spacer
spacer

PDBsum entry 1dc3

Go to PDB code: 
protein Protein-protein interface(s) links
Oxidoreductase PDB id
1dc3

 

 

 

 

Loading ...

 
JSmol PyMol  
Contents
Protein chains
330 a.a. *
Waters ×207
* Residue conservation analysis
PDB id:
1dc3
Name: Oxidoreductase
Title: Structural analysis of glyceraldehyde 3-phosphate dehydrogenase from escherichia coli: direct evidence for substrate binding and cofactor- induced conformational changes
Structure: Glyceraldehyde 3-phosphate dehydrogenase. Chain: a, b. Fragment: apo. Synonym: gapdh. Ec: 1.2.1.12
Source: Escherichia coli. Organism_taxid: 562
Biol. unit: Tetramer (from PQS)
Resolution:
2.50Å     R-factor:   0.189     R-free:   0.241
Authors: M.Yun,C.G.Park,J.Y.Kim,H.W.Park
Key ref:
M.Yun et al. (2000). Structural analysis of glyceraldehyde 3-phosphate dehydrogenase from Escherichia coli: direct evidence of substrate binding and cofactor-induced conformational changes. Biochemistry, 39, 10702-10710. PubMed id: 10978154 DOI: 10.1021/bi9927080
Date:
04-Nov-99     Release date:   23-Aug-00    
PROCHECK
Go to PROCHECK summary
 Headers
 References

Protein chains
Pfam   ArchSchema ?
P0A9B2  (G3P1_ECOLI) -  Glyceraldehyde-3-phosphate dehydrogenase A from Escherichia coli (strain K12)
Seq:
Struc:
331 a.a.
330 a.a.
Key:    PfamA domain  Secondary structure  CATH domain

 Enzyme reactions 
   Enzyme class: E.C.1.2.1.12  - glyceraldehyde-3-phosphate dehydrogenase (phosphorylating).
[IntEnz]   [ExPASy]   [KEGG]   [BRENDA]

      Pathway:
Glyceraldehyde-3-phosphate Dehydrogenase (phosphorylating)
      Reaction: D-glyceraldehyde 3-phosphate + phosphate + NAD+ = (2R)-3-phospho- glyceroyl phosphate + NADH + H+
D-glyceraldehyde 3-phosphate
+ phosphate
+ NAD(+)
= (2R)-3-phospho- glyceroyl phosphate
+ NADH
+ H(+)
Molecule diagrams generated from .mol files obtained from the KEGG ftp site

 

 
    reference    
 
 
DOI no: 10.1021/bi9927080 Biochemistry 39:10702-10710 (2000)
PubMed id: 10978154  
 
 
Structural analysis of glyceraldehyde 3-phosphate dehydrogenase from Escherichia coli: direct evidence of substrate binding and cofactor-induced conformational changes.
M.Yun, C.G.Park, J.Y.Kim, H.W.Park.
 
  ABSTRACT  
 
The crystal structures of gyceraldehyde 3-phosphate dehydrogenase (GAPDH) from Escherichia coli have been determined in three different enzymatic states, NAD(+)-free, NAD(+)-bound, and hemiacetal intermediate. The NAD(+)-free structure reported here has been determined from monoclinic and tetragonal crystal forms. The conformational changes in GAPDH induced by cofactor binding are limited to the residues that bind the adenine moiety of NAD(+). Glyceraldehyde 3-phosphate (GAP), the substrate of GAPDH, binds to the enzyme with its C3 phosphate in a hydrophilic pocket, called the "new P(i)" site, which is different from the originally proposed binding site for inorganic phosphate. This observed location of the C3 phosphate is consistent with the flip-flop model proposed for the enzyme mechanism [Skarzynski, T., Moody, P. C., and Wonacott, A. J. (1987) J. Mol. Biol. 193, 171-187]. Via incorporation of the new P(i) site in this model, it is now proposed that the C3 phosphate of GAP initially binds at the new P(i) site and then flips to the P(s) site before hydride transfer. A superposition of NAD(+)-bound and hemiacetal intermediate structures reveals an interaction between the hydroxyl oxygen at the hemiacetal C1 of GAP and the nicotinamide ring. This finding suggests that the cofactor NAD(+) may stabilize the transition state oxyanion of the hemiacetal intermediate in support of the flip-flop model for GAP binding.
 

Literature references that cite this PDB file's key reference

  PubMed id Reference
21409597 B.Jia, l.e. .T.Linh, S.Lee, B.P.Pham, J.Liu, H.Pan, S.Zhang, and G.W.Cheong (2011).
Biochemical characterization of glyceraldehyde-3-phosphate dehydrogenase from Thermococcus kodakarensis KOD1.
  Extremophiles, 15, 337-346.  
  20164570 D.A.Butterfield, S.S.Hardas, and M.L.Lange (2010).
Oxidatively modified glyceraldehyde-3-phosphate dehydrogenase (GAPDH) and Alzheimer's disease: many pathways to neurodegeneration.
  J Alzheimers Dis, 20, 369-393.  
19581464 J.J.Silva, W.R.Pavanelli, J.C.Pereira, J.S.Silva, and D.W.Franco (2009).
Experimental chemotherapy against Trypanosoma cruzi infection using ruthenium nitric oxide donors.
  Antimicrob Agents Chemother, 53, 4414-4421.  
19451232 M.N.Lee, S.H.Ha, J.Kim, A.Koh, C.S.Lee, J.H.Kim, H.Jeon, D.H.Kim, P.G.Suh, and S.H.Ryu (2009).
Glycolytic flux signals to mTOR through glyceraldehyde-3-phosphate dehydrogenase-mediated regulation of Rheb.
  Mol Cell Biol, 29, 3991-4001.  
19800890 N.A.Demarse, S.Ponnusamy, E.K.Spicer, E.Apohan, J.E.Baatz, B.Ogretmen, and C.Davies (2009).
Direct binding of glyceraldehyde 3-phosphate dehydrogenase to telomeric DNA protects telomeres against chemotherapy-induced rapid degradation.
  J Mol Biol, 394, 789-803.  
19243605 W.J.Cook, O.Senkovich, and D.Chattopadhyay (2009).
An unexpected phosphate binding site in glyceraldehyde 3-phosphate dehydrogenase: crystal structures of apo, holo and ternary complex of Cryptosporidium parvum enzyme.
  BMC Struct Biol, 9, 9.
PDB codes: 1vsu 1vsv 3cif
18726683 G.Dinler, and H.Budak (2008).
Analysis of expressed sequence tags (ESTs) from Agrostis species obtained using sequence related amplified polymorphism.
  Biochem Genet, 46, 663-676.  
18480053 S.Moniot, S.Bruno, C.Vonrhein, C.Didierjean, S.Boschi-Muller, M.Vas, G.Bricogne, G.Branlant, A.Mozzarelli, and C.Corbier (2008).
Trapping of the thioacylglyceraldehyde-3-phosphate dehydrogenase intermediate from Bacillus stearothermophilus. Direct evidence for a flip-flop mechanism.
  J Biol Chem, 283, 21693-21702.
PDB code: 3cmc
17488287 E.J.Tisdale, and C.R.Artalejo (2007).
A GAPDH mutant defective in Src-dependent tyrosine phosphorylation impedes Rab2-mediated events.
  Traffic, 8, 733-741.  
16510976 J.L.Jenkins, and J.J.Tanner (2006).
High-resolution structure of human D-glyceraldehyde-3-phosphate dehydrogenase.
  Acta Crystallogr D Biol Crystallogr, 62, 290-301.
PDB codes: 1u8f 2feh
  16582475 T.Kitatani, Y.Nakamura, K.Wada, T.Kinoshita, M.Tamoi, S.Shigeoka, and T.Tada (2006).
Structure of NADP-dependent glyceraldehyde-3-phosphate dehydrogenase from Synechococcus PCC7942 complexed with NADP.
  Acta Crystallogr Sect F Struct Biol Cryst Commun, 62, 315-319.
PDB code: 2d2i
  16880542 T.Kitatani, Y.Nakamura, K.Wada, T.Kinoshita, M.Tamoi, S.Shigeoka, and T.Tada (2006).
Structure of apo-glyceraldehyde-3-phosphate dehydrogenase from Synechococcus PCC7942.
  Acta Crystallogr Sect F Struct Biol Cryst Commun, 62, 727-730.
PDB code: 2duu
16239728 S.A.Ismail, and H.W.Park (2005).
Structural analysis of human liver glyceraldehyde-3-phosphate dehydrogenase.
  Acta Crystallogr D Biol Crystallogr, 61, 1508-1513.
PDB code: 1znq
15485821 E.J.Tisdale, C.Kelly, and C.R.Artalejo (2004).
Glyceraldehyde-3-phosphate dehydrogenase interacts with Rab2 and plays an essential role in endoplasmic reticulum to Golgi transport exclusive of its glycolytic activity.
  J Biol Chem, 279, 54046-54052.  
15388927 J.Blanco, R.A.Moore, C.R.Faehnle, and R.E.Viola (2004).
Critical catalytic functional groups in the mechanism of aspartate-beta-semialdehyde dehydrogenase.
  Acta Crystallogr D Biol Crystallogr, 60, 1808-1815.  
14993695 M.Warizaya, T.Kinoshita, A.Kato, H.Nakajima, and T.Fujii (2004).
Cloning, expression, purification, crystallization and preliminary X-ray analysis of human liver glyceraldehyde-3-phosphate dehydrogenase.
  Acta Crystallogr D Biol Crystallogr, 60, 567-568.  
12569100 C.Didierjean, C.Corbier, M.Fatih, F.Favier, S.Boschi-Muller, G.Branlant, and A.Aubry (2003).
Crystal structure of two ternary complexes of phosphorylating glyceraldehyde-3-phosphate dehydrogenase from Bacillus stearothermophilus with NAD and D-glyceraldehyde 3-phosphate.
  J Biol Chem, 278, 12968-12976.
PDB codes: 1npt 1nq5 1nqa 1nqo
14622286 S.Ladame, M.S.Castilho, C.H.Silva, C.Denier, V.Hannaert, J.Périé, G.Oliva, and M.Willson (2003).
Crystal structure of Trypanosoma cruzi glyceraldehyde-3-phosphate dehydrogenase complexed with an analogue of 1,3-bisphospho-d-glyceric acid.
  Eur J Biochem, 270, 4574-4586.
PDB code: 1qxs
14646080 S.W.Cowan-Jacob, M.Kaufmann, A.N.Anselmo, W.Stark, and M.G.Grütter (2003).
Structure of rabbit-muscle glyceraldehyde-3-phosphate dehydrogenase.
  Acta Crystallogr D Biol Crystallogr, 59, 2218-2227.
PDB code: 1j0x
12136140 Y.Q.Shen, S.Y.Song, and Z.J.Lin (2002).
Structures of D-glyceraldehyde-3-phosphate dehydrogenase complexed with coenzyme analogues.
  Acta Crystallogr D Biol Crystallogr, 58, 1287-1297.
PDB codes: 1ihx 1ihy
11114510 H.Erlandsen, E.E.Abola, and R.C.Stevens (2000).
Combining structural genomics and enzymology: completing the picture in metabolic pathways and enzyme active sites.
  Curr Opin Struct Biol, 10, 719-730.  
The most recent references are shown first. Citation data come partly from CiteXplore and partly from an automated harvesting procedure. Note that this is likely to be only a partial list as not all journals are covered by either method. However, we are continually building up the citation data so more and more references will be included with time. Where a reference describes a PDB structure, the PDB codes are shown on the right.

 

spacer

spacer