|
|
|
|
 |
Contents |
 |
|
|
|
|
|
|
|
|
|
(+ 0 more)
72 a.a.
|
 |
|
|
|
|
|
|
|
81 a.a.
|
 |
|
|
|
|
|
|
|
86 a.a.
|
 |
|
|
|
|
|
|
|
|
* Residue conservation analysis
|
|
|
|
|
PDB id:
|
 |
|
 |
| Name: |
 |
RNA binding protein
|
 |
|
Title:
|
 |
Crystal structure of the d3b subcomplex of the human core snrnp domain at 2.0a resolution
|
|
Structure:
|
 |
Protein (small nuclear ribonucleoprotein sm d3). Chain: a, c, e, g, i, k. Fragment: sm motif. Synonym: d3 core snrnp protein. Engineered: yes. Mutation: yes. Protein (small nuclear ribonucleoprotein associated protein b). Chain: b, d, f, h, j, l.
|
|
Source:
|
 |
Homo sapiens. Human. Organism_taxid: 9606. Cellular_location: nucleus. Expressed in: escherichia coli. Expression_system_taxid: 562. Other_details: n-terminal his6 tag cleaved off,truncated at position 75. Other_details: polycistronic coexpression vector with sm d3.
|
|
Biol. unit:
|
 |
Hexamer (from
)
|
|
Resolution:
|
 |
|
2.00Å
|
R-factor:
|
0.213
|
R-free:
|
0.265
|
|
|
Authors:
|
 |
C.Kambach,S.Walke,J.M.Avis,E.De La Fortelle,J.Li,K.Nagai
|
Key ref:
|
 |
C.Kambach
et al.
(1999).
Crystal structures of two Sm protein complexes and their implications for the assembly of the spliceosomal snRNPs.
Cell,
96,
375-387.
PubMed id:
DOI:
|
 |
|
Date:
|
 |
|
22-Dec-98
|
Release date:
|
22-Dec-99
|
|
|
|
|
|
PROCHECK
|
|
|
|
|
Headers
|
 |
|
|
References
|
|
|
|
|
|
|
P62318
(SMD3_HUMAN) -
Small nuclear ribonucleoprotein Sm D3 from Homo sapiens
|
|
|
|
Seq: Struc:
|
 |
 |
 |
126 a.a.
72 a.a.*
|
|
|
|
|
|
|
|
|
 |
 |
|
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
|
|
|
| |
|
DOI no:
|
Cell
96:375-387
(1999)
|
|
PubMed id:
|
|
|
|
|
| |
|
Crystal structures of two Sm protein complexes and their implications for the assembly of the spliceosomal snRNPs.
|
|
C.Kambach,
S.Walke,
R.Young,
J.M.Avis,
E.de la Fortelle,
V.A.Raker,
R.Lührmann,
J.Li,
K.Nagai.
|
|
|
|
| |
ABSTRACT
|
|
|
| |
|
The U1, U2, U4/U6, and U5 small nuclear ribonucleoprotein particles (snRNPs)
involved in pre-mRNA splicing contain seven Sm proteins (B/B', D1, D2, D3, E, F,
and G) in common, which assemble around the Sm site present in four of the major
spliceosomal small nuclear RNAs (snRNAs). These proteins share a common sequence
motif in two segments, Sm1 and Sm2, separated by a short variable linker.
Crystal structures of two Sm protein complexes, D3B and D1D2, show that these
proteins have a common fold containing an N-terminal helix followed by a
strongly bent five-stranded antiparallel beta sheet, and the D1D2 and D3B dimers
superpose closely in their core regions, including the dimer interfaces. The
crystal structures suggest that the seven Sm proteins could form a closed ring
and the snRNAs may be bound in the positively charged central hole.
|
|
|
|
|
| |
Selected figure(s)
|
|
|
| |
 |
 |
|
 |
|
 |
Figure 2.
Figure 2. Ribbon Representations of the Crystal Structure of
the D and B Proteins(A) D[3] protein (front view) with the
hydrogen bonding network involving Tyr-62 and highly conserved
residues Glu-36, Asn-40, Arg-64, and Gly-65.(B) D[3] protein
(side view).(C) B protein (front view) including highly
conserved residues Asp-35, Asn-39, Arg-73, and Gly-74. Strands
are color coded as in [3]Figure 1. Figure produced with SETOR (
[12]).
|
 |
Figure 4.
Figure 4. The Interaction between the D and B Proteins within
the Heterodimer(A) Stereo view of the D[3]B dimeric complex.
D[3], orange; B, blue. The β 5 strand of the D[3] protein pairs
with the β 4 strand of the B protein, forming a continuous
antiparallel β sheet. The loops L2, L3, L4, and L5 are
extending in the same direction.(B) Ball-and-stick model (stereo
view) of the main dimer interface stabilized by the paired β
strands and hydrophobic clustering of Phe-27 (strand β 2) of
the B protein and Phe-70 of the D[3] protein. The hydrogen bond
between the Gly-65 of D3 and Arg-73 of B stabilizes the
conformation of loop L5.(C) A close-up stereo view of the D[3]
and B protein interface including the hydrophobic cluster
between residues on the β sheet outer surface of the B protein
and residues on helix A and strands β 1β 2, and β 5 of the
D[3] protein. Pro-6 of the D[3] protein makes close contact with
Ala-33, the highly conserved Asp-35 and Asn-39, and Ile-41 of
the B protein.(D) The intersubunit salt bridge between Glu-21
(D[3]) and Arg-65 (B) and a cluster of arginines showing
stacking of the guanidinium groups (Arg-69 of D[3] and Arg-25
and Arg-49 of B). The sigma A–weighted 2Fo − Fc map
indicates the high quality of the electron density. Figure
produced with SETOR ([[3]12]).
|
 |
|
|
|
| |
The above figures are
reprinted
by permission from Cell Press:
Cell
(1999,
96,
375-387)
copyright 1999.
|
|
| |
Figures were
selected
by an automated process.
|
|
|
|
|
 |
 |
|
 |
 |
 |
 |
 |
 |
 |
 |
 |
|
Literature references that cite this PDB file's key reference
|
Google scholar
|
|
 |
| |
PubMed id
|
 |
Reference
|
 |
|
|
|
 |
A.K.Leung,
K.Nagai,
and
J.Li
(2011).
Structure of the spliceosomal U4 snRNP core domain and its implication for snRNP biogenesis.
|
| |
Nature,
473,
536-539.
|
 |
|
PDB codes:
|
 |
|
|
|
|
|
 |
C.Creze,
R.Lestini,
J.Kühn,
A.Ligabue,
H.F.Becker,
M.Czjzek,
D.Flament,
and
H.Myllykallio
(2011).
Structure and function of a novel endonuclease acting on branched DNA substrates.
|
| |
Biochem Soc Trans,
39,
145-149.
|
 |
|
|
|
|
 |
E.Kühn-Hölsken,
C.Lenz,
A.Dickmanns,
H.H.Hsiao,
F.M.Richter,
B.Kastner,
R.Ficner,
and
H.Urlaub
(2010).
Mapping the binding site of snurportin 1 on native U1 snRNP by cross-linking and mass spectrometry.
|
| |
Nucleic Acids Res,
38,
5581-5593.
|
 |
|
|
|
|
 |
F.Bleichert,
and
S.J.Baserga
(2010).
Ribonucleoprotein multimers and their functions.
|
| |
Crit Rev Biochem Mol Biol,
45,
331-350.
|
 |
|
|
|
|
 |
G.Ofek,
F.J.Guenaga,
W.R.Schief,
J.Skinner,
D.Baker,
R.Wyatt,
and
P.D.Kwong
(2010).
Elicitation of structure-specific antibodies by epitope scaffolds.
|
| |
Proc Natl Acad Sci U S A,
107,
17880-17887.
|
 |
|
PDB codes:
|
 |
|
|
|
|
|
 |
G.Weber,
S.Trowitzsch,
B.Kastner,
R.Lührmann,
and
M.C.Wahl
(2010).
Functional organization of the Sm core in the crystal structure of human U1 snRNP.
|
| |
EMBO J,
29,
4172-4184.
|
 |
|
PDB code:
|
 |
|
|
|
|
|
 |
J.S.Finkel,
K.Chinchilla,
D.Ursic,
and
M.R.Culbertson
(2010).
Sen1p performs two genetically separable functions in transcription and processing of U5 small nuclear RNA in Saccharomyces cerevisiae.
|
| |
Genetics,
184,
107-118.
|
 |
|
|
|
|
 |
M.C.Lybecker,
C.A.Abel,
A.L.Feig,
and
D.S.Samuels
(2010).
Identification and function of the RNA chaperone Hfq in the Lyme disease spirochete Borrelia burgdorferi.
|
| |
Mol Microbiol,
78,
622-635.
|
 |
|
|
|
|
 |
N.H.Kattah,
M.G.Kattah,
and
P.J.Utz
(2010).
The U1-snRNP complex: structural properties relating to autoimmune pathogenesis in rheumatic diseases.
|
| |
Immunol Rev,
233,
126-145.
|
 |
|
|
|
|
 |
N.Jaé,
P.Wang,
T.Gu,
M.Hühn,
Z.Palfi,
H.Urlaub,
and
A.Bindereif
(2010).
Essential role of a trypanosome U4-specific Sm core protein in small nuclear ribonucleoprotein assembly and splicing.
|
| |
Eukaryot Cell,
9,
379-386.
|
 |
|
|
|
|
 |
S.D.Stojanović,
B.L.Zarić,
and
S.D.Zarić
(2010).
Protein subunit interfaces: a statistical analysis of hot spots in Sm proteins.
|
| |
J Mol Model,
16,
1743-1751.
|
 |
|
|
|
|
 |
S.R.McAllister,
and
C.A.Floudas
(2010).
An improved hybrid global optimization method for protein tertiary structure prediction.
|
| |
Comput Optim Appl,
45,
377-413.
|
 |
|
|
|
|
 |
S.Valadkhan,
and
Y.Jaladat
(2010).
The spliceosomal proteome: at the heart of the largest cellular ribonucleoprotein machine.
|
| |
Proteomics,
10,
4128-4141.
|
 |
|
|
|
|
 |
A.C.Godfrey,
A.E.White,
D.C.Tatomer,
W.F.Marzluff,
and
R.J.Duronio
(2009).
The Drosophila U7 snRNP proteins Lsm10 and Lsm11 are required for histone pre-mRNA processing and play an essential role in development.
|
| |
RNA,
15,
1661-1672.
|
 |
|
|
|
|
 |
A.Chowdhury,
and
S.Tharun
(2009).
Activation of decapping involves binding of the mRNA and facilitation of the post-binding steps by the Lsm1-7-Pat1 complex.
|
| |
RNA,
15,
1837-1848.
|
 |
|
|
|
|
 |
A.K.Clelland,
N.P.Kinnear,
L.Oram,
J.Burza,
and
J.E.Sleeman
(2009).
The SMN protein is a key regulator of nuclear architecture in differentiating neuroblastoma cells.
|
| |
Traffic,
10,
1585-1598.
|
 |
|
|
|
|
 |
B.Ren,
J.Kühn,
L.Meslet-Cladiere,
J.Briffotaux,
C.Norais,
R.Lavigne,
D.Flament,
R.Ladenstein,
and
H.Myllykallio
(2009).
Structure and function of a novel endonuclease acting on branched DNA substrates.
|
| |
EMBO J,
28,
2479-2489.
|
 |
|
PDB code:
|
 |
|
|
|
|
|
 |
C.C.Query
(2009).
Structural biology: Spliceosome subunit revealed.
|
| |
Nature,
458,
418-419.
|
 |
|
|
|
|
 |
C.Oubridge,
D.A.Krummel,
A.K.Leung,
J.Li,
and
K.Nagai
(2009).
Interpreting a low resolution map of human U1 snRNP using anomalous scatterers.
|
| |
Structure,
17,
930-938.
|
 |
|
|
|
|
 |
D.A.Pomeranz Krummel,
C.Oubridge,
A.K.Leung,
J.Li,
and
K.Nagai
(2009).
Crystal structure of human spliceosomal U1 snRNP at 5.5 A resolution.
|
| |
Nature,
458,
475-480.
|
 |
|
PDB code:
|
 |
|
|
|
|
|
 |
D.Das,
P.Kozbial,
H.L.Axelrod,
M.D.Miller,
D.McMullan,
S.S.Krishna,
P.Abdubek,
C.Acosta,
T.Astakhova,
P.Burra,
D.Carlton,
C.Chen,
H.J.Chiu,
T.Clayton,
M.C.Deller,
L.Duan,
Y.Elias,
M.A.Elsliger,
D.Ernst,
C.Farr,
J.Feuerhelm,
A.Grzechnik,
S.K.Grzechnik,
J.Hale,
G.W.Han,
L.Jaroszewski,
K.K.Jin,
H.A.Johnson,
H.E.Klock,
M.W.Knuth,
A.Kumar,
D.Marciano,
A.T.Morse,
K.D.Murphy,
E.Nigoghossian,
A.Nopakun,
L.Okach,
S.Oommachen,
J.Paulsen,
C.Puckett,
R.Reyes,
C.L.Rife,
N.Sefcovic,
S.Sudek,
H.Tien,
C.Trame,
C.V.Trout,
H.van den Bedem,
D.Weekes,
A.White,
Q.Xu,
K.O.Hodgson,
J.Wooley,
A.M.Deacon,
A.Godzik,
S.A.Lesley,
and
I.A.Wilson
(2009).
Crystal structure of a novel Sm-like protein of putative cyanophage origin at 2.60 A resolution.
|
| |
Proteins,
75,
296-307.
|
 |
|
PDB code:
|
 |
|
|
|
|
|
 |
D.Schilling,
and
U.Gerischer
(2009).
The Acinetobacter baylyi Hfq gene encodes a large protein with an unusual C terminus.
|
| |
J Bacteriol,
191,
5553-5562.
|
 |
|
|
|
|
 |
F.Gorrec
(2009).
The MORPHEUS protein crystallization screen.
|
| |
J Appl Crystallogr,
42,
1035-1042.
|
 |
|
|
|
|
 |
G.S.Pesiridis,
E.Diamond,
and
G.D.Van Duyne
(2009).
Role of pICLn in Methylation of Sm Proteins by PRMT5.
|
| |
J Biol Chem,
284,
21347-21359.
|
 |
|
|
|
|
 |
H.Hernández,
O.V.Makarova,
E.M.Makarov,
N.Morgner,
Y.Muto,
D.P.Krummel,
and
C.V.Robinson
(2009).
Isoforms of U1-70k control subunit dynamics in the human spliceosomal U1 snRNP.
|
| |
PLoS One,
4,
e7202.
|
 |
|
|
|
|
 |
M.A.Reijns,
T.Auchynnikava,
and
J.D.Beggs
(2009).
Analysis of Lsm1p and Lsm8p domains in the cellular localization of Lsm complexes in budding yeast.
|
| |
FEBS J,
276,
3602-3617.
|
 |
|
|
|
|
 |
R.Hage,
L.Tung,
H.Du,
L.Stands,
M.Rosbash,
and
T.H.Chang
(2009).
A targeted bypass screen identifies Ynl187p, Prp42p, Snu71p, and Cbp80p for stable U1 snRNP/Pre-mRNA interaction.
|
| |
Mol Cell Biol,
29,
3941-3952.
|
 |
|
|
|
|
 |
S.Veretnik,
C.Wills,
P.Youkharibache,
R.E.Valas,
and
P.E.Bourne
(2009).
Sm/Lsm genes provide a glimpse into the early evolution of the spliceosome.
|
| |
PLoS Comput Biol,
5,
e1000315.
|
 |
|
|
|
|
 |
T.Monecke,
A.Dickmanns,
and
R.Ficner
(2009).
Structural basis for m7G-cap hypermethylation of small nuclear, small nucleolar and telomerase RNA by the dimethyltransferase TGS1.
|
| |
Nucleic Acids Res,
37,
3865-3877.
|
 |
|
PDB code:
|
 |
|
|
|
|
|
 |
Z.Palfi,
N.Jaé,
C.Preusser,
K.H.Kaminska,
J.M.Bujnicki,
J.H.Lee,
A.Günzl,
C.Kambach,
H.Urlaub,
and
A.Bindereif
(2009).
SMN-assisted assembly of snRNP-specific Sm cores in trypanosomes.
|
| |
Genes Dev,
23,
1650-1664.
|
 |
|
|
|
|
 |
A.Chari,
M.M.Golas,
M.Klingenhäger,
N.Neuenkirchen,
B.Sander,
C.Englbrecht,
A.Sickmann,
H.Stark,
and
U.Fischer
(2008).
An assembly chaperone collaborates with the SMN complex to generate spliceosomal SnRNPs.
|
| |
Cell,
135,
497-509.
|
 |
|
|
|
|
 |
D.G.Scofield,
and
M.Lynch
(2008).
Evolutionary diversification of the Sm family of RNA-associated proteins.
|
| |
Mol Biol Evol,
25,
2255-2267.
|
 |
|
|
|
|
 |
D.Stanek,
J.Pridalová-Hnilicová,
I.Novotný,
M.Huranová,
M.Blazíková,
X.Wen,
A.K.Sapra,
and
K.M.Neugebauer
(2008).
Spliceosomal small nuclear ribonucleoprotein particles repeatedly cycle through Cajal bodies.
|
| |
Mol Biol Cell,
19,
2534-2543.
|
 |
|
|
|
|
 |
F.Tritschler,
A.Eulalio,
S.Helms,
S.Schmidt,
M.Coles,
O.Weichenrieder,
E.Izaurralde,
and
V.Truffault
(2008).
Similar modes of interaction enable Trailer Hitch and EDC3 to associate with DCP1 and Me31B in distinct protein complexes.
|
| |
Mol Cell Biol,
28,
6695-6708.
|
 |
|
PDB codes:
|
 |
|
|
|
|
|
 |
J.Sperling,
M.Azubel,
and
R.Sperling
(2008).
Structure and function of the Pre-mRNA splicing machine.
|
| |
Structure,
16,
1605-1615.
|
 |
|
|
|
|
 |
J.T.Little,
and
M.S.Jurica
(2008).
Splicing factor SPF30 bridges an interaction between the prespliceosome protein U2AF35 and tri-small nuclear ribonucleoprotein protein hPrp3.
|
| |
J Biol Chem,
283,
8145-8152.
|
 |
|
|
|
|
 |
L.Wan,
E.Ottinger,
S.Cho,
and
G.Dreyfuss
(2008).
Inactivation of the SMN complex by oxidative stress.
|
| |
Mol Cell,
31,
244-254.
|
 |
|
|
|
|
 |
M.Graille,
M.Chaillet,
and
H.van Tilbeurgh
(2008).
Structure of yeast Dom34: a protein related to translation termination factor Erf1 and involved in No-Go decay.
|
| |
J Biol Chem,
283,
7145-7154.
|
 |
|
PDB codes:
|
 |
|
|
|
|
|
 |
M.Kroiss,
J.Schultz,
J.Wiesner,
A.Chari,
A.Sickmann,
and
U.Fischer
(2008).
Evolution of an RNP assembly system: a minimal SMN complex facilitates formation of UsnRNPs in Drosophila melanogaster.
|
| |
Proc Natl Acad Sci U S A,
105,
10045-10050.
|
 |
|
|
|
|
 |
R.Karaduman,
P.Dube,
H.Stark,
P.Fabrizio,
B.Kastner,
and
R.Lührmann
(2008).
Structure of yeast U6 snRNPs: arrangement of Prp24p and the LSm complex as revealed by electron microscopy.
|
| |
RNA,
14,
2528-2537.
|
 |
|
|
|
|
 |
Z.Zhang,
F.Lotti,
K.Dittmar,
I.Younis,
L.Wan,
M.Kasim,
and
G.Dreyfuss
(2008).
SMN deficiency causes tissue-specific perturbations in the repertoire of snRNAs and widespread defects in splicing.
|
| |
Cell,
133,
585-600.
|
 |
|
|
|
|
 |
A.Chowdhury,
J.Mukhopadhyay,
and
S.Tharun
(2007).
The decapping activator Lsm1p-7p-Pat1p complex has the intrinsic ability to distinguish between oligoadenylated and polyadenylated RNAs.
|
| |
RNA,
13,
998.
|
 |
|
|
|
|
 |
D.J.Battle,
M.Kasim,
J.Wang,
and
G.Dreyfuss
(2007).
SMN-independent subunits of the SMN complex. Identification of a small nuclear ribonucleoprotein assembly intermediate.
|
| |
J Biol Chem,
282,
27953-27959.
|
 |
|
|
|
|
 |
F.Tritschler,
A.Eulalio,
V.Truffault,
M.D.Hartmann,
S.Helms,
S.Schmidt,
M.Coles,
E.Izaurralde,
and
O.Weichenrieder
(2007).
A divergent Sm fold in EDC3 proteins mediates DCP1 binding and P-body targeting.
|
| |
Mol Cell Biol,
27,
8600-8611.
|
 |
|
PDB codes:
|
 |
|
|
|
|
|
 |
H.H.Lee,
Y.S.Kim,
K.H.Kim,
I.Heo,
S.K.Kim,
O.Kim,
H.K.Kim,
J.Y.Yoon,
H.S.Kim,
d.o. .J.Kim,
S.J.Lee,
H.J.Yoon,
S.J.Kim,
B.G.Lee,
H.K.Song,
V.N.Kim,
C.M.Park,
and
S.W.Suh
(2007).
Structural and functional insights into Dom34, a key component of no-go mRNA decay.
|
| |
Mol Cell,
27,
938-950.
|
 |
|
PDB code:
|
 |
|
|
|
|
|
 |
H.Hernández,
and
C.V.Robinson
(2007).
Determining the stoichiometry and interactions of macromolecular assemblies from mass spectrometry.
|
| |
Nat Protoc,
2,
715-726.
|
 |
|
|
|
|
 |
I.D.Tkacz,
Y.Lustig,
M.Z.Stern,
M.Biton,
M.Salmon-Divon,
A.Das,
V.Bellofatto,
and
S.Michaeli
(2007).
Identification of novel snRNA-specific Sm proteins that bind selectively to U2 and U4 snRNAs in Trypanosoma brucei.
|
| |
RNA,
13,
30-43.
|
 |
|
|
|
|
 |
J.Qiu,
F.Cheng,
and
D.Pintel
(2007).
Distance-dependent processing of adeno-associated virus type 5 RNA is controlled by 5' exon definition.
|
| |
J Virol,
81,
7974-7984.
|
 |
|
|
|
|
 |
J.Rino,
T.Carvalho,
J.Braga,
J.M.Desterro,
R.Lührmann,
and
M.Carmo-Fonseca
(2007).
A stochastic view of spliceosome assembly and recycling in the nucleus.
|
| |
PLoS Comput Biol,
3,
2019-2031.
|
 |
|
|
|
|
 |
J.S.Nielsen,
A.Bøggild,
C.B.Andersen,
G.Nielsen,
A.Boysen,
D.E.Brodersen,
and
P.Valentin-Hansen
(2007).
An Hfq-like protein in archaea: crystal structure and functional characterization of the Sm protein from Methanococcus jannaschii.
|
| |
RNA,
13,
2213-2223.
|
 |
|
PDB code:
|
 |
|
|
|
|
|
 |
K.H.Chin,
S.K.Ruan,
A.H.Wang,
and
S.H.Chou
(2007).
XC5848, an ORFan protein from Xanthomonas campestris, adopts a novel variant of Sm-like motif.
|
| |
Proteins,
68,
1006-1010.
|
 |
|
PDB code:
|
 |
|
|
|
|
|
 |
M.D.Ohi,
L.Ren,
J.S.Wall,
K.L.Gould,
and
T.Walz
(2007).
Structural characterization of the fission yeast U5.U2/U6 spliceosome complex.
|
| |
Proc Natl Acad Sci U S A,
104,
3195-3200.
|
 |
|
|
|
|
 |
M.P.Spiller,
M.A.Reijns,
and
J.D.Beggs
(2007).
Requirements for nuclear localization of the Lsm2-8p complex and competition between nuclear and cytoplasmic Lsm complexes.
|
| |
J Cell Sci,
120,
4310-4320.
|
 |
|
|
|
|
 |
S.K.Ruan,
K.H.Chin,
H.L.Shr,
P.C.Lyu,
A.H.Wang,
and
S.H.Chou
(2007).
Preliminary X-ray analysis of XC5848, a hypothetical ORFan protein with an Sm-like motif from Xanthomonas campestris.
|
| |
Acta Crystallogr Sect F Struct Biol Cryst Commun,
63,
30-33.
|
 |
|
|
|
|
 |
S.Otter,
M.Grimmler,
N.Neuenkirchen,
A.Chari,
A.Sickmann,
and
U.Fischer
(2007).
A comprehensive interaction map of the human survival of motor neuron (SMN) complex.
|
| |
J Biol Chem,
282,
5825-5833.
|
 |
|
|
|
|
 |
V.Arluison,
S.Hohng,
R.Roy,
O.Pellegrini,
P.Régnier,
and
T.Ha
(2007).
Spectroscopic observation of RNA chaperone activities of Hfq in post-transcriptional regulation by a small non-coding RNA.
|
| |
Nucleic Acids Res,
35,
999.
|
 |
|
|
|
|
 |
Z.Dominski,
and
W.F.Marzluff
(2007).
Formation of the 3' end of histone mRNA: getting closer to the end.
|
| |
Gene,
396,
373-390.
|
 |
|
|
|
|
 |
C.Carissimi,
L.Saieva,
F.Gabanella,
and
L.Pellizzoni
(2006).
Gemin8 is required for the architecture and function of the survival motor neuron complex.
|
| |
J Biol Chem,
281,
37009-37016.
|
 |
|
|
|
|
 |
C.Carissimi,
L.Saieva,
J.Baccon,
P.Chiarella,
A.Maiolica,
A.Sawyer,
J.Rappsilber,
and
L.Pellizzoni
(2006).
Gemin8 is a novel component of the survival motor neuron complex and functions in small nuclear ribonucleoprotein assembly.
|
| |
J Biol Chem,
281,
8126-8134.
|
 |
|
|
|
|
 |
C.Eggert,
A.Chari,
B.Laggerbauer,
and
U.Fischer
(2006).
Spinal muscular atrophy: the RNP connection.
|
| |
Trends Mol Med,
12,
113-121.
|
 |
|
|
|
|
 |
C.W.Liew,
K.D.Rand,
R.J.Simpson,
W.W.Yung,
R.E.Mansfield,
M.Crossley,
M.Proetorius-Ibba,
C.Nerlov,
F.M.Poulsen,
and
J.P.Mackay
(2006).
Molecular analysis of the interaction between the hematopoietic master transcription factors GATA-1 and PU.1.
|
| |
J Biol Chem,
281,
28296-28306.
|
 |
|
|
|
|
 |
D.Fu,
and
K.Collins
(2006).
Human telomerase and Cajal body ribonucleoproteins share a unique specificity of Sm protein association.
|
| |
Genes Dev,
20,
531-536.
|
 |
|
|
|
|
 |
H.Stark,
and
R.Lührmann
(2006).
Cryo-electron microscopy of spliceosomal components.
|
| |
Annu Rev Biophys Biomol Struct,
35,
435-457.
|
 |
|
|
|
|
 |
K.Kuwasako,
F.He,
M.Inoue,
A.Tanaka,
S.Sugano,
P.Güntert,
Y.Muto,
and
S.Yokoyama
(2006).
Solution structures of the SURP domains and the subunit-assembly mechanism within the splicing factor SF3a complex in 17S U2 snRNP.
|
| |
Structure,
14,
1677-1689.
|
 |
|
PDB codes:
|
 |
|
|
|
|
|
 |
O.Dybkov,
C.L.Will,
J.Deckert,
N.Behzadnia,
K.Hartmuth,
and
R.Lührmann
(2006).
U2 snRNA-protein contacts in purified human 17S U2 snRNPs and in spliceosomal A and B complexes.
|
| |
Mol Cell Biol,
26,
2803-2816.
|
 |
|
|
|
|
 |
P.Aloy,
and
R.B.Russell
(2006).
Structural systems biology: modelling protein interactions.
|
| |
Nat Rev Mol Cell Biol,
7,
188-197.
|
 |
|
|
|
|
 |
P.Wang,
Z.Palfi,
C.Preusser,
S.Lücke,
W.S.Lane,
C.Kambach,
and
A.Bindereif
(2006).
Sm core variation in spliceosomal small nuclear ribonucleoproteins from Trypanosoma brucei.
|
| |
EMBO J,
25,
4513-4523.
|
 |
|
|
|
|
 |
A.K.Leung,
and
K.Nagai
(2005).
Gemin 6 and 7 lend a hand to snRNP assembly.
|
| |
Structure,
13,
833-834.
|
 |
|
|
|
|
 |
B.Zaric,
M.Chami,
H.Rémigy,
A.Engel,
K.Ballmer-Hofer,
F.K.Winkler,
and
C.Kambach
(2005).
Reconstitution of two recombinant LSm protein complexes reveals aspects of their architecture, assembly, and function.
|
| |
J Biol Chem,
280,
16066-16075.
|
 |
|
|
|
|
 |
C.J.Wilusz,
and
J.Wilusz
(2005).
Eukaryotic Lsm proteins: lessons from bacteria.
|
| |
Nat Struct Mol Biol,
12,
1031-1036.
|
 |
|
|
|
|
 |
C.Winkler,
C.Eggert,
D.Gradl,
G.Meister,
M.Giegerich,
D.Wedlich,
B.Laggerbauer,
and
U.Fischer
(2005).
Reduced U snRNP assembly causes motor axon degeneration in an animal model for spinal muscular atrophy.
|
| |
Genes Dev,
19,
2320-2330.
|
 |
|
|
|
|
 |
G.J.Pruijn
(2005).
Doughnuts dealing with RNA.
|
| |
Nat Struct Mol Biol,
12,
562-564.
|
 |
|
|
|
|
 |
H.Xu,
R.S.Pillai,
T.N.Azzouz,
K.B.Shpargel,
C.Kambach,
M.D.Hebert,
D.Schümperli,
and
A.G.Matera
(2005).
The C-terminal domain of coilin interacts with Sm proteins and U snRNPs.
|
| |
Chromosoma,
114,
155-166.
|
 |
|
|
|
|
 |
L.Wan,
D.J.Battle,
J.Yong,
A.K.Gubitz,
S.J.Kolb,
J.Wang,
and
G.Dreyfuss
(2005).
The survival of motor neurons protein determines the capacity for snRNP assembly: biochemical deficiency in spinal muscular atrophy.
|
| |
Mol Cell Biol,
25,
5543-5551.
|
 |
|
|
|
|
 |
M.Soller,
and
K.White
(2005).
ELAV multimerizes on conserved AU4-6 motifs important for ewg splicing regulation.
|
| |
Mol Cell Biol,
25,
7580-7591.
|
 |
|
|
|
|
 |
N.G.Kolev,
and
J.A.Steitz
(2005).
Symplekin and multiple other polyadenylation factors participate in 3'-end maturation of histone mRNAs.
|
| |
Genes Dev,
19,
2583-2592.
|
 |
|
|
|
|
 |
P.Khusial,
R.Plaag,
and
G.W.Zieve
(2005).
LSm proteins form heptameric rings that bind to RNA via repeating motifs.
|
| |
Trends Biochem Sci,
30,
522-528.
|
 |
|
|
|
|
 |
P.L.Carl,
B.R.Temple,
and
P.L.Cohen
(2005).
Most nuclear systemic autoantigens are extremely disordered proteins: implications for the etiology of systemic autoimmunity.
|
| |
Arthritis Res Ther,
7,
R1360-R1374.
|
 |
|
|
|
|
 |
S.Tharun,
D.Muhlrad,
A.Chowdhury,
and
R.Parker
(2005).
Mutations in the Saccharomyces cerevisiae LSM1 gene that affect mRNA decapping and 3' end protection.
|
| |
Genetics,
170,
33-46.
|
 |
|
|
|
|
 |
T.J.Golembe,
J.Yong,
D.J.Battle,
W.Feng,
L.Wan,
and
G.Dreyfuss
(2005).
Lymphotropic Herpesvirus saimiri uses the SMN complex to assemble Sm cores on its small RNAs.
|
| |
Mol Cell Biol,
25,
602-611.
|
 |
|
|
|
|
 |
T.J.Golembe,
J.Yong,
and
G.Dreyfuss
(2005).
Specific sequence features, recognized by the SMN complex, identify snRNAs and determine their fate as snRNPs.
|
| |
Mol Cell Biol,
25,
10989-11004.
|
 |
|
|
|
|
 |
T.N.Azzouz,
R.S.Pillai,
C.Däpp,
A.Chari,
G.Meister,
C.Kambach,
U.Fischer,
and
D.Schümperli
(2005).
Toward an assembly line for U7 snRNPs: interactions of U7-specific Lsm proteins with PRMT5 and SMN complexes.
|
| |
J Biol Chem,
280,
34435-34440.
|
 |
|
|
|
|
 |
Y.Chen,
and
G.Varani
(2005).
Protein families and RNA recognition.
|
| |
FEBS J,
272,
2088-2097.
|
 |
|
|
|
|
 |
Y.Ma,
J.Dostie,
G.Dreyfuss,
and
G.D.Van Duyne
(2005).
The Gemin6-Gemin7 heterodimer from the survival of motor neurons complex has an Sm protein-like structure.
|
| |
Structure,
13,
883-892.
|
 |
|
PDB code:
|
 |
|
|
|
|
|
 |
C.L.de Hoog,
L.J.Foster,
and
M.Mann
(2004).
RNA and RNA binding proteins participate in early stages of cell spreading through spreading initiation centers.
|
| |
Cell,
117,
649-662.
|
 |
|
|
|
|
 |
D.C.Zappulla,
and
T.R.Cech
(2004).
Yeast telomerase RNA: a flexible scaffold for protein subunits.
|
| |
Proc Natl Acad Sci U S A,
101,
10024-10029.
|
 |
|
|
|
|
 |
I.Velichutina,
P.L.Connerly,
C.S.Arendt,
X.Li,
and
M.Hochstrasser
(2004).
Plasticity in eucaryotic 20S proteasome ring assembly revealed by a subunit deletion in yeast.
|
| |
EMBO J,
23,
500-510.
|
 |
|
|
|
|
 |
J.Yong,
L.Wan,
and
G.Dreyfuss
(2004).
Why do cells need an assembly machine for RNA-protein complexes?
|
| |
Trends Cell Biol,
14,
226-232.
|
 |
|
|
|
|
 |
J.Yong,
T.J.Golembe,
D.J.Battle,
L.Pellizzoni,
and
G.Dreyfuss
(2004).
snRNAs contain specific SMN-binding domains that are essential for snRNP assembly.
|
| |
Mol Cell Biol,
24,
2747-2756.
|
 |
|
|
|
|
 |
M.Albrecht,
M.Golatta,
U.Wüllner,
and
T.Lengauer
(2004).
Structural and functional analysis of ataxin-2 and ataxin-3.
|
| |
Eur J Biochem,
271,
3155-3170.
|
 |
|
|
|
|
 |
M.S.Jurica,
D.Sousa,
M.J.Moore,
and
N.Grigorieff
(2004).
Three-dimensional structure of C complex spliceosomes by electron microscopy.
|
| |
Nat Struct Mol Biol,
11,
265-269.
|
 |
|
|
|
|
 |
P.J.Mikulecky,
M.K.Kaw,
C.C.Brescia,
J.C.Takach,
D.D.Sledjeski,
and
A.L.Feig
(2004).
Escherichia coli Hfq has distinct interaction surfaces for DsrA, rpoS and poly(A) RNAs.
|
| |
Nat Struct Mol Biol,
11,
1206-1214.
|
 |
|
|
|
|
 |
R.Schroeder,
A.Barta,
and
K.Semrad
(2004).
Strategies for RNA folding and assembly.
|
| |
Nat Rev Mol Cell Biol,
5,
908-919.
|
 |
|
|
|
|
 |
T.Numata,
I.Ishimatsu,
Y.Kakuta,
I.Tanaka,
and
M.Kimura
(2004).
Crystal structure of archaeal ribonuclease P protein Ph1771p from Pyrococcus horikoshii OT3: an archaeal homolog of eukaryotic ribonuclease P protein Rpp29.
|
| |
RNA,
10,
1423-1432.
|
 |
|
PDB code:
|
 |
|
|
|
|
|
 |
V.Anantharaman,
and
L.Aravind
(2004).
Novel conserved domains in proteins with predicted roles in eukaryotic cell-cycle regulation, decapping and RNA stability.
|
| |
BMC Genomics,
5,
45.
|
 |
|
|
|
|
 |
A.O.Noueiry,
J.Diez,
S.P.Falk,
J.Chen,
and
P.Ahlquist
(2003).
Yeast Lsm1p-7p/Pat1p deadenylation-dependent mRNA-decapping factors are required for brome mosaic virus genomic RNA translation.
|
| |
Mol Cell Biol,
23,
4094-4106.
|
 |
|
|
|
|
 |
A.O.Noueiry,
and
P.Ahlquist
(2003).
Brome mosaic virus RNA replication: revealing the role of the host in RNA virus replication.
|
| |
Annu Rev Phytopathol,
41,
77-98.
|
 |
|
|
|
|
 |
B.M.Collins,
L.Cubeddu,
N.Naidoo,
S.J.Harrop,
G.D.Kornfeld,
I.W.Dawes,
P.M.Curmi,
and
B.C.Mabbutt
(2003).
Homomeric ring assemblies of eukaryotic Sm proteins have affinity for both RNA and DNA. Crystal structure of an oligomeric complex of yeast SmF.
|
| |
J Biol Chem,
278,
17291-17298.
|
 |
|
PDB codes:
|
 |
|
|
|
|
|
 |
C.Mura,
A.Kozhukhovsky,
M.Gingery,
M.Phillips,
and
D.Eisenberg
(2003).
The oligomerization and ligand-binding properties of Sm-like archaeal proteins (SmAPs).
|
| |
Protein Sci,
12,
832-847.
|
 |
|
PDB codes:
|
 |
|
|
|
|
|
 |
C.Mura,
M.Phillips,
A.Kozhukhovsky,
and
D.Eisenberg
(2003).
Structure and assembly of an augmented Sm-like archaeal protein 14-mer.
|
| |
Proc Natl Acad Sci U S A,
100,
4539-4544.
|
 |
|
PDB code:
|
 |
|
|
|
|
|
 |
C.Sauter,
J.Basquin,
and
D.Suck
(2003).
Sm-like proteins in Eubacteria: the crystal structure of the Hfq protein from Escherichia coli.
|
| |
Nucleic Acids Res,
31,
4091-4098.
|
 |
|
PDB code:
|
 |
|
|
|
|
|
 |
H.K.Song,
and
M.J.Eck
(2003).
Structural basis of degradation signal recognition by SspB, a specificity-enhancing factor for the ClpXP proteolytic machine.
|
| |
Mol Cell,
12,
75-86.
|
 |
|
PDB codes:
|
 |
|
|
|
|
|
 |
I.M.Vassilieva,
A.D.Nikulin,
U.Blasi,
I.Moll,
and
M.B.Garber
(2003).
Crystallization of Hfq protein: a bacterial gene-expression regulator.
|
| |
Acta Crystallogr D Biol Crystallogr,
59,
1061-1063.
|
 |
|
|
|
|
 |
J.Mouaikel,
J.M.Bujnicki,
J.Tazi,
and
R.Bordonné
(2003).
Sequence-structure-function relationships of Tgs1, the yeast snRNA/snoRNA cap hypermethylase.
|
| |
Nucleic Acids Res,
31,
4899-4909.
|
 |
|
|
|
|
 |
J.Mouaikel,
U.Narayanan,
C.Verheggen,
A.G.Matera,
E.Bertrand,
J.Tazi,
and
R.Bordonné
(2003).
Interaction between the small-nuclear-RNA cap hypermethylase and the spinal muscular atrophy protein, survival of motor neuron.
|
| |
EMBO Rep,
4,
616-622.
|
 |
|
|
|
|
 |
K.S.Yan,
S.Yan,
A.Farooq,
A.Han,
L.Zeng,
and
M.M.Zhou
(2003).
Structure and conserved RNA binding of the PAZ domain.
|
| |
Nature,
426,
468-474.
|
 |
|
PDB code:
|
 |
|
|
|
|
|
 |
R.S.Pillai,
M.Grimmler,
G.Meister,
C.L.Will,
R.Lührmann,
U.Fischer,
and
D.Schümperli
(2003).
Unique Sm core structure of U7 snRNPs: assembly by a specialized SMN complex and the role of a new component, Lsm11, in histone RNA processing.
|
| |
Genes Dev,
17,
2321-2333.
|
 |
|
|
|
|
 |
R.Sprangers,
P.Selenko,
M.Sattler,
I.Sinning,
and
M.R.Groves
(2003).
Definition of domain boundaries and crystallization of the SMN Tudor domain.
|
| |
Acta Crystallogr D Biol Crystallogr,
59,
366-368.
|
 |
|
|
|
|
 |
S.Thore,
C.Mayer,
C.Sauter,
S.Weeks,
and
D.Suck
(2003).
Crystal structures of the Pyrococcus abyssi Sm core and its complex with RNA. Common features of RNA binding in archaea and eukarya.
|
| |
J Biol Chem,
278,
1239-1247.
|
 |
|
PDB codes:
|
 |
|
|
|
|
|
 |
T.S.McConnell,
R.P.Lokken,
and
J.A.Steitz
(2003).
Assembly of the U1 snRNP involves interactions with the backbone of the terminal stem of U1 snRNA.
|
| |
RNA,
9,
193-201.
|
 |
|
|
|
|
 |
U.Kühn,
A.Nemeth,
S.Meyer,
and
E.Wahle
(2003).
The RNA binding domains of the nuclear poly(A)-binding protein.
|
| |
J Biol Chem,
278,
16916-16925.
|
 |
|
|
|
|
 |
A.Fatica,
M.Dlakić,
and
D.Tollervey
(2002).
Naf1 p is a box H/ACA snoRNP assembly factor.
|
| |
RNA,
8,
1502-1514.
|
 |
|
|
|
|
 |
C.S.Lutz,
M.T.McClain,
J.B.Harley,
and
J.A.James
(2002).
Anti-U1A monoclonal antibodies recognize unique epitope targets of U1A which are involved in the binding of U1 RNA.
|
| |
J Mol Recognit,
15,
163-170.
|
 |
|
|
|
|
 |
C.Schneider,
C.L.Will,
O.V.Makarova,
E.M.Makarov,
and
R.Lührmann
(2002).
Human U4/U6.U5 and U4atac/U6atac.U5 tri-snRNPs exhibit similar protein compositions.
|
| |
Mol Cell Biol,
22,
3219-3229.
|
 |
|
|
|
|
 |
D.E.Ryan,
S.W.Stevens,
and
J.Abelson
(2002).
The 5' and 3' domains of yeast U6 snRNA: Lsm proteins facilitate binding of Prp24 protein to the U6 telestem region.
|
| |
RNA,
8,
1011-1033.
|
 |
|
|
|
|
 |
D.Ingelfinger,
D.J.Arndt-Jovin,
R.Lührmann,
and
T.Achsel
(2002).
The human LSm1-7 proteins colocalize with the mRNA-degrading enzymes Dcp1/2 and Xrnl in distinct cytoplasmic foci.
|
| |
RNA,
8,
1489-1501.
|
 |
|
|
|
|
 |
F.Bachand,
F.M.Boisvert,
J.Côté,
S.Richard,
and
C.Autexier
(2002).
The product of the survival of motor neuron (SMN) gene is a human telomerase-associated protein.
|
| |
Mol Biol Cell,
13,
3192-3202.
|
 |
|
|
|
|
 |
H.Schenkel,
S.Hanke,
C.De Lorenzo,
R.Schmitt,
and
B.M.Mechler
(2002).
P elements inserted in the vicinity of or within the Drosophila snRNP SmD3 gene nested in the first intron of the Ornithine Decarboxylase Antizyme gene affect only the expression of SmD3.
|
| |
Genetics,
161,
763-772.
|
 |
|
|
|
|
 |
J.Mouaikel,
C.Verheggen,
E.Bertrand,
J.Tazi,
and
R.Bordonné
(2002).
Hypermethylation of the cap structure of both yeast snRNAs and snoRNAs requires a conserved methyltransferase that is localized to the nucleolus.
|
| |
Mol Cell,
9,
891-901.
|
 |
|
|
|
|
 |
J.Yong,
L.Pellizzoni,
and
G.Dreyfuss
(2002).
Sequence-specific interaction of U1 snRNA with the SMN complex.
|
| |
EMBO J,
21,
1188-1196.
|
 |
|
|
|
|
 |
M.A.Schumacher,
R.F.Pearson,
T.Møller,
P.Valentin-Hansen,
and
R.G.Brennan
(2002).
Structures of the pleiotropic translational regulator Hfq and an Hfq-RNA complex: a bacterial Sm-like protein.
|
| |
EMBO J,
21,
3546-3556.
|
 |
|
PDB codes:
|
 |
|
|
|
|
|
 |
M.D.Ohi,
A.J.Link,
L.Ren,
J.L.Jennings,
W.H.McDonald,
and
K.L.Gould
(2002).
Proteomics analysis reveals stable multiprotein complexes in both fission and budding yeasts containing Myb-related Cdc5p/Cef1p, novel pre-mRNA splicing factors, and snRNAs.
|
| |
Mol Cell Biol,
22,
2011-2024.
|
 |
|
|
|
|
 |
M.S.Jurica,
L.J.Licklider,
S.R.Gygi,
N.Grigorieff,
and
M.J.Moore
(2002).
Purification and characterization of native spliceosomes suitable for three-dimensional structural analysis.
|
| |
RNA,
8,
426-439.
|
 |
|
|
|
|
 |
N.Tomasevic,
and
B.A.Peculis
(2002).
Xenopus LSm proteins bind U8 snoRNA via an internal evolutionarily conserved octamer sequence.
|
| |
Mol Cell Biol,
22,
4101-4112.
|
 |
|
|
|
|
 |
P.Aloy,
and
R.B.Russell
(2002).
The third dimension for protein interactions and complexes.
|
| |
Trends Biochem Sci,
27,
633-638.
|
 |
|
|
|
|
 |
P.Förch,
O.Puig,
C.Martínez,
B.Séraphin,
and
J.Valcárcel
(2002).
The splicing regulator TIA-1 interacts with U1-C to promote U1 snRNP recruitment to 5' splice sites.
|
| |
EMBO J,
21,
6882-6892.
|
 |
|
|
|
|
 |
S.Massenet,
L.Pellizzoni,
S.Paushkin,
I.W.Mattaj,
and
G.Dreyfuss
(2002).
The SMN complex is associated with snRNPs throughout their cytoplasmic assembly pathway.
|
| |
Mol Cell Biol,
22,
6533-6541.
|
 |
|
|
|
|
 |
T.Eystathioy,
C.L.Peebles,
J.C.Hamel,
J.H.Vaughn,
and
E.K.Chan
(2002).
Autoantibody to hLSm4 and the heptameric LSm complex in anti-Sm sera.
|
| |
Arthritis Rheum,
46,
726-734.
|
 |
|
|
|
|
 |
T.Møller,
T.Franch,
P.Højrup,
D.R.Keene,
H.P.Bächinger,
R.G.Brennan,
and
P.Valentin-Hansen
(2002).
Hfq: a bacterial Sm-like protein that mediates RNA-RNA interaction.
|
| |
Mol Cell,
9,
23-30.
|
 |
|
|
|
|
 |
W.F.Donahue,
and
K.A.Jarrell
(2002).
A BLAST from the past: ancient origin of human Sm proteins.
|
| |
Mol Cell,
9,
7-8.
|
 |
|
|
|
|
 |
W.J.Friesen,
A.Wyce,
S.Paushkin,
L.Abel,
J.Rappsilber,
M.Mann,
and
G.Dreyfuss
(2002).
A novel WD repeat protein component of the methylosome binds Sm proteins.
|
| |
J Biol Chem,
277,
8243-8247.
|
 |
|
|
|
|
 |
X.Sun,
I.Zhulin,
and
R.M.Wartell
(2002).
Predicted structure and phyletic distribution of the RNA-binding protein Hfq.
|
| |
Nucleic Acids Res,
30,
3662-3671.
|
 |
|
|
|
|
 |
B.K.Pannone,
S.D.Kim,
D.A.Noe,
and
S.L.Wolin
(2001).
Multiple functional interactions between components of the Lsm2-Lsm8 complex, U6 snRNA, and the yeast La protein.
|
| |
Genetics,
158,
187-196.
|
 |
|
|
|
|
 |
C.L.Will,
and
R.Lührmann
(2001).
Spliceosomal UsnRNP biogenesis, structure and function.
|
| |
Curr Opin Cell Biol,
13,
290-301.
|
 |
|
|
|
|
 |
C.Mura,
D.Cascio,
M.R.Sawaya,
and
D.S.Eisenberg
(2001).
The crystal structure of a heptameric archaeal Sm protein: Implications for the eukaryotic snRNP core.
|
| |
Proc Natl Acad Sci U S A,
98,
5532-5537.
|
 |
|
PDB code:
|
 |
|
|
|
|
|
 |
D.Zhang,
N.Abovich,
and
M.Rosbash
(2001).
A biochemical function for the Sm complex.
|
| |
Mol Cell,
7,
319-329.
|
 |
|
|
|
|
 |
H.Brahms,
L.Meheus,
V.de Brabandere,
U.Fischer,
and
R.Lührmann
(2001).
Symmetrical dimethylation of arginine residues in spliceosomal Sm protein B/B' and the Sm-like protein LSm4, and their interaction with the SMN protein.
|
| |
RNA,
7,
1531-1542.
|
 |
|
|
|
|
 |
H.E.Bryant,
S.E.Wadd,
A.I.Lamond,
S.J.Silverstein,
and
J.B.Clements
(2001).
Herpes simplex virus IE63 (ICP27) protein interacts with spliceosome-associated protein 145 and inhibits splicing prior to the first catalytic step.
|
| |
J Virol,
75,
4376-4385.
|
 |
|
|
|
|
 |
H.Urlaub,
V.A.Raker,
S.Kostka,
and
R.Lührmann
(2001).
Sm protein-Sm site RNA interactions within the inner ring of the spliceosomal snRNP core structure.
|
| |
EMBO J,
20,
187-196.
|
 |
|
|
|
|
 |
I.Törö,
S.Thore,
C.Mayer,
J.Basquin,
B.Séraphin,
and
D.Suck
(2001).
RNA binding in an Sm core domain: X-ray structure and functional analysis of an archaeal Sm protein complex.
|
| |
EMBO J,
20,
2293-2303.
|
 |
|
PDB codes:
|
 |
|
|
|
|
|
 |
I.Wetterberg,
J.Zhao,
S.Masich,
L.Wieslander,
and
U.Skoglund
(2001).
In situ transcription and splicing in the Balbiani ring 3 gene.
|
| |
EMBO J,
20,
2564-2574.
|
 |
|
|
|
|
 |
R.S.Pillai,
C.L.Will,
R.Lührmann,
D.Schümperli,
and
B.Müller
(2001).
Purified U7 snRNPs lack the Sm proteins D1 and D2 but contain Lsm10, a new 14 kDa Sm D1-like protein.
|
| |
EMBO J,
20,
5470-5479.
|
 |
|
|
|
|
 |
T.Achsel,
H.Stark,
and
R.Lührmann
(2001).
The Sm domain is an ancient RNA-binding motif with oligo(U) specificity.
|
| |
Proc Natl Acad Sci U S A,
98,
3685-3689.
|
 |
|
|
|
|
 |
W.He,
and
R.Parker
(2001).
The yeast cytoplasmic LsmI/Pat1p complex protects mRNA 3' termini from partial degradation.
|
| |
Genetics,
158,
1445-1455.
|
 |
|
|
|
|
 |
W.J.Friesen,
S.Paushkin,
A.Wyce,
S.Massenet,
G.S.Pesiridis,
G.Van Duyne,
J.Rappsilber,
M.Mann,
and
G.Dreyfuss
(2001).
The methylosome, a 20S complex containing JBP1 and pICln, produces dimethylarginine-modified Sm proteins.
|
| |
Mol Cell Biol,
21,
8289-8300.
|
 |
|
|
|
|
 |
B.K.Pannone,
and
S.L.Wolin
(2000).
Sm-like proteins wRING the neck of mRNA.
|
| |
Curr Biol,
10,
R478-R481.
|
 |
|
|
|
|
 |
E.Bouveret,
G.Rigaut,
A.Shevchenko,
M.Wilm,
and
B.Séraphin
(2000).
A Sm-like protein complex that participates in mRNA degradation.
|
| |
EMBO J,
19,
1661-1671.
|
 |
|
|
|
|
 |
E.Hirsch,
T.Oohashi,
M.Ahmad,
S.Stamm,
and
R.Fässler
(2000).
Peri-implantation lethality in mice lacking the Sm motif-containing protein Lsm4.
|
| |
Mol Cell Biol,
20,
1055-1062.
|
 |
|
|
|
|
 |
J.Díez,
M.Ishikawa,
M.Kaido,
and
P.Ahlquist
(2000).
Identification and characterization of a host protein required for efficient template selection in viral RNA replication.
|
| |
Proc Natl Acad Sci U S A,
97,
3913-3918.
|
 |
|
|
|
|
 |
M.Tucker,
and
R.Parker
(2000).
Mechanisms and control of mRNA decapping in Saccharomyces cerevisiae.
|
| |
Annu Rev Biochem,
69,
571-595.
|
 |
|
|
|
|
 |
P.Mallick,
K.E.Goodwill,
S.Fitz-Gibbon,
J.H.Miller,
and
D.Eisenberg
(2000).
Selecting protein targets for structural genomics of Pyrobaculum aerophilum: validating automated fold assignment methods by using binary hypothesis testing.
|
| |
Proc Natl Acad Sci U S A,
97,
2450-2455.
|
 |
|
|
|
|
 |
R.Bordonné
(2000).
Functional characterization of nuclear localization signals in yeast Sm proteins.
|
| |
Mol Cell Biol,
20,
7943-7954.
|
 |
|
|
|
|
 |
T.A.Prokhorova,
and
J.J.Blow
(2000).
Sequential MCM/P1 subcomplex assembly is required to form a heterohexamer with replication licensing activity.
|
| |
J Biol Chem,
275,
2491-2498.
|
 |
|
|
|
|
 |
T.M.Soliman,
and
S.J.Silverstein
(2000).
Herpesvirus mRNAs are sorted for export via Crm1-dependent and -independent pathways.
|
| |
J Virol,
74,
2814-2825.
|
 |
|
|
|
|
 |
W.He,
and
R.Parker
(2000).
Functions of Lsm proteins in mRNA degradation and splicing.
|
| |
Curr Opin Cell Biol,
12,
346-350.
|
 |
|
|
|
|
 |
Z.Palfi,
S.Lücke,
H.W.Lahm,
W.S.Lane,
V.Kruft,
E.Bragado-Nilsson,
B.Séraphin,
and
A.Bindereif
(2000).
The spliceosomal snRNP core complex of Trypanosoma brucei: cloning and functional analysis reveals seven Sm protein constituents.
|
| |
Proc Natl Acad Sci U S A,
97,
8967-8972.
|
 |
|
|
|
|
 |
A.E.Mayes,
L.Verdone,
P.Legrain,
and
J.D.Beggs
(1999).
Characterization of Sm-like proteins in yeast and their association with U6 snRNA.
|
| |
EMBO J,
18,
4321-4331.
|
 |
|
|
|
|
 |
A.Gottschalk,
G.Neubauer,
J.Banroques,
M.Mann,
R.Lührmann,
and
P.Fabrizio
(1999).
Identification by mass spectrometry and functional analysis of novel proteins of the yeast [U4/U6.U5] tri-snRNP.
|
| |
EMBO J,
18,
4535-4548.
|
 |
|
|
|
|
 |
D.Zhang,
and
M.Rosbash
(1999).
Identification of eight proteins that cross-link to pre-mRNA in the yeast commitment complex.
|
| |
Genes Dev,
13,
581-592.
|
 |
|
|
|
|
 |
J.E.Sleeman,
and
A.I.Lamond
(1999).
Newly assembled snRNPs associate with coiled bodies before speckles, suggesting a nuclear snRNP maturation pathway.
|
| |
Curr Biol,
9,
1065-1074.
|
 |
|
|
|
|
 |
J.Salgado-Garrido,
E.Bragado-Nilsson,
S.Kandels-Lewis,
and
B.Séraphin
(1999).
Sm and Sm-like proteins assemble in two related complexes of deep evolutionary origin.
|
| |
EMBO J,
18,
3451-3462.
|
 |
|
|
|
|
 |
T.Achsel,
H.Brahms,
B.Kastner,
A.Bachi,
M.Wilm,
and
R.Lührmann
(1999).
A doughnut-shaped heteromer of human Sm-like proteins binds to the 3'-end of U6 snRNA, thereby facilitating U4/U6 duplex formation in vitro.
|
| |
EMBO J,
18,
5789-5802.
|
 |
|
|
|
|
 |
V.A.Raker,
K.Hartmuth,
B.Kastner,
and
R.Lührmann
(1999).
Spliceosomal U snRNP core assembly: Sm proteins assemble onto an Sm site RNA nonanucleotide in a specific and thermodynamically stable manner.
|
| |
Mol Cell Biol,
19,
6554-6565.
|
 |
|
|
|
|
 |
V.P.Vidal,
L.Verdone,
A.E.Mayes,
and
J.D.Beggs
(1999).
Characterization of U6 snRNA-protein interactions.
|
| |
RNA,
5,
1470-1481.
|
 |
|
 |
 |
|
The most recent references are shown first.
Citation data come partly from CiteXplore and partly
from an automated harvesting procedure. Note that this is likely to be
only a partial list as not all journals are covered by
either method. However, we are continually building up the citation data
so more and more references will be included with time.
Where a reference describes a PDB structure, the PDB
codes are
shown on the right.
|
');
}
}
 |
|