zinc binding. The largest displacement observed is for the carbonyl oxygen from residue Gly45, which is involved in copper and zinc binding. It moves by 0.03 nm towards the zinc, thereby reducing its distance to the metal from 0.29 nm in the copper protein to 0.23 nm in the derivative.
 

Literature references that cite this PDB file's key reference

  PubMed id Reference
21258692 M.Choi, and V.L.Davidson (2011).
Cupredoxins--a study of how proteins may evolve to use metals for bioenergetic processes.
  Metallomics, 3, 140-151.  
20953940 C.Xu, J.Yin, and B.Zhao (2010).
Structural characteristics of the hydrophobic patch of azurin and its interaction with p53: a site-directed spin labeling study.
  Sci China Life Sci, 53, 1181-1188.  
17301232 C.Zong, C.J.Wilson, T.Shen, P.Wittung-Stafshede, S.L.Mayo, and P.G.Wolynes (2007).
Establishing the entatic state in folding metallated Pseudomonas aeruginosa azurin.
  Proc Natl Acad Sci U S A, 104, 3159-3164.  
16522792 C.J.Wilson, D.Apiyo, and P.Wittung-Stafshede (2006).
Solvation of the folding-transition state in Pseudomonas aeruginosa azurin is modulated by metal: Solvation of azurin's folding nucleus.
  Protein Sci, 15, 843-852.  
16807974 E.I.Solomon, S.I.Gorelsky, and A.Dey (2006).
Metal-thiolate bonds in bioinorganic chemistry.
  J Comput Chem, 27, 1415-1428.  
15726624 M.Babor, H.M.Greenblatt, M.Edelman, and V.Sobolev (2005).
Flexibility of metal binding sites in proteins on a database scale.
  Proteins, 59, 221-230.  
15918683 P.P.Pompa, A.Bramanti, G.Maruccio, R.Cingolani, F.De Rienzo, S.Corni, R.Di Felice, and R.Rinaldi (2005).
Retention of nativelike conformation by proteins embedded in high external electric fields.
  J Chem Phys, 122, 181102.  
15998022 S.I.Gorelsky, L.Basumallick, J.Vura-Weis, R.Sarangi, K.O.Hodgson, B.Hedman, K.Fujisawa, and E.I.Solomon (2005).
Spectroscopic and DFT investigation of [M{HB(3,5-iPr2pz)3}(SC6F5)] (M = Mn, Fe, Co, Ni, Cu, and Zn) model complexes: periodic trends in metal-thiolate bonding.
  Inorg Chem, 44, 4947-4960.  
14747349 P.Cioni, E.de Waal, G.W.Canters, and G.B.Strambini (2004).
Effects of cavity-forming mutations on the internal dynamics of azurin.
  Biophys J, 86, 1149-1159.  
15089340 P.P.Pompa, A.Biasco, R.Cingolani, R.Rinaldi, M.P.Verbeet, and G.W.Canters (2004).
Structural stability study of protein monolayers in air.
  Phys Rev E Stat Nonlin Soft Matter Phys, 69, 032901.  
12794870 V.Cunsolo, S.Foti, C.La Rosa, R.Saletti, G.W.Canters, and M.P.Verbeet (2003).
Monitoring of unfolding of metallo-proteins by electrospray ionization mass spectrometry.
  J Mass Spectrom, 38, 502-509.  
11964251 I.Pozdnyakova, J.Guidry, and P.Wittung-Stafshede (2002).
Studies of Pseudomonas aeruginosa azurin mutants: cavities in beta-barrel do not affect refolding speed.
  Biophys J, 82, 2645-2651.  
11446642 I.M.van Amsterdam, M.Ubbink, L.J.Jeuken, M.P.Verbeet, O.Einsle, A.Messerschmidt, and G.W.Canters (2001).
Effects of dimerization on protein electron transfer.
  Chemistry, 7, 2398-2406.  
10924152 R.E.Diederix, G.W.Canters, and C.Dennison (2000).
The Met99Gln mutant of amicyanin from Paracoccus versutus.
  Biochemistry, 39, 9551-9560.  
10329642 R.T.Miller, P.Martásek, C.S.Raman, and B.S.Masters (1999).
Zinc content of Escherichia coli-expressed constitutive isoforms of nitric-oxide synthase. Enzymatic activity and effect of pterin.
  J Biol Chem, 274, 14537-14540.  
9417062 J.Salgado, S.J.Kroes, A.Berg, J.M.Moratal, and G.W.Canters (1998).
The dynamic properties of the M121H azurin metal site as studied by NMR of the paramagnetic Cu(II) and Co(II) metalloderivatives.
  J Biol Chem, 273, 177-185.  
15012226 S.Merchant, and B.W.Dreyfuss (1998).
POSTTRANSLATIONAL ASSEMBLY OF PHOTOSYNTHETIC METALLOPROTEINS.
  Annu Rev Plant Physiol Plant Mol Biol, 49, 25-51.  
9761890 Z.W.Chen, M.J.Barber, W.S.McIntire, and F.S.Mathews (1998).
Crystallographic study of azurin from Pseudomonas putida.
  Acta Crystallogr D Biol Crystallogr, 54, 253-268.
PDB codes: 1nwo 1nwp
9100002 B.G.Karlsson, L.C.Tsai, H.Nar, J.Sanders-Loehr, N.Bonander, V.Langer, and L.Sjölin (1997).
X-ray structure determination and characterization of the Pseudomonas aeruginosa azurin mutant Met121Glu.
  Biochemistry, 36, 4089-4095.
PDB code: 1etj
9119002 G.Van Driessche, S.Ciurli, A.Hochkoeppler, and J.J.Van Beeumen (1997).
The primary structure of Rhodoferax fermentans high-potential iron-sulfur protein, an electron donor to the photosynthetic reaction center.
  Eur J Biochem, 244, 371-377.  
9094740 N.Bonander, T.Vänngård, L.C.Tsai, V.Langer, H.Nar, and L.Sjölin (1997).
The metal site of Pseudomonas aeruginosa azurin, revealed by a crystal structure determination of the Co(II) derivative and Co-EPR spectroscopy.
  Proteins, 27, 385-394.
PDB code: 1vlx
8639662 J.Salgado, H.R.Jiménez, J.M.Moratal, S.Kroes, G.C.Warmerdam, and G.W.Canters (1996).
Paramagnetic cobalt and nickel derivatives of Alcaligenes denitrificans azurin and its M121Q mutant. A 1H NMR study.
  Biochemistry, 35, 1810-1819.  
8841397 S.J.Kroes, C.W.Hoitink, C.R.Andrew, J.Ai, J.Sanders-Loehr, A.Messerschmidt, W.R.Hagen, and G.W.Canters (1996).
The mutation Met121-->His creates a type-1.5 copper site in Alcaligenes denitrificans azurin.
  Eur J Biochem, 240, 342-351.  
7822282 E.Danielsen, R.Bauer, L.Hemmingsen, M.L.Andersen, M.J.Bjerrum, T.Butz, W.Tröger, G.W.Canters, C.W.Hoitink, and G.Karlsson (1995).
Structure of metal site in azurin, Met121 mutants of azurin, and stellacyanin investigated by 111mCd perturbed angular correlation (PAC).
  J Biol Chem, 270, 573-580.  
7737159 J.M.Moratal, A.Romero, J.Salgado, A.Perales-Alarcón, and H.R.Jiménez (1995).
The crystal structure of nickel(II)-azurin.
  Eur J Biochem, 228, 653-657.  
7635147 J.Salgado, H.R.Jiménez, A.Donaire, and J.M.Moratal (1995).
1H-NMR study of a cobalt-substituted blue copper protein: Pseudomonas aeruginosa Co(II)-azurin.
  Eur J Biochem, 231, 358-369.  
8589245 R.Fattorusso, G.Morelli, A.Lombardi, F.Nastri, O.Maglio, G.D'Auria, C.Pedone, and V.Pavone (1995).
Design of metal ion binding peptides.
  Biopolymers, 37, 401-410.  
8506279 J.W.Michelsen, K.L.Schmeichel, M.C.Beckerle, and D.R.Winge (1993).
The LIM motif defines a specific zinc-binding protein domain.
  Proc Natl Acad Sci U S A, 90, 4404-4408.  
8243468 M.Van de Kamp, G.W.Canters, C.R.Andrew, J.Sanders-Loehr, C.J.Bender, and J.Peisach (1993).
Effect of lysine ionization on the structure and electrochemical behaviour of the Met44-->Lys mutant of the blue-copper protein azurin from Pseudomonas aeruginosa.
  Eur J Biochem, 218, 229-238.  
The most recent references are shown first. Citation data come partly from CiteXplore and partly from an automated harvesting procedure. Note that this is likely to be only a partial list as not all journals are covered by either method. However, we are continually building up the citation data so more and more references will be included with time. Where a reference describes a PDB structure, the PDB codes are shown on the right.

 

spacer

spacer