spacer
spacer

PDBsum entry 1dqc

Go to PDB code: 
protein links
Antimicrobial protein PDB id
1dqc

 

 

 

 

Loading ...

 
JSmol PyMol  
Contents
Protein chain
74 a.a. *
* Residue conservation analysis
PDB id:
1dqc
Name: Antimicrobial protein
Title: Solution structure of tachycitin, an antimicrobial protein with chitin-binding function
Structure: Tachycitin. Chain: a
Source: Tachypleus tridentatus. Organism_taxid: 6853. Cell: hemocyte
NMR struc: 25 models
Authors: T.Suetake,S.Tsuda,S.Kawabata,K.Miura,K.Kawano
Key ref:
T.Suetake et al. (2000). Chitin-binding proteins in invertebrates and plants comprise a common chitin-binding structural motif. J Biol Chem, 275, 17929-17932. PubMed id: 10770921 DOI: 10.1074/jbc.C000184200
Date:
04-Jan-00     Release date:   13-Sep-00    
PROCHECK
Go to PROCHECK summary
 Headers
 References

Protein chain
Pfam   ArchSchema ?
P91818  (P91818_TACTR) -  Tachycitin from Tachypleus tridentatus
Seq:
Struc:
98 a.a.
74 a.a.*
Key:    PfamA domain  Secondary structure  CATH domain
* PDB and UniProt seqs differ at 1 residue position (black cross)

 

 
DOI no: 10.1074/jbc.C000184200 J Biol Chem 275:17929-17932 (2000)
PubMed id: 10770921  
 
 
Chitin-binding proteins in invertebrates and plants comprise a common chitin-binding structural motif.
T.Suetake, S.Tsuda, S.Kawabata, K.Miura, S.Iwanaga, K.Hikichi, K.Nitta, K.Kawano.
 
  ABSTRACT  
 
Tachycitin, a 73-residue polypeptide having antimicrobial activity is present in the hemocyte of horseshoe crab (Tachypleus tridentatus). The first three-dimensional structure of invertebrate chitin-binding protein was determined for tachycitin using two-dimensional nuclear magnetic resonance spectroscopy. The measurements indicate that the structure of tachycitin is largely divided into N- and C-terminal domains; the former comprises a three-stranded beta-sheet and the latter a two-stranded beta-sheet following a short helical turn. The latter structural motif shares a significant tertiary structural similarity with the chitin-binding domain of plant chitin-binding protein. This result is thought to provide faithful experimental evidence to the recent hypothesis that chitin-binding proteins of invertebrates and plants are correlated by a convergent evolution process.
 
  Selected figure(s)  
 
Figure 1.
Fig. 1. Solution structure of tachycitin. A, stereo view of the best-fit superposition of 25 structures of tachycitin using backbone atoms (C^ , C, and N) of residues 6-68. B, ribbon representation of the minimized average structure of tachycitin. Disulfide bonds (yellow), -sheets (blue), and an helical turn (red) are indicated. Drawings were prepared using MOLMOL (26).
Figure 3.
Fig. 3. Putative chitin-binding site of tachycitin (Cys-40-Gly-60) superimposed onto the previously identified chitin-binding site of hevein (Cys-12-Ser-32). The conserved disulfide bonds are colored in green. Residues of Asn-47, Tyr-49, and Val-52 in the -hairpin of tachycitin (red) are superimposed onto the chitin-binding residues of hevein (blue).
 
  The above figures are reprinted by permission from the ASBMB: J Biol Chem (2000, 275, 17929-17932) copyright 2000.  
  Figures were selected by an automated process.  

Literature references that cite this PDB file's key reference

  PubMed id Reference
20406733 S.Kawabata, and T.Muta (2010).
Sadaaki Iwanaga: discovery of the lipopolysaccharide- and beta-1,3-D-glucan-mediated proteolytic cascade and unique proteins in invertebrate immunity.
  J Biochem, 147, 611-618.  
19679771 M.Suzuki, K.Saruwatari, T.Kogure, Y.Yamamoto, T.Nishimura, T.Kato, and H.Nagasawa (2009).
An acidic matrix protein, Pif, is a key macromolecule for nacre formation.
  Science, 325, 1388-1390.  
19466694 S.Yokoyama, Y.Iida, Y.Kawasaki, Y.Minami, K.Watanabe, and F.Yagi (2009).
The chitin-binding capability of Cy-AMP1 from cycad is essential to antifungal activity.
  J Pept Sci, 15, 492-497.  
17938220 B.Tachu, S.Pillai, R.Lucius, and T.Pogonka (2008).
Essential role of chitinase in the development of the filarial nematode Acanthocheilonema viteae.
  Infect Immun, 76, 221-228.  
18331637 K.Manikandan, D.Pal, S.Ramakumar, N.E.Brener, S.S.Iyengar, and G.Seetharaman (2008).
Functionally important segments in proteins dissected using Gene Ontology and geometric clustering of peptide fragments.
  Genome Biol, 9, R52.  
19046437 L.J.Dishaw, G.Mueller, N.Gwatney, J.P.Cannon, R.N.Haire, R.T.Litman, C.T.Amemiya, T.Ota, L.Rowen, G.Glusman, and G.W.Litman (2008).
Genomic Complexity of the Variable Region-Containing Chitin-Binding Proteins in Amphioxus.
  BMC Genet, 9, 78.  
17996400 P.K.Shah, L.P.Tripathi, L.J.Jensen, M.Gahnim, C.Mason, E.E.Furlong, V.Rodrigues, K.P.White, P.Bork, and R.Sowdhamini (2008).
Enhanced function annotations for Drosophila serine proteases: a case study for systematic annotation of multi-member gene families.
  Gene, 407, 199-215.  
17394123 N.Fujitani, T.Kouno, T.Nakahara, K.Takaya, T.Osaki, S.Kawabata, M.Mizuguchi, T.Aizawa, M.Demura, S.Nishimura, and K.Kawano (2007).
The solution structure of horseshoe crab antimicrobial peptide tachystatin B with an inhibitory cystine-knot motif.
  J Pept Sci, 13, 269-279.
PDB codes: 2dcv 2dcw
17153926 H.A.van den Burg, S.J.Harrison, M.H.Joosten, J.Vervoort, and P.J.de Wit (2006).
Cladosporium fulvum Avr4 protects fungal cell walls against hydrolysis by plant chitinases accumulating during infection.
  Mol Plant Microbe Interact, 19, 1420-1430.  
15844167 B.Moussian, J.Söding, H.Schwarz, and C.Nüsslein-Volhard (2005).
Retroactive, a membrane-anchored extracellular protein related to vertebrate snake neurotoxin-like proteins, is required for cuticle organization in the larva of Drosophila melanogaster.
  Dev Dyn, 233, 1056-1063.  
16156796 M.Iijima, T.Hashimoto, Y.Matsuda, T.Nagai, Y.Yamano, T.Ichi, T.Osaki, and S.Kawabata (2005).
Comprehensive sequence analysis of horseshoe crab cuticular proteins and their involvement in transglutaminase-dependent cross-linking.
  FEBS J, 272, 4774-4786.  
15840833 P.K.Shah, P.Aloy, P.Bork, and R.B.Russell (2005).
Structural similarity to bridge sequence space: finding new families on the bridges.
  Protein Sci, 14, 1305-1314.  
15199961 E.Bachère, Y.Gueguen, M.Gonzalez, J.de Lorgeril, J.Garnier, and B.Romestand (2004).
Insights into the anti-microbial defense of marine invertebrates: the penaeid shrimps and the oyster Crassostrea gigas.
  Immunol Rev, 198, 149-168.  
12230572 S.A.Hoffmeister-Ullerich, D.Herrmann, J.Kielholz, M.Schweizer, and H.C.Schaller (2002).
Isolation of a putative peroxidase, a target for factors controlling foot-formation in the coelenterate hydra.
  Eur J Biochem, 269, 4597-4606.  
11790537 S.Iwanaga (2002).
The molecular basis of innate immunity in the horseshoe crab.
  Curr Opin Immunol, 14, 87-95.  
11440115 K.Suzuki, M.Okamori, H.Katsuzaki, T.Komiya, and K.Imai (2001).
Isolation and characterization of the novel lipophilic protein, Pb CP-12.7, from the shell of the pink shrimp, Pandalus borealis.
  Biosci Biotechnol Biochem, 65, 1038-1044.  
11785761 Y.Bourne, and B.Henrissat (2001).
Glycoside hydrolases and glycosyltransferases: families and functional modules.
  Curr Opin Struct Biol, 11, 593-600.  
The most recent references are shown first. Citation data come partly from CiteXplore and partly from an automated harvesting procedure. Note that this is likely to be only a partial list as not all journals are covered by either method. However, we are continually building up the citation data so more and more references will be included with time. Where a reference describes a PDB structure, the PDB codes are shown on the right.

 

spacer

spacer