spacer
spacer

PDBsum entry 1dto

Go to PDB code: 
protein links
Viral protein PDB id
1dto

 

 

 

 

Loading ...

 
JSmol PyMol  
Contents
Protein chain
200 a.a. *
Waters ×211
* Residue conservation analysis
PDB id:
1dto
Name: Viral protein
Title: Crystal structure of the complete transactivation domain of e2 protein from the human papillomavirus type 16
Structure: Regulatory protein e2. Chain: a. Fragment: transactivation domain. Engineered: yes
Source: Human papillomavirus type 16. Organism_taxid: 333760. Expressed in: escherichia coli. Expression_system_taxid: 562.
Biol. unit: Dimer (from PDB file)
Resolution:
1.90Å     R-factor:   0.236     R-free:   0.305
Authors: A.A.Antson,J.E.Burns,O.V.Moroz,D.J.Scott,C.M.Sanders,I.B.Bronstein, G.G.Dodson,K.S.Wilson,N.Maitland
Key ref:
A.A.Antson et al. (2000). Structure of the intact transactivation domain of the human papillomavirus E2 protein. Nature, 403, 805-809. PubMed id: 10693813 DOI: 10.1038/35001638
Date:
13-Jan-00     Release date:   23-Feb-00    
PROCHECK
Go to PROCHECK summary
 Headers
 References

Protein chain
Pfam   ArchSchema ?
P03120  (VE2_HPV16) -  Regulatory protein E2 from Human papillomavirus type 16
Seq:
Struc:
365 a.a.
200 a.a.
Key:    PfamA domain  Secondary structure  CATH domain

 Enzyme reactions 
   Enzyme class: E.C.?
[IntEnz]   [ExPASy]   [KEGG]   [BRENDA]

 

 
DOI no: 10.1038/35001638 Nature 403:805-809 (2000)
PubMed id: 10693813  
 
 
Structure of the intact transactivation domain of the human papillomavirus E2 protein.
A.A.Antson, J.E.Burns, O.V.Moroz, D.J.Scott, C.M.Sanders, I.B.Bronstein, G.G.Dodson, K.S.Wilson, N.J.Maitland.
 
  ABSTRACT  
 
Papillomaviruses cause warts and proliferative lesions in skin and other epithelia. In a minority of papillomavirus types ('high risk, including human papillomaviruses 16, 18, 31, 33, 45 and 56), further transformation of the wart lesions can produce tumours. The papillomavirus E2 protein controls primary transcription and replication of the viral genome. Both activities are governed by a approximately 200 amino-acid amino-terminal module (E2NT) which is connected to a DNA-binding carboxy-terminal module by a flexible linker. Here we describe the crystal structure of the complete E2NT module from human papillomavirus 16. The E2NT module forms a dimer both in the crystal and in solution. Amino acids that are necessary for transactivation are located at the dimer interface, indicating that the dimer structure may be important in the interactions of E2NT with viral and cellular transcription factors. We propose that dimer formation may contribute to the stabilization of DNA loops which may serve to relocate distal DNA-binding transcription factors to the site of human papillomavirus transcription initiation.
 
  Selected figure(s)  
 
Figure 1.
Figure 1: Functional and structural assignments of papillomavirus E2. View of the N-terminal, linker and C-terminal modules indicating the known functions of each. Amino-acid numbers that delimit the modules correspond to those of HPV16 E2.
Figure 3.
Figure 3: Structural features of E2. a, Stereo view of the electron density with the final model, at the dimer interface of the E2NT module, viewed down the crystallographic twofold axis. The likelihood weighted 2|F[o]|-| F[c]| electron density map is contoured at the 1.5 level. Ribbons of two independent monomers are shown in aquamarine and yellow. Side chains of Arg 37 and Ile 73, which are known to be critical for transactivation2, 10, are shown in dark green; side chains of other residues at the dimer interface are shown in light green. Oxygen atoms are in red, nitrogen atoms in blue; water molecules are shown as orange spheres and hydrogen bonds as dashed sticks. b, Stereo ribbon diagram of the E2NT dimer, showing the extent of the interface between the two subunits. The view is as in a but rotated clockwise by 90 °. Side chains of Gln 12 and Glu 39 that are critical for interactions with E1 (refs 2,10,18) are shown in magenta. Side chains of residues at the dimer interface are coloured as in a.
 
  The above figures are reprinted by permission from Macmillan Publishers Ltd: Nature (2000, 403, 805-809) copyright 2000.  
  Figures were selected by an automated process.  

Literature references that cite this PDB file's key reference

  PubMed id Reference
20882347 W.Wang, Y.Fang, N.Sima, Y.Li, W.Li, L.Li, L.Han, S.Liao, Z.Han, Q.Gao, K.Li, D.Deng, L.Meng, J.Zhou, S.Wang, and D.Ma (2011).
Triggering of death receptor apoptotic signaling by human papillomavirus 16 E2 protein in cervical cancer cell lines is mediated by interaction with c-FLIP.
  Apoptosis, 16, 55-66.  
19521517 S.Aras, G.Singh, K.Johnston, T.Foster, and A.Aiyar (2009).
Zinc coordination is required for and regulates transcription activation by Epstein-Barr nuclear antigen 1.
  PLoS Pathog, 5, e1000469.  
19187948 S.Bodaghi, R.Jia, and Z.M.Zheng (2009).
Human papillomavirus type 16 E2 and E6 are RNA-binding proteins and inhibit in vitro splicing of pre-mRNAs with suboptimal splice sites.
  Virology, 386, 32-43.  
18337573 E.E.Hernandez-Ramon, J.E.Burns, W.Zhang, H.F.Walker, S.Allen, A.A.Antson, and N.J.Maitland (2008).
Dimerization of the human papillomavirus type 16 E2 N terminus results in DNA looping within the upstream regulatory region.
  J Virol, 82, 4853-4861.  
18421300 F.Thierry, and C.Demeret (2008).
Direct activation of caspase 8 by the proapoptotic E2 protein of HPV18 independent of adaptor proteins.
  Cell Death Differ, 15, 1356-1363.  
18495759 J.Cardenas-Mora, J.E.Spindler, M.K.Jang, and A.A.McBride (2008).
Dimerization of the papillomavirus E2 protein is required for efficient mitotic chromosome association and Brd4 binding.
  J Virol, 82, 7298-7305.  
18067922 J.Sim, S.Ozgur, B.Y.Lin, J.H.Yu, T.R.Broker, L.T.Chow, and J.Griffith (2008).
Remodeling of the human papillomavirus type 11 replication origin into discrete nucleoprotein particles and looped structures by the E2 protein.
  J Mol Biol, 375, 1165-1177.  
17478495 C.M.Sanders, D.Sizov, P.R.Seavers, M.Ortiz-Lombardía, and A.A.Antson (2007).
Transcription activator structure reveals redox control of a replication initiation reaction.
  Nucleic Acids Res, 35, 3504-3515.
PDB codes: 2jeu 2jex
16287204 C.M.Hebner, and L.A.Laimins (2006).
Human papillomaviruses: basic mechanisms of pathogenesis and oncogenicity.
  Rev Med Virol, 16, 83-97.  
17189190 E.A.Abbate, C.Voitenleitner, and M.R.Botchan (2006).
Structure of the papillomavirus DNA-tethering complex E2:Brd4 and a peptide that ablates HPV chromosomal association.
  Mol Cell, 24, 877-889.
PDB code: 2nnu
16914454 E.Hooley, V.Fairweather, A.R.Clarke, K.Gaston, and R.L.Brady (2006).
The recognition of local DNA conformation by the human papillomavirus type 6 E2 protein.
  Nucleic Acids Res, 34, 3897-3908.
PDB codes: 2ayb 2aye 2ayg
16611886 M.R.Schweiger, J.You, and P.M.Howley (2006).
Bromodomain protein 4 mediates the papillomavirus E2 transcriptional activation function.
  J Virol, 80, 4276-4285.  
16971454 Y.W.Tan, S.Fang, H.Fan, J.Lescar, and D.X.Liu (2006).
Amino acid residues critical for RNA-binding in the N-terminal domain of the nucleocapsid protein are essential determinants for the infectivity of coronavirus in cultured cells.
  Nucleic Acids Res, 34, 4816-4825.  
15661142 M.K.Baxter, and A.A.McBride (2005).
An acidic amphipathic helix in the Bovine Papillomavirus E2 protein is critical for DNA replication and interaction with the E1 protein.
  Virology, 332, 78-88.  
15795266 M.K.Baxter, M.G.McPhillips, K.Ozato, and A.A.McBride (2005).
The mitotic chromosome binding activity of the papillomavirus E2 protein correlates with interaction with the cellular chromosomal protein, Brd4.
  J Virol, 79, 4806-4818.  
15650176 P.S.Zheng, J.Brokaw, and A.A.McBride (2005).
Conditional mutations in the mitotic chromosome binding function of the bovine papillomavirus type 1 E2 protein.
  J Virol, 79, 1500-1509.  
16135518 S.Blachon, S.Bellanger, C.Demeret, and F.Thierry (2005).
Nucleo-cytoplasmic shuttling of high risk human Papillomavirus E2 proteins induces apoptosis.
  J Biol Chem, 280, 36088-36098.  
14747575 A.Abroi, I.Ilves, S.Kivi, and M.Ustav (2004).
Analysis of chromatin attachment and partitioning functions of bovine papillomavirus type 1 E2 protein.
  J Virol, 78, 2100-2113.  
15289463 E.A.Abbate, J.M.Berger, and M.R.Botchan (2004).
The X-ray structure of the papillomavirus helicase in complex with its molecular matchmaker E2.
  Genes Dev, 18, 1981-1996.
PDB code: 1tue
15361525 L.M.Lima, and J.L.Silva (2004).
Positive contribution of hydration on DNA binding by E2c protein from papillomavirus.
  J Biol Chem, 279, 47968-47974.  
15187189 M.S.Longworth, and L.A.Laimins (2004).
Pathogenesis of human papillomaviruses in differentiating epithelia.
  Microbiol Mol Biol Rev, 68, 362-372.  
14634007 Y.Wang, R.Coulombe, D.R.Cameron, L.Thauvette, M.J.Massariol, L.M.Amon, D.Fink, S.Titolo, E.Welchner, C.Yoakim, J.Archambault, and P.W.White (2004).
Crystal structure of the E2 transactivation domain of human papillomavirus type 11 bound to a protein interaction inhibitor.
  J Biol Chem, 279, 6976-6985.
PDB codes: 1r6k 1r6n
12730224 P.W.White, S.Titolo, K.Brault, L.Thauvette, A.Pelletier, E.Welchner, L.Bourgon, L.Doyon, W.W.Ogilvie, C.Yoakim, M.G.Cordingley, and J.Archambault (2003).
Inhibition of human papillomavirus DNA replication by small molecule antagonists of the E1-E2 protein interaction.
  J Biol Chem, 278, 26765-26772.  
11988474 R.S.Hegde (2002).
The papillomavirus E2 proteins: structure, function, and biology.
  Annu Rev Biophys Biomol Struct, 31, 343-360.  
11929529 S.Noubir, I.Luque, J.A.Ochoa de Alda, I.Perewoska, N.Tandeau de Marsac, J.G.Cobley, and J.Houmard (2002).
Co-ordinated expression of phycobiliprotein operons in the chromatically adapting cyanobacterium Calothrix PCC 7601: a role for RcaD and RcaG.
  Mol Microbiol, 43, 749-762.  
12239214 S.Y.Hou, S.Y.Wu, and C.M.Chiang (2002).
Transcriptional activity among high and low risk human papillomavirus E2 proteins correlates with E2 DNA binding.
  J Biol Chem, 277, 45619-45629.  
11934899 W.Boner, E.R.Taylor, E.Tsirimonaki, K.Yamane, M.S.Campo, and I.M.Morgan (2002).
A Functional interaction between the human papillomavirus 16 transcription/replication factor E2 and the DNA damage response protein TopBP1.
  J Biol Chem, 277, 22297-22303.  
15989521 F.X.Wilson (2001).
Emerging therapies for human papillomavirus infection.
  Expert Opin Emerg Drugs, 6, 199-207.  
11455562 J.L.Beck, M.L.Colgrave, S.F.Ralph, and M.M.Sheil (2001).
Electrospray ionization mass spectrometry of oligonucleotide complexes with drugs, metals, and proteins.
  Mass Spectrom Rev, 20, 61-87.  
11461997 S.Bellanger, C.Demeret, S.Goyat, and F.Thierry (2001).
Stability of the human papillomavirus type 18 E2 protein is regulated by a proteasome degradation pathway through its amino-terminal transactivation domain.
  J Virol, 75, 7244-7251.  
11060774 K.A.Alexander, and W.C.Phelps (2000).
Recent advances in diagnosis and therapy of human papillomaviruses.
  Expert Opin Investig Drugs, 9, 1753-1765.  
11114179 L.M.Lima, D.Foguel, and J.L.Silva (2000).
DNA tightens the dimeric DNA-binding domain of human papillomavirus E2 protein without changes in volume.
  Proc Natl Acad Sci U S A, 97, 14289-14294.  
10846067 Y.C.Peng, D.E.Breiding, F.Sverdrup, J.Richard, and E.J.Androphy (2000).
AMF-1/Gps2 binds p300 and enhances its interaction with papillomavirus E2 proteins.
  J Virol, 74, 5872-5879.  
The most recent references are shown first. Citation data come partly from CiteXplore and partly from an automated harvesting procedure. Note that this is likely to be only a partial list as not all journals are covered by either method. However, we are continually building up the citation data so more and more references will be included with time. Where a reference describes a PDB structure, the PDB codes are shown on the right.

 

spacer

spacer