spacer
spacer

PDBsum entry 1dkd

Go to PDB code: 
protein Protein-protein interface(s) links
Chaperone PDB id
1dkd

 

 

 

 

Loading ...

 
JSmol PyMol  
Contents
Protein chains
146 a.a. *
11 a.a. *
12 a.a. *
Waters ×96
* Residue conservation analysis
PDB id:
1dkd
Name: Chaperone
Title: Crystal structure of a groel (apical domain) and a dodecameric peptide complex
Structure: Groel. Chain: a, b, c, d. Fragment: apical domain. Synonym: chaperone hsp60. Engineered: yes. 12-mer peptide. Chain: e, f, g, h. Engineered: yes. Other_details: selected from phage display peptide library
Source: Escherichia coli. Organism_taxid: 562. Expressed in: escherichia coli. Expression_system_taxid: 562. Synthetic: yes. Other_details: the peptide was chemically synthesized and was selected from phage display peptide library.
Biol. unit: Tetramer (from PQS)
Resolution:
2.10Å     R-factor:   0.215     R-free:   0.264
Authors: L.Chen,P.B.Sigler
Key ref:
L.Chen and P.B.Sigler (1999). The crystal structure of a GroEL/peptide complex: plasticity as a basis for substrate diversity. Cell, 99, 757-768. PubMed id: 10619429 DOI: 10.1016/S0092-8674(00)81673-6
Date:
07-Dec-99     Release date:   12-Jan-00    
PROCHECK
Go to PROCHECK summary
 Headers
 References

Protein chains
Pfam   ArchSchema ?
P0A6F5  (CH60_ECOLI) -  Chaperonin GroEL from Escherichia coli (strain K12)
Seq:
Struc:
 
Seq:
Struc:
548 a.a.
146 a.a.
Protein chains
No UniProt id for this chain
Struc: 11 a.a.
Protein chain
No UniProt id for this chain
Struc: 12 a.a.
Key:    PfamA domain  Secondary structure  CATH domain

 Enzyme reactions 
   Enzyme class: Chains A, B, C, D: E.C.5.6.1.7  - chaperonin ATPase.
[IntEnz]   [ExPASy]   [KEGG]   [BRENDA]
      Reaction: ATP + H2O + a folded polypeptide = ADP + phosphate + an unfolded polypeptide
ATP
+ H2O
+ folded polypeptide
= ADP
+ phosphate
+ unfolded polypeptide
Molecule diagrams generated from .mol files obtained from the KEGG ftp site

 

 
    reference    
 
 
DOI no: 10.1016/S0092-8674(00)81673-6 Cell 99:757-768 (1999)
PubMed id: 10619429  
 
 
The crystal structure of a GroEL/peptide complex: plasticity as a basis for substrate diversity.
L.Chen, P.B.Sigler.
 
  ABSTRACT  
 
The chaperonin GroEL is a double toriodal assembly that with its cochaperonin GroES facilitates protein folding with an ATP-dependent mechanism. Nonnative conformations of diverse protein substrates bind to the apical domains surrounding the opening of the double toroid's central cavity. Using phage display, we have selected peptides with high affinity for the isolated apical domain. We have determined the crystal structures of the complexes formed by the most strongly bound peptide with the isolated apical domain, and with GroEL. The peptide interacts with the groove between paired alpha helices in a manner similar to that of the GroES mobile loop. Our structural analysis, combined with other results, suggests that various modes of molecular plasticity are responsible for tight promiscuous binding of nonnative substrates and their release into the shielded cis assembly.
 
  Selected figure(s)  
 
Figure 4.
Figure 4. Structural Comparisons of Three Peptides Interacting with Helices H and I of the Apical DomainSBP is yellow, the GroES mobile loop ([46]) is cyan, the N-terminal extension of the apical domain ( [6]) is magenta, and helices H and I are red.(A) Superposition of Cα coordinates of the apical domain of three structures, showing the backbone of three different peptides bound over the peptide-binding groove formed by helix H and helix I. Structure of the helices displayed here is taken from the structure of the SBP/apical domain complex.(B–D) Molecular surfaces color coded by curvature (green for convex, and gray for concave) of the binding groove in SBP/apical domain, GroEL/GroES/(ADP)[7], and N-terminal extension/apical domain, respectively. The orientation in these three figures is the same as in (A). For clarity, only side chains of residues located at the C-terminal arms of the β turn of the SBP (starting from W7) and the GroES mobile loop (starting from I25) are shown, as these segments form most of the contacts with the binding site. The N-terminal arms of the β turn of these two peptides are shown as a Cα trace. Residues in the peptides that form extensive side chain interactions with the binding site are labeled.(A) was produced using MOLSCRIPT and RASTER 3D ([22 and 31]), and (B)–(D) were generated with GRASP ( [32]).
Figure 6.
Figure 6. Molecular Surface Representation of the Substrate-Binding Sites in GroELThe molecular surface of the binding sites formed by helices H and I is highlighted in red. The binding sites form “elastic rings” located on the opening of the GroEL central cavities.(A) Top view of GroEL.(B) Stereo view of the central cavities of binding-competent GroEL.The three subunits from each of the rings nearest the reader were removed to show the inside of the central cavities. Figures were generated in GRASP ([32]).
 
  The above figures are reprinted by permission from Cell Press: Cell (1999, 99, 757-768) copyright 1999.  
  Figures were selected by an automated process.  

Literature references that cite this PDB file's key reference

  PubMed id Reference
19950366 M.Jayasinghe, C.Tewmey, and G.Stan (2010).
Versatile substrate protein recognition mechanism of the eukaryotic chaperonin CCT.
  Proteins, 78, 1254-1265.  
20814869 Y.Li, Z.Zheng, A.Ramsey, and L.Chen (2010).
Analysis of peptides and proteins in their binding to GroEL.
  J Pept Sci, 16, 693-700.  
19638247 A.L.Horwich, and W.A.Fenton (2009).
Chaperonin-mediated protein folding: using a central cavity to kinetically assist polypeptide chain folding.
  Q Rev Biophys, 42, 83.  
19717599 C.M.Kumar, G.Khare, C.V.Srikanth, A.K.Tyagi, A.A.Sardesai, and S.C.Mande (2009).
Facilitated oligomerization of mycobacterial GroEL: evidence for phosphorylation-mediated oligomerization.
  J Bacteriol, 191, 6525-6538.  
19581297 J.Li, X.Qian, J.Hu, and B.Sha (2009).
Molecular chaperone Hsp70/Hsp90 prepares the mitochondrial outer membrane translocon receptor Tom71 for preprotein loading.
  J Biol Chem, 284, 23852-23859.
PDB codes: 3fp2 3fp3 3fp4
19156839 J.Reumers, S.Maurer-Stroh, J.Schymkowitz, and F.Rousseau (2009).
Protein sequences encode safeguards against aggregation.
  Hum Mutat, 30, 431-437.  
19164290 K.S.Harris, J.L.Casey, A.M.Coley, J.A.Karas, J.K.Sabo, Y.Y.Tan, O.Dolezal, R.S.Norton, A.B.Hughes, D.Scanlon, and M.Foley (2009).
Rapid optimization of a peptide inhibitor of malaria parasite invasion by comprehensive N-methyl scanning.
  J Biol Chem, 284, 9361-9371.  
19564940 V.V.Marchenkov, and G.V.Semisotnov (2009).
GroEL-Assisted Protein Folding: Does It Occur Within the Chaperonin Inner Cavity?
  Int J Mol Sci, 10, 2066-2083.  
19446530 Y.Cong, Q.Zhang, D.Woolford, T.Schweikardt, H.Khant, M.Dougherty, S.J.Ludtke, W.Chiu, and H.Decker (2009).
Structural mechanism of SDS-induced enzyme activity of scorpion hemocyanin revealed by electron cryomicroscopy.
  Structure, 17, 749-758.
PDB codes: 3ixv 3ixw
19074438 Y.Li, X.Gao, and L.Chen (2009).
GroEL Recognizes an Amphipathic Helix and Binds to the Hydrophobic Side.
  J Biol Chem, 284, 4324-4331.  
18782766 D.Madan, Z.Lin, and H.S.Rye (2008).
Triggering Protein Folding within the GroEL-GroES Complex.
  J Biol Chem, 283, 32003-32013.  
18708584 E.Gur, and R.T.Sauer (2008).
Recognition of misfolded proteins by Lon, a AAA(+) protease.
  Genes Dev, 22, 2267-2277.  
19048360 K.Hosono, T.Ueno, H.Taguchi, F.Motojima, T.Zako, M.Yoshida, and T.Funatsu (2008).
Kinetic Analysis of Conformational Changes of GroEL Based on the Fluorescence of Tyrosine 506.
  Protein J, 27, 461-468.  
18647240 N.D.Thomsen, and J.M.Berger (2008).
Structural frameworks for considering microbial protein- and nucleic acid-dependent motor ATPases.
  Mol Microbiol, 69, 1071-1090.  
18800165 Y.Yoshiike, R.Minai, Y.Matsuo, Y.R.Chen, T.Kimura, and A.Takashima (2008).
Amyloid oligomer conformation in a group of natively folded proteins.
  PLoS ONE, 3, e3235.  
17261594 M.Graef, G.Seewald, and T.Langer (2007).
Substrate recognition by AAA+ ATPases: distinct substrate binding modes in ATP-dependent protease Yme1 of the mitochondrial intermembrane space.
  Mol Cell Biol, 27, 2476-2485.  
17499047 N.Elad, G.W.Farr, D.K.Clare, E.V.Orlova, A.L.Horwich, and H.R.Saibil (2007).
Topologies of a substrate protein bound to the chaperonin GroEL.
  Mol Cell, 26, 415-426.  
  17554162 P.D.Kiser, D.T.Lodowski, and K.Palczewski (2007).
Purification, crystallization and structure determination of native GroEL from Escherichia coli lacking bound potassium ions.
  Acta Crystallogr Sect F Struct Biol Cryst Commun, 63, 457-461.
PDB code: 2nwc
17557788 W.Zheng, B.R.Brooks, and D.Thirumalai (2007).
Allosteric transitions in the chaperonin GroEL are captured by a dominant normal mode that is most robust to sequence variations.
  Biophys J, 93, 2289-2299.  
16754671 B.W.Ying, H.Taguchi, and T.Ueda (2006).
Co-translational binding of GroEL to nascent polypeptides is followed by post-translational encapsulation by GroES to mediate protein folding.
  J Biol Chem, 281, 21813-21819.  
17018290 C.Spiess, E.J.Miller, A.J.McClellan, and J.Frydman (2006).
Identification of the TRiC/CCT substrate binding sites uncovers the function of subunit diversity in eukaryotic chaperonins.
  Mol Cell, 24, 25-37.  
16537402 G.Stan, B.R.Brooks, G.H.Lorimer, and D.Thirumalai (2006).
Residues in substrate proteins that interact with GroEL in the capture process are buried in the native state.
  Proc Natl Acad Sci U S A, 103, 4433-4438.  
16684774 M.J.Cliff, C.Limpkin, A.Cameron, S.G.Burston, and A.R.Clarke (2006).
Elucidation of steps in the capture of a protein substrate for efficient encapsulation by GroE.
  J Biol Chem, 281, 21266-21275.  
16672234 O.Danziger, L.Shimon, and A.Horovitz (2006).
Glu257 in GroEL is a sensor involved in coupling polypeptide substrate binding to stimulation of ATP hydrolysis.
  Protein Sci, 15, 1270-1276.  
16328739 A.Berezov, M.J.McNeill, A.Iriarte, and M.Martinez-Carrion (2005).
Electron paramagnetic resonance and fluorescence studies of the conformation of aspartate aminotransferase bound to GroEL.
  Protein J, 24, 465-478.  
15576562 G.Stan, B.R.Brooks, G.H.Lorimer, and D.Thirumalai (2005).
Identifying natural substrates for chaperonins using a sequence-based approach.
  Protein Sci, 14, 193-201.  
16172384 J.F.Swain, and L.M.Gierasch (2005).
First glimpses of a chaperonin-bound folding intermediate.
  Proc Natl Acad Sci U S A, 102, 13715-13716.  
16195557 N.Leulliot, S.Quevillon-Cheruel, M.Graille, M.Schiltz, K.Blondeau, J.Janin, and H.Van Tilbeurgh (2005).
Crystal structure of yeast YER010Cp, a knotable member of the RraA protein family.
  Protein Sci, 14, 2751-2758.
PDB code: 2c5q
16116078 R.Horst, E.B.Bertelsen, J.Fiaux, G.Wider, A.L.Horwich, and K.Wüthrich (2005).
Direct NMR observation of a substrate protein bound to the chaperonin GroEL.
  Proc Natl Acad Sci U S A, 102, 12748-12753.  
15240489 A.van der Vaart, J.Ma, and M.Karplus (2004).
The unfolding action of GroEL on a protein substrate.
  Biophys J, 87, 562-573.  
15479763 F.Motojima, C.Chaudhry, W.A.Fenton, G.W.Farr, and A.L.Horwich (2004).
Substrate polypeptide presents a load on the apical domains of the chaperonin GroEL.
  Proc Natl Acad Sci U S A, 101, 15005-15012.  
  15472720 J.Li, and B.Sha (2004).
Peptide substrate identification for yeast Hsp40 Ydj1 by screening the phage display library.
  Biol Proced Online, 6, 204-208.  
15338421 K.Yoshimune, Y.Ninomiya, M.Wakayama, and M.Moriguchi (2004).
Molecular chaperones facilitate the soluble expression of N-acyl-D-amino acid amidohydrolases in Escherichia coli.
  J Ind Microbiol Biotechnol, 31, 421-426.  
15274928 S.F.Harris, A.K.Shiau, and D.A.Agard (2004).
The crystal structure of the carboxy-terminal dimerization domain of htpG, the Escherichia coli Hsp90, reveals a potential substrate binding site.
  Structure, 12, 1087-1097.
PDB code: 1sf8
15296740 T.Shimamura, A.Koike-Takeshita, K.Yokoyama, R.Masui, N.Murai, M.Yoshida, H.Taguchi, and S.Iwata (2004).
Crystal structure of the native chaperonin complex from Thermus thermophilus revealed unexpected asymmetry at the cis-cavity.
  Structure, 12, 1471-1480.
PDB codes: 1we3 1wf4
15149592 T.Ueno, H.Taguchi, H.Tadakuma, M.Yoshida, and T.Funatsu (2004).
GroEL mediates protein folding with a two successive timer mechanism.
  Mol Cell, 14, 423-434.  
12796493 B.Sot, S.Bañuelos, J.M.Valpuesta, and A.Muga (2003).
GroEL stability and function. Contribution of the ionic interactions at the inter-ring contact sites.
  J Biol Chem, 278, 32083-32090.  
14656432 J.Li, X.Qian, and B.Sha (2003).
The crystal structure of the yeast Hsp40 Ydj1 complexed with its peptide substrate.
  Structure, 11, 1475-1483.
PDB code: 1nlt
12876196 S.Narayanan, B.Bösl, S.Walter, and B.Reif (2003).
Importance of low-oligomeric-weight species for prion propagation in the yeast prion system Sup35/Hsp104.
  Proc Natl Acad Sci U S A, 100, 9286-9291.  
12065585 A.E.Ashcroft, A.Brinker, J.E.Coyle, F.Weber, M.Kaiser, L.Moroder, M.R.Parsons, J.Jager, U.F.Hartl, M.Hayer-Hartl, and S.E.Radford (2002).
Structural plasticity and noncovalent substrate binding in the GroEL apical domain. A study using electrospay ionization mass spectrometry and fluorescence binding studies.
  J Biol Chem, 277, 33115-33126.
PDB code: 1la1
11884745 F.U.Hartl, and M.Hayer-Hartl (2002).
Molecular chaperones in the cytosol: from nascent chain to folded protein.
  Science, 295, 1852-1858.  
12468232 H.R.Saibil, and N.A.Ranson (2002).
The chaperonin folding machine.
  Trends Biochem Sci, 27, 627-632.  
12441378 M.Gozu, M.Hoshino, T.Higurashi, H.Kato, and Y.Goto (2002).
The interaction of beta(2)-glycoprotein I domain V with chaperonin GroEL: the similarity with the domain V and membrane interaction.
  Protein Sci, 11, 2792-2803.  
11919183 S.Lee, C.Y.Fan, J.M.Younger, H.Ren, and D.M.Cyr (2002).
Identification of essential residues in the type II Hsp40 Sis1 that function in polypeptide binding.
  J Biol Chem, 277, 21675-21682.  
12192071 S.Nagpal, K.J.Kaur, D.Jain, and D.M.Salunke (2002).
Plasticity in structure and interactions is critical for the action of indolicidin, an antibacterial peptide of innate immune origin.
  Protein Sci, 11, 2158-2167.  
12491239 S.Walter, and J.Buchner (2002).
Molecular chaperones--cellular machines for protein folding.
  Angew Chem Int Ed Engl, 41, 1098-1113.  
12065897 Y.C.Fang, and M.Cheng (2002).
The effect of C-terminal mutations of HSP60 on protein folding.
  J Biomed Sci, 9, 223-233.  
11180561 A.P.Demchenko (2001).
Recognition between flexible protein molecules: induced and assisted folding.
  J Mol Recognit, 14, 42-61.  
11598876 D.Gorse (2001).
Global minimization of an off-lattice potential energy function using a chaperone-based refolding method.
  Biopolymers, 59, 411-426.  
11445463 D.J.Christensen, E.B.Gottlin, R.E.Benson, and P.T.Hamilton (2001).
Phage display for target-based antibacterial drug discovery.
  Drug Discov Today, 6, 721-727.  
11371463 D.Jain, K.J.Kaur, and D.M.Salunke (2001).
Plasticity in protein-peptide recognition: crystal structures of two different peptides bound to concanavalin A.
  Biophys J, 80, 2912-2921.
PDB codes: 1jui 1jyc
11340060 D.Thirumalai, and G.H.Lorimer (2001).
Chaperonin-mediated protein folding.
  Annu Rev Biophys Biomol Struct, 30, 245-269.  
11344330 J.D.Fox, R.B.Kapust, and D.S.Waugh (2001).
Single amino acid substitutions on the surface of Escherichia coli maltose-binding protein can have a profound impact on the solubility of fusion proteins.
  Protein Sci, 10, 622-630.  
11395418 J.Frydman (2001).
Folding of newly translated proteins in vivo: the role of molecular chaperones.
  Annu Rev Biochem, 70, 603-647.  
11377197 J.Vijayalakshmi, M.K.Mukhergee, J.Graumann, U.Jakob, and M.A.Saper (2001).
The 2.2 A crystal structure of Hsp33: a heat shock protein with redox-regulated chaperone activity.
  Structure, 9, 367-375.
PDB code: 1hw7
11483510 O.Llorca, J.Martín-Benito, J.Grantham, M.Ritco-Vonsovici, K.R.Willison, J.L.Carrascosa, and J.M.Valpuesta (2001).
The 'sequential allosteric ring' mechanism in the eukaryotic chaperonin-assisted folding of actin and tubulin.
  EMBO J, 20, 4065-4075.  
11514218 S.A.Lloyd, A.Forsberg, H.Wolf-Watz, and M.S.Francis (2001).
Targeting exported substrates to the Yersinia TTSS: different functions for different signals?
  Trends Microbiol, 9, 367-371.  
11136471 S.A.Lloyd, M.Norman, R.Rosqvist, and H.Wolf-Watz (2001).
Yersinia YopE is targeted for type III secretion by N-terminal, not mRNA, signals.
  Mol Microbiol, 39, 520-531.  
11179895 V.Grantcharova, E.J.Alm, D.Baker, and A.L.Horwich (2001).
Mechanisms of protein folding.
  Curr Opin Struct Biol, 11, 70-82.  
11716298 W.A.Houry (2001).
Mechanism of substrate recognition by the chaperonin GroEL.
  Biochem Cell Biol, 79, 569-577.  
11488911 Y.Liang, J.Li, J.Chen, and C.C.Wang (2001).
Thermodynamics of the folding of D-glyceraldehyde-3-phosphate dehydrogenase assisted by protein disulfide isomerase studied by microcalorimetry.
  Eur J Biochem, 268, 4183-4189.  
10997899 B.Sha, S.Lee, and D.M.Cyr (2000).
The crystal structure of the peptide-binding fragment from the yeast Hsp40 protein Sis1.
  Structure, 8, 799-807.
PDB code: 1c3g
10745098 C.Klanner, W.Neupert, and T.Langer (2000).
The chaperonin-related protein Tcm62p ensures mitochondrial gene expression under heat stress.
  FEBS Lett, 470, 365-369.  
10660042 J.L.Feltham, and L.M.Gierasch (2000).
GroEL-substrate interactions: molding the fold, or folding the mold?
  Cell, 100, 193-196.  
  11005374 M.D.de Beus, S.M.Doyle, and C.M.Teschke (2000).
GroEL binds a late folding intermediate of phage P22 coat protein.
  Cell Stress Chaperones, 5, 163-172.  
10745003 M.E.Gottesman, and W.A.Hendrickson (2000).
Protein folding and unfolding by Escherichia coli chaperones and chaperonins.
  Curr Opin Microbiol, 3, 197-202.  
11087821 M.Fändrich, M.A.Tito, M.R.Leroux, A.A.Rostom, F.U.Hartl, C.M.Dobson, and C.V.Robinson (2000).
Observation of the noncovalent assembly and disassembly pathways of the chaperone complex MtGimC by mass spectrometry.
  Proc Natl Acad Sci U S A, 97, 14151-14155.  
10975452 M.Olsen, B.Iverson, and G.Georgiou (2000).
High-throughput screening of enzyme libraries.
  Curr Opin Biotechnol, 11, 331-337.  
11080144 O.Llorca, J.Martín-Benito, M.Ritco-Vonsovici, J.Grantham, G.M.Hynes, K.R.Willison, J.L.Carrascosa, and J.M.Valpuesta (2000).
Eukaryotic chaperonin CCT stabilizes actin and tubulin folding intermediates in open quasi-native conformations.
  EMBO J, 19, 5971-5979.  
  11206062 P.A.Voziyan, and M.T.Fisher (2000).
Chaperonin-assisted folding of glutamine synthetase under nonpermissive conditions: off-pathway aggregation propensity does not determine the co-chaperonin requirement.
  Protein Sci, 9, 2405-2412.  
11106732 R.Siegert, M.R.Leroux, C.Scheufler, F.U.Hartl, and I.Moarefi (2000).
Structure of the molecular chaperone prefoldin: unique interaction of multiple coiled coil tentacles with unfolded proteins.
  Cell, 103, 621-632.
PDB code: 1fxk
11102798 S.S.Sidhu (2000).
Phage display in pharmaceutical biotechnology.
  Curr Opin Biotechnol, 11, 610-616.  
The most recent references are shown first. Citation data come partly from CiteXplore and partly from an automated harvesting procedure. Note that this is likely to be only a partial list as not all journals are covered by either method. However, we are continually building up the citation data so more and more references will be included with time. Where a reference describes a PDB structure, the PDB codes are shown on the right.

 

spacer

spacer