 |
PDBsum entry 1dab
|
|
|
|
 |
|
|
|
|
|
|
|
|
|
|
|
|
 |
|
|
|
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
|
|
|
|
|
|
|
|
|
|
Cell adhesion
|
PDB id
|
|
|
|
1dab
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
 |
Contents |
 |
|
|
|
|
|
|
|
|
|
* Residue conservation analysis
|
|
|
|
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
|
|
|
| |
|
|
Nature
381:90-92
(1996)
|
|
PubMed id:
|
|
|
|
|
| |
|
Structure of Bordetella pertussis virulence factor P.69 pertactin.
|
|
P.Emsley,
I.G.Charles,
N.F.Fairweather,
N.W.Isaacs.
|
|
|
|
| |
ABSTRACT
|
|
|
| |
|
A new generation of whooping-cough vaccines contain P.69 pertactin, a
surface-exposed domain of an outer membrane protein expressed by the virulent
bacterium Bordetella pertussis. This protein is a virulence factor that mediates
adhesion to target mammalian cells, a reaction that is in part mediated by an
RGD sequence. The X-ray crystal structure of P.69 pertactin has been determined
to 2.5 A. The protein fold consists of a 16-stranded parallel beta-helix with a
V-shaped cross-section, and is the largest beta-helix known to date. Several
between-strand weakly conserved amino-acid repeats form internal and external
ladders. The structure appears as a helix from which several loops protrude,
which contain sequence motifs associated with the biological activity of the
protein. One particular (GGXXP)5 sequence is located directly after the RGD
motif, and may mediate interaction with epithelial cells. The carboxy-terminal
region of P.69 pertactin incorporates a (PQP)5 motif loop containing the major
immunoprotective epitope.
|
|
|
|
|
|
|
 |
 |
|
 |
 |
 |
 |
 |
 |
 |
 |
 |
|
Literature references that cite this PDB file's key reference
|
|
 |
| |
PubMed id
|
 |
Reference
|
 |
|
|
|
 |
D.L.Leyton,
A.E.Rossiter,
and
I.R.Henderson
(2012).
From self sufficiency to dependence: mechanisms and factors important for autotransporter biogenesis.
|
| |
Nat Rev Microbiol,
10,
213-225.
|
 |
|
|
|
|
 |
D.de Gouw,
D.A.Diavatopoulos,
H.J.Bootsma,
P.W.Hermans,
and
F.R.Mooi
(2011).
Pertussis: a matter of immune modulation.
|
| |
FEMS Microbiol Rev,
35,
441-474.
|
 |
|
|
|
|
 |
V.Roussel-Jazédé,
P.Van Gelder,
R.Sijbrandi,
L.Rutten,
B.R.Otto,
J.Luirink,
P.Gros,
J.Tommassen,
and
P.Van Ulsen
(2011).
Channel properties of the translocator domain of the autotransporter Hbp of Escherichia coli.
|
| |
Mol Membr Biol,
28,
158-170.
|
 |
|
|
|
|
 |
Y.Zhai,
K.Zhang,
Y.Huo,
Y.Zhu,
Q.Zhou,
J.Lu,
I.Black,
X.Pang,
A.W.Roszak,
X.Zhang,
N.W.Isaacs,
and
F.Sun
(2011).
Autotransporter passenger domain secretion requires a hydrophobic cavity at the extracellular entrance of the β-domain pore.
|
| |
Biochem J,
435,
577-587.
|
 |
|
PDB code:
|
 |
|
|
|
|
|
 |
C.S.Inatsuka,
Q.Xu,
I.Vujkovic-Cvijin,
S.Wong,
S.Stibitz,
J.F.Miller,
and
P.A.Cotter
(2010).
Pertactin is required for Bordetella species to resist neutrophil-mediated clearance.
|
| |
Infect Immun,
78,
2901-2909.
|
 |
|
|
|
|
 |
J.H.Peterson,
P.Tian,
R.Ieva,
N.Dautin,
and
H.D.Bernstein
(2010).
Secretion of a bacterial virulence factor is driven by the folding of a C-terminal segment.
|
| |
Proc Natl Acad Sci U S A,
107,
17739-17744.
|
 |
|
|
|
|
 |
J.S.Mejia,
E.N.Arthun,
and
R.G.Titus
(2010).
Cysteine-free proteins in the immunobiology of arthropod-borne diseases.
|
| |
J Biomed Biotechnol,
2010,
171537.
|
 |
|
|
|
|
 |
K.Nishimura,
N.Tajima,
Y.H.Yoon,
S.Y.Park,
and
J.R.Tame
(2010).
Autotransporter passenger proteins: virulence factors with common structural themes.
|
| |
J Mol Med,
88,
451-458.
|
 |
|
|
|
|
 |
L.P.Allsopp,
M.Totsika,
J.J.Tree,
G.C.Ulett,
A.N.Mabbett,
T.J.Wells,
B.Kobe,
S.A.Beatson,
and
M.A.Schembri
(2010).
UpaH is a newly identified autotransporter protein that contributes to biofilm formation and bladder colonization by uropathogenic Escherichia coli CFT073.
|
| |
Infect Immun,
78,
1659-1669.
|
 |
|
|
|
|
 |
M.Junker,
and
P.L.Clark
(2010).
Slow formation of aggregation-resistant beta-sheet folding intermediates.
|
| |
Proteins,
78,
812-824.
|
 |
|
|
|
|
 |
S.E.Ivie,
M.S.McClain,
H.M.Algood,
D.B.Lacy,
and
T.L.Cover
(2010).
Analysis of a beta-helical region in the p55 domain of Helicobacter pylori vacuolating toxin.
|
| |
BMC Microbiol,
10,
60.
|
 |
|
|
|
|
 |
T.J.Wells,
M.Totsika,
and
M.A.Schembri
(2010).
Autotransporters of Escherichia coli: a sequence-based characterization.
|
| |
Microbiology,
156,
2459-2469.
|
 |
|
|
|
|
 |
V.S.Meli,
B.Osuna,
G.Ruvkun,
and
A.R.Frand
(2010).
MLT-10 defines a family of DUF644 and proline-rich repeat proteins involved in the molting cycle of Caenorhabditis elegans.
|
| |
Mol Biol Cell,
21,
1648-1661.
|
 |
|
|
|
|
 |
W.S.Jong,
A.Saurí,
and
J.Luirink
(2010).
Extracellular production of recombinant proteins using bacterial autotransporters.
|
| |
Curr Opin Biotechnol,
21,
646-652.
|
 |
|
|
|
|
 |
A.Janakiraman,
K.R.Fixen,
A.N.Gray,
H.Niki,
and
M.B.Goldberg
(2009).
A genome-scale proteomic screen identifies a role for DnaK in chaperoning of polar autotransporters in Shigella.
|
| |
J Bacteriol,
191,
6300-6311.
|
 |
|
|
|
|
 |
C.Baud,
H.Hodak,
E.Willery,
H.Drobecq,
C.Locht,
M.Jamin,
and
F.Jacob-Dubuisson
(2009).
Role of DegP for two-partner secretion in Bordetella.
|
| |
Mol Microbiol,
74,
315-329.
|
 |
|
|
|
|
 |
J.Brockmeyer,
S.Spelten,
T.Kuczius,
M.Bielaszewska,
and
H.Karch
(2009).
Structure and function relationship of the autotransport and proteolytic activity of EspP from Shiga toxin-producing Escherichia coli.
|
| |
PLoS One,
4,
e6100.
|
 |
|
|
|
|
 |
M.E.Charbonneau,
J.Janvore,
and
M.Mourez
(2009).
Autoprocessing of the Escherichia coli AIDA-I Autotransporter: A NEW MECHANISM INVOLVING ACIDIC RESIDUES IN THE JUNCTION REGION.
|
| |
J Biol Chem,
284,
17340-17351.
|
 |
|
|
|
|
 |
M.Junker,
R.N.Besingi,
and
P.L.Clark
(2009).
Vectorial transport and folding of an autotransporter virulence protein during outer membrane secretion.
|
| |
Mol Microbiol,
71,
1323-1332.
|
 |
|
|
|
|
 |
R.M.Stenger,
M.C.Poelen,
E.E.Moret,
B.Kuipers,
S.C.Bruijns,
P.Hoogerhout,
M.Hijnen,
A.J.King,
F.R.Mooi,
C.J.Boog,
and
C.A.van Els
(2009).
Immunodominance in mouse and human CD4+ T-cell responses specific for the Bordetella pertussis virulence factor P.69 pertactin.
|
| |
Infect Immun,
77,
896-903.
|
 |
|
|
|
|
 |
T.L.Nicholson,
S.L.Brockmeier,
and
C.L.Loving
(2009).
Contribution of Bordetella bronchiseptica filamentous hemagglutinin and pertactin to respiratory disease in swine.
|
| |
Infect Immun,
77,
2136-2146.
|
 |
|
|
|
|
 |
D.O.Serra,
G.Lücking,
F.Weiland,
S.Schulz,
A.Görg,
O.M.Yantorno,
and
M.Ehling-Schulz
(2008).
Proteome approaches combined with Fourier transform infrared spectroscopy revealed a distinctive biofilm physiology in Bordetella pertussis.
|
| |
Proteomics,
8,
4995-5010.
|
 |
|
|
|
|
 |
H.L.Tyler,
and
E.W.Triplett
(2008).
Plants as a habitat for beneficial and/or human pathogenic bacteria.
|
| |
Annu Rev Phytopathol,
46,
53-73.
|
 |
|
|
|
|
 |
J.L.Miller,
J.Le Coq,
A.Hodes,
R.Barbalat,
J.F.Miller,
and
P.Ghosh
(2008).
Selective ligand recognition by a diversity-generating retroelement variable protein.
|
| |
PLoS Biol,
6,
e131.
|
 |
|
PDB code:
|
 |
|
|
|
|
|
 |
J.P.Renn,
and
P.L.Clark
(2008).
A conserved stable core structure in the passenger domain beta-helix of autotransporter virulence proteins.
|
| |
Biopolymers,
89,
420-427.
|
 |
|
|
|
|
 |
Y.T.Yen,
M.Kostakioti,
I.R.Henderson,
and
C.Stathopoulos
(2008).
Common themes and variations in serine protease autotransporters.
|
| |
Trends Microbiol,
16,
370-379.
|
 |
|
|
|
|
 |
H.J.Yeo,
T.Yokoyama,
K.Walkiewicz,
Y.Kim,
S.Grass,
and
J.W.Geme
(2007).
The structure of the Haemophilus influenzae HMW1 pro-piece reveals a structural domain essential for bacterial two-partner secretion.
|
| |
J Biol Chem,
282,
31076-31084.
|
 |
|
PDB code:
|
 |
|
|
|
|
|
 |
K.A.Gangwer,
D.J.Mushrush,
D.L.Stauff,
B.Spiller,
M.S.McClain,
T.L.Cover,
and
D.B.Lacy
(2007).
Crystal structure of the Helicobacter pylori vacuolating toxin p55 domain.
|
| |
Proc Natl Acad Sci U S A,
104,
16293-16298.
|
 |
|
PDB code:
|
 |
|
|
|
|
|
 |
M.E.Charbonneau,
and
M.Mourez
(2007).
Functional organization of the autotransporter adhesin involved in diffuse adherence.
|
| |
J Bacteriol,
189,
9020-9029.
|
 |
|
|
|
|
 |
N.Dautin,
and
H.D.Bernstein
(2007).
Protein secretion in gram-negative bacteria via the autotransporter pathway.
|
| |
Annu Rev Microbiol,
61,
89.
|
 |
|
|
|
|
 |
S.Pukatzki,
A.T.Ma,
A.T.Revel,
D.Sturtevant,
and
J.J.Mekalanos
(2007).
Type VI secretion system translocates a phage tail spike-like protein into target cells where it cross-links actin.
|
| |
Proc Natl Acad Sci U S A,
104,
15508-15513.
|
 |
|
|
|
|
 |
T.J.Barnard,
N.Dautin,
P.Lukacik,
H.D.Bernstein,
and
S.K.Buchanan
(2007).
Autotransporter structure reveals intra-barrel cleavage followed by conformational changes.
|
| |
Nat Struct Mol Biol,
14,
1214-1220.
|
 |
|
PDB code:
|
 |
|
|
|
|
|
 |
T.J.Wells,
J.J.Tree,
G.C.Ulett,
and
M.A.Schembri
(2007).
Autotransporter proteins: novel targets at the bacterial cell surface.
|
| |
FEMS Microbiol Lett,
274,
163-172.
|
 |
|
|
|
|
 |
Y.Zhu,
I.Black,
A.W.Roszak,
and
N.W.Isaacs
(2007).
Crystallization and preliminary X-ray diffraction analysis of P30, the transmembrane domain of pertactin, an autotransporter from Bordetella pertussis.
|
| |
Acta Crystallogr Sect F Struct Biol Cryst Commun,
63,
593-595.
|
 |
|
|
|
|
 |
A.Economou,
P.J.Christie,
R.C.Fernandez,
T.Palmer,
G.V.Plano,
and
A.P.Pugsley
(2006).
Secretion by numbers: Protein traffic in prokaryotes.
|
| |
Mol Microbiol,
62,
308-319.
|
 |
|
|
|
|
 |
A.V.McDonnell,
M.Menke,
N.Palmer,
J.King,
L.Cowen,
and
B.Berger
(2006).
Fold recognition and accurate sequence-structure alignment of sequences directing beta-sheet proteins.
|
| |
Proteins,
63,
976-985.
|
 |
|
|
|
|
 |
D.A.Diavatopoulos,
M.Hijnen,
and
F.R.Mooi
(2006).
Adaptive evolution of the Bordetella autotransporter pertactin.
|
| |
J Evol Biol,
19,
1931-1938.
|
 |
|
|
|
|
 |
G.W.Buchko,
S.Ni,
H.Robinson,
E.A.Welsh,
H.B.Pakrasi,
and
M.A.Kennedy
(2006).
Characterization of two potentially universal turn motifs that shape the repeated five-residues fold--crystal structure of a lumenal pentapeptide repeat protein from Cyanothece 51142.
|
| |
Protein Sci,
15,
2579-2595.
|
 |
|
PDB codes:
|
 |
|
|
|
|
|
 |
J.H.Peterson,
R.L.Szabady,
and
H.D.Bernstein
(2006).
An unusual signal peptide extension inhibits the binding of bacterial presecretory proteins to the signal recognition particle, trigger factor, and the SecYEG complex.
|
| |
J Biol Chem,
281,
9038-9048.
|
 |
|
|
|
|
 |
J.M.Fleckenstein,
K.Roy,
J.F.Fischer,
and
M.Burkitt
(2006).
Identification of a two-partner secretion locus of enterotoxigenic Escherichia coli.
|
| |
Infect Immun,
74,
2245-2258.
|
 |
|
|
|
|
 |
M.E.Charbonneau,
F.Berthiaume,
and
M.Mourez
(2006).
Proteolytic processing is not essential for multiple functions of the Escherichia coli autotransporter adhesin involved in diffuse adherence (AIDA-I).
|
| |
J Bacteriol,
188,
8504-8512.
|
 |
|
|
|
|
 |
M.Junker,
C.C.Schuster,
A.V.McDonnell,
K.A.Sorg,
M.C.Finn,
B.Berger,
and
P.L.Clark
(2006).
Pertactin beta-helix folding mechanism suggests common themes for the secretion and folding of autotransporter proteins.
|
| |
Proc Natl Acad Sci U S A,
103,
4918-4923.
|
 |
|
|
|
|
 |
N.Rutherford,
and
M.Mourez
(2006).
Surface display of proteins by gram-negative bacterial autotransporters.
|
| |
Microb Cell Fact,
5,
22.
|
 |
|
|
|
|
 |
P.van Ulsen,
and
J.Tommassen
(2006).
Protein secretion and secreted proteins in pathogenic Neisseriaceae.
|
| |
FEMS Microbiol Rev,
30,
292-319.
|
 |
|
|
|
|
 |
R.Simkovsky,
and
J.King
(2006).
An elongated spine of buried core residues necessary for in vivo folding of the parallel beta-helix of P22 tailspike adhesin.
|
| |
Proc Natl Acad Sci U S A,
103,
3575-3580.
|
 |
|
|
|
|
 |
R.Tycko
(2006).
Solid-state NMR as a probe of amyloid structure.
|
| |
Protein Pept Lett,
13,
229-234.
|
 |
|
|
|
|
 |
B.R.Otto,
R.Sijbrandi,
J.Luirink,
B.Oudega,
J.G.Heddle,
K.Mizutani,
S.Y.Park,
and
J.R.Tame
(2005).
Crystal structure of hemoglobin protease, a heme binding autotransporter protein from pathogenic Escherichia coli.
|
| |
J Biol Chem,
280,
17339-17345.
|
 |
|
PDB code:
|
 |
|
|
|
|
|
 |
J.A.Edwards,
N.A.Groathouse,
and
S.Boitano
(2005).
Bordetella bronchiseptica adherence to cilia is mediated by multiple adhesin factors and blocked by surfactant protein A.
|
| |
Infect Immun,
73,
3618-3626.
|
 |
|
|
|
|
 |
N.R.Thomson,
C.Yeats,
K.Bell,
M.T.Holden,
S.D.Bentley,
M.Livingstone,
A.M.Cerdeño-Tárraga,
B.Harris,
J.Doggett,
D.Ormond,
K.Mungall,
K.Clarke,
T.Feltwell,
Z.Hance,
M.Sanders,
M.A.Quail,
C.Price,
B.G.Barrell,
J.Parkhill,
and
D.Longbottom
(2005).
The Chlamydophila abortus genome sequence reveals an array of variable proteins that contribute to interspecies variation.
|
| |
Genome Res,
15,
629-640.
|
 |
|
|
|
|
 |
S.A.Douthit,
M.Dlakic,
D.E.Ohman,
and
M.J.Franklin
(2005).
Epimerase active domain of Pseudomonas aeruginosa AlgG, a protein that contains a right-handed beta-helix.
|
| |
J Bacteriol,
187,
4573-4583.
|
 |
|
|
|
|
 |
S.A.McMahon,
J.L.Miller,
J.A.Lawton,
D.E.Kerkow,
A.Hodes,
M.A.Marti-Renom,
S.Doulatov,
E.Narayanan,
A.Sali,
J.F.Miller,
and
P.Ghosh
(2005).
The C-type lectin fold as an evolutionary solution for massive sequence variation.
|
| |
Nat Struct Mol Biol,
12,
886-892.
|
 |
|
PDB codes:
|
 |
|
|
|
|
|
 |
S.Mattoo,
and
J.D.Cherry
(2005).
Molecular pathogenesis, epidemiology, and clinical manifestations of respiratory infections due to Bordetella pertussis and other Bordetella subspecies.
|
| |
Clin Microbiol Rev,
18,
326-382.
|
 |
|
|
|
|
 |
A.V.Kajava,
U.Baxa,
R.B.Wickner,
and
A.C.Steven
(2004).
A model for Ure2p prion filaments and other amyloids: the parallel superpleated beta-structure.
|
| |
Proc Natl Acad Sci U S A,
101,
7885-7890.
|
 |
|
|
|
|
 |
B.Clantin,
H.Hodak,
E.Willery,
C.Locht,
F.Jacob-Dubuisson,
and
V.Villeret
(2004).
The crystal structure of filamentous hemagglutinin secretion domain and its implications for the two-partner secretion pathway.
|
| |
Proc Natl Acad Sci U S A,
101,
6194-6199.
|
 |
|
PDB code:
|
 |
|
|
|
|
|
 |
C.J.Oomen,
P.van Ulsen,
P.van Gelder,
M.Feijen,
J.Tommassen,
and
P.Gros
(2004).
Structure of the translocator domain of a bacterial autotransporter.
|
| |
EMBO J,
23,
1257-1266.
|
 |
|
PDB codes:
|
 |
|
|
|
|
|
 |
E.Veiga,
V.de Lorenzo,
and
L.A.Fernández
(2004).
Structural tolerance of bacterial autotransporters for folded passenger protein domains.
|
| |
Mol Microbiol,
52,
1069-1080.
|
 |
|
|
|
|
 |
F.J.Stevens
(2004).
Amyloid formation: an emulation of matrix protein assembly?
|
| |
Amyloid,
11,
232-244.
|
 |
|
|
|
|
 |
H.Remaut,
and
G.Waksman
(2004).
Structural biology of bacterial pathogenesis.
|
| |
Curr Opin Struct Biol,
14,
161-170.
|
 |
|
|
|
|
 |
I.R.Henderson,
F.Navarro-Garcia,
M.Desvaux,
R.C.Fernandez,
and
D.Ala'Aldeen
(2004).
Type V protein secretion pathway: the autotransporter story.
|
| |
Microbiol Mol Biol Rev,
68,
692-744.
|
 |
|
|
|
|
 |
M.Hijnen,
F.R.Mooi,
P.G.van Gageldonk,
P.Hoogerhout,
A.J.King,
and
G.A.Berbers
(2004).
Epitope structure of the Bordetella pertussis protein P.69 pertactin, a major vaccine component and protective antigen.
|
| |
Infect Immun,
72,
3716-3723.
|
 |
|
|
|
|
 |
M.Kostakioti,
and
C.Stathopoulos
(2004).
Functional analysis of the Tsh autotransporter from an avian pathogenic Escherichia coli strain.
|
| |
Infect Immun,
72,
5548-5554.
|
 |
|
|
|
|
 |
P.Klemm,
L.Hjerrild,
M.Gjermansen,
and
M.A.Schembri
(2004).
Structure-function analysis of the self-recognizing Antigen 43 autotransporter protein from Escherichia coli.
|
| |
Mol Microbiol,
51,
283-296.
|
 |
|
|
|
|
 |
R.Tycko
(2004).
Progress towards a molecular-level structural understanding of amyloid fibrils.
|
| |
Curr Opin Struct Biol,
14,
96.
|
 |
|
|
|
|
 |
S.Ayalew,
A.W.Confer,
and
E.R.Blackwood
(2004).
Characterization of immunodominant and potentially protective epitopes of Mannheimia haemolytica serotype 1 outer membrane lipoprotein PlpE.
|
| |
Infect Immun,
72,
7265-7274.
|
 |
|
|
|
|
 |
S.Doulatov,
A.Hodes,
L.Dai,
N.Mandhana,
M.Liu,
R.Deora,
R.W.Simons,
S.Zimmerly,
and
J.F.Miller
(2004).
Tropism switching in Bordetella bacteriophage defines a family of diversity-generating retroelements.
|
| |
Nature,
431,
476-481.
|
 |
|
|
|
|
 |
A.M.Larsson,
R.Andersson,
J.Ståhlberg,
L.Kenne,
and
T.A.Jones
(2003).
Dextranase from Penicillium minioluteum: reaction course, crystal structure, and product complex.
|
| |
Structure,
11,
1111-1121.
|
 |
|
PDB codes:
|
 |
|
|
|
|
|
 |
D.C.Oliver,
G.Huang,
E.Nodel,
S.Pleasance,
and
R.C.Fernandez
(2003).
A conserved region within the Bordetella pertussis autotransporter BrkA is necessary for folding of its passenger domain.
|
| |
Mol Microbiol,
47,
1367-1383.
|
 |
|
|
|
|
 |
D.C.Oliver,
G.Huang,
and
R.C.Fernandez
(2003).
Identification of secretion determinants of the Bordetella pertussis BrkA autotransporter.
|
| |
J Bacteriol,
185,
489-495.
|
 |
|
|
|
|
 |
E.Veiga,
V.de Lorenzo,
and
L.A.Fernández
(2003).
Autotransporters as scaffolds for novel bacterial adhesins: surface properties of Escherichia coli cells displaying Jun/Fos dimerization domains.
|
| |
J Bacteriol,
185,
5585-5590.
|
 |
|
|
|
|
 |
O.N.Antzutkin,
J.J.Balbach,
and
R.Tycko
(2003).
Site-specific identification of non-beta-strand conformations in Alzheimer's beta-amyloid fibrils by solid-state NMR.
|
| |
Biophys J,
84,
3326-3335.
|
 |
|
|
|
|
 |
R.Casadio,
P.Fariselli,
G.Finocchiaro,
and
P.L.Martelli
(2003).
Fishing new proteins in the twilight zone of genomes: the test case of outer membrane proteins in Escherichia coli K12, Escherichia coli O157:H7, and other Gram-negative bacteria.
|
| |
Protein Sci,
12,
1158-1168.
|
 |
|
|
|
|
 |
A.T.Petkova,
Y.Ishii,
J.J.Balbach,
O.N.Antzutkin,
R.D.Leapman,
F.Delaglio,
and
R.Tycko
(2002).
A structural model for Alzheimer's beta -amyloid fibrils based on experimental constraints from solid state NMR.
|
| |
Proc Natl Acad Sci U S A,
99,
16742-16747.
|
 |
|
|
|
|
 |
J.J.Balbach,
A.T.Petkova,
N.A.Oyler,
O.N.Antzutkin,
D.J.Gordon,
S.C.Meredith,
and
R.Tycko
(2002).
Supramolecular structure in full-length Alzheimer's beta-amyloid fibrils: evidence for a parallel beta-sheet organization from solid-state nuclear magnetic resonance.
|
| |
Biophys J,
83,
1205-1216.
|
 |
|
|
|
|
 |
L.Cowen,
P.Bradley,
M.Menke,
J.King,
and
B.Berger
(2002).
Predicting the beta-helix fold from protein sequence data.
|
| |
J Comput Biol,
9,
261-276.
|
 |
|
|
|
|
 |
M.A.McDonough,
C.Ryttersgaard,
M.E.Bjørnvad,
L.Lo Leggio,
M.Schülein,
S.O.Schrøder Glad,
and
S.Larsen
(2002).
Crystallization and preliminary X-ray characterization of a thermostable pectate lyase from Thermotoga maritima.
|
| |
Acta Crystallogr D Biol Crystallogr,
58,
709-711.
|
 |
|
|
|
|
 |
S.K.Ray,
R.Rajeshwari,
Y.Sharma,
and
R.V.Sonti
(2002).
A high-molecular-weight outer membrane protein of Xanthomonas oryzae pv. oryzae exhibits similarity to non-fimbrial adhesins of animal pathogenic bacteria and is required for optimum virulence.
|
| |
Mol Microbiol,
46,
637-647.
|
 |
|
|
|
|
 |
A.M.Smith,
C.A.Guzmán,
and
M.J.Walker
(2001).
The virulence factors of Bordetella pertussis: a matter of control.
|
| |
FEMS Microbiol Rev,
25,
309-333.
|
 |
|
|
|
|
 |
A.V.Kajava,
N.Cheng,
R.Cleaver,
M.Kessel,
M.N.Simon,
E.Willery,
F.Jacob-Dubuisson,
C.Locht,
and
A.C.Steven
(2001).
Beta-helix model for the filamentous haemagglutinin adhesin of Bordetella pertussis and related bacterial secretory proteins.
|
| |
Mol Microbiol,
42,
279-292.
|
 |
|
|
|
|
 |
G.Michel,
L.Chantalat,
E.Fanchon,
B.Henrissat,
B.Kloareg,
and
O.Dideberg
(2001).
The iota-carrageenase of Alteromonas fortis. A beta-helix fold-containing enzyme for the degradation of a highly polyanionic polysaccharide.
|
| |
J Biol Chem,
276,
40202-40209.
|
 |
|
PDB code:
|
 |
|
|
|
|
|
 |
I.R.Henderson,
and
J.P.Nataro
(2001).
Virulence functions of autotransporter proteins.
|
| |
Infect Immun,
69,
1231-1243.
|
 |
|
|
|
|
 |
K.B.Register
(2001).
Novel genetic and phenotypic heterogeneity in Bordetella bronchiseptica pertactin.
|
| |
Infect Immun,
69,
1917-1921.
|
 |
|
|
|
|
 |
M.Akita,
A.Suzuki,
T.Kobayashi,
S.Ito,
and
T.Yamane
(2001).
The first structure of pectate lyase belonging to polysaccharide lyase family 3.
|
| |
Acta Crystallogr D Biol Crystallogr,
57,
1786-1792.
|
 |
|
PDB code:
|
 |
|
|
|
|
|
 |
B.Kobe,
and
A.V.Kajava
(2000).
When protein folding is simplified to protein coiling: the continuum of solenoid protein structures.
|
| |
Trends Biochem Sci,
25,
509-515.
|
 |
|
|
|
|
 |
B.Schuler,
F.Fürst,
F.Osterroth,
S.Steinbacher,
R.Huber,
and
R.Seckler
(2000).
Plasticity and steric strain in a parallel beta-helix: rational mutations in the P22 tailspike protein.
|
| |
Proteins,
39,
89.
|
 |
|
PDB codes:
|
 |
|
|
|
|
|
 |
D.E.Kamen,
Y.Griko,
and
R.W.Woody
(2000).
The stability, structural organization, and denaturation of pectate lyase C, a parallel beta-helix protein.
|
| |
Biochemistry,
39,
15932-15943.
|
 |
|
|
|
|
 |
F.Jacob-Dubuisson,
R.Antoine,
and
C.Locht
(2000).
Autotransporter proteins, evolution and redefining protein secretion: response.
|
| |
Trends Microbiol,
8,
533-534.
|
 |
|
|
|
|
 |
J.F.Kreisberg,
S.D.Betts,
and
J.King
(2000).
Beta-helix core packing within the triple-stranded oligomerization domain of the P22 tailspike.
|
| |
Protein Sci,
9,
2338-2343.
|
 |
|
|
|
|
 |
R.Khurana,
and
A.L.Fink
(2000).
Do parallel beta-helix proteins have a unique fourier transform infrared spectrum?
|
| |
Biophys J,
78,
994.
|
 |
|
|
|
|
 |
W.Minor,
D.Tomchick,
and
Z.Otwinowski
(2000).
Strategies for macromolecular synchrotron crystallography.
|
| |
Structure,
8,
R105-R110.
|
 |
|
|
|
|
 |
A.T.Hadfield,
G.Petsko,
P.Lindo,
and
B.R.Singh
(1999).
Preliminary crystallographic studies of a protease resistant botulinum neurotoxin associated protein Hn-33.
|
| |
Acta Crystallogr D Biol Crystallogr,
55,
1237-1239.
|
 |
|
|
|
|
 |
C.Lindenthal,
and
E.A.Elsinghorst
(1999).
Identification of a glycoprotein produced by enterotoxigenic Escherichia coli.
|
| |
Infect Immun,
67,
4084-4091.
|
 |
|
|
|
|
 |
Y.van Santen,
J.A.Benen,
K.H.Schröter,
K.H.Kalk,
S.Armand,
J.Visser,
and
B.W.Dijkstra
(1999).
1.68-A crystal structure of endopolygalacturonase II from Aspergillus niger and identification of active site residues by site-directed mutagenesis.
|
| |
J Biol Chem,
274,
30474-30480.
|
 |
|
PDB code:
|
 |
|
|
|
|
|
 |
A.Bateman,
A.G.Murzin,
and
S.A.Teichmann
(1998).
Structure and distribution of pentapeptide repeats in bacteria.
|
| |
Protein Sci,
7,
1477-1480.
|
 |
|
|
|
|
 |
C.M.Thomas,
M.S.Dixon,
M.Parniske,
C.Golstein,
and
J.D.Jones
(1998).
Genetic and molecular analysis of tomato Cf genes for resistance to Cladosporium fulvum.
|
| |
Philos Trans R Soc Lond B Biol Sci,
353,
1413-1424.
|
 |
|
|
|
|
 |
G.Del Giudice,
M.Pizza,
and
R.Rappuoli
(1998).
Molecular basis of vaccination.
|
| |
Mol Aspects Med,
19,
1.
|
 |
|
|
|
|
 |
S.Miller,
B.Schuler,
and
R.Seckler
(1998).
A reversibly unfolding fragment of P22 tailspike protein with native structure: the isolated beta-helix domain.
|
| |
Biochemistry,
37,
9160-9168.
|
 |
|
|
|
|
 |
C.Chothia,
T.Hubbard,
S.Brenner,
H.Barns,
and
A.Murzin
(1997).
Protein folds in the all-beta and all-alpha classes.
|
| |
Annu Rev Biophys Biomol Struct,
26,
597-627.
|
 |
|
|
|
|
 |
J.Heringa,
and
W.R.Taylor
(1997).
Three-dimensional domain duplication, swapping and stealing.
|
| |
Curr Opin Struct Biol,
7,
416-421.
|
 |
|
|
|
|
 |
K.E.Hammond-Kosack,
and
J.D.Jones
(1997).
PLANT DISEASE RESISTANCE GENES.
|
| |
Annu Rev Plant Physiol Plant Mol Biol,
48,
575-607.
|
 |
|
|
|
|
 |
T.N.Petersen,
S.Kauppinen,
and
S.Larsen
(1997).
The crystal structure of rhamnogalacturonase A from Aspergillus aculeatus: a right-handed parallel beta helix.
|
| |
Structure,
5,
533-544.
|
 |
|
PDB code:
|
 |
|
|
|
|
|
 |
B.Kobe
(1996).
Leucines on a roll.
|
| |
Nat Struct Biol,
3,
977-980.
|
 |
|
|
|
|
 |
J.J.Remy,
L.Couture,
J.Pantel,
T.Haertlé,
H.Rabesona,
V.Bozon,
E.Pajot-Augy,
P.Robert,
F.Troalen,
R.Salesse,
and
J.M.Bidart
(1996).
Mapping of HCG-receptor complexes.
|
| |
Mol Cell Endocrinol,
125,
79-91.
|
 |
|
|
|
|
 |
N.Kita,
C.M.Boyd,
M.R.Garrett,
F.Jurnak,
and
N.T.Keen
(1996).
Differential effect of site-directed mutations in pelC on pectate lyase activity, plant tissue maceration, and elicitor activity.
|
| |
J Biol Chem,
271,
26529-26535.
|
 |
|
|
|
|
 |
S.Steinbacher,
U.Baxa,
S.Miller,
A.Weintraub,
R.Seckler,
and
R.Huber
(1996).
Crystal structure of phage P22 tailspike protein complexed with Salmonella sp. O-antigen receptors.
|
| |
Proc Natl Acad Sci U S A,
93,
10584-10588.
|
 |
|
PDB codes:
|
 |
|
|
 |
 |
|
The most recent references are shown first.
Citation data come partly from CiteXplore and partly
from an automated harvesting procedure. Note that this is likely to be
only a partial list as not all journals are covered by
either method. However, we are continually building up the citation data
so more and more references will be included with time.
Where a reference describes a PDB structure, the PDB
code is
shown on the right.
|
');
}
}
 |