|
|
|
|
 |
Contents |
 |
|
|
|
|
|
|
|
|
|
129 a.a.
|
 |
|
|
|
|
|
|
|
211 a.a.
|
 |
|
|
|
|
|
|
|
196 a.a.
|
 |
|
|
|
|
|
|
* Residue conservation analysis
|
|
|
|
|
PDB id:
|
 |
|
 |
| Name: |
 |
Growth factor/growth factor receptor
|
 |
|
Title:
|
 |
Crystal structure of a dimeric fgf2-fgfr1 complex
|
|
Structure:
|
 |
Fibroblast growth factor 2. Chain: a, b. Engineered: yes. Mutation: yes. Fibroblast growth factor receptor 1. Chain: c, d. Fragment: ig-like domains 2 and 3. Engineered: yes. Mutation: yes
|
|
Source:
|
 |
Homo sapiens. Human. Organism_taxid: 9606. Expressed in: escherichia coli. Expression_system_taxid: 562. Expression_system_taxid: 562
|
|
Biol. unit:
|
 |
Tetramer (from
)
|
|
Resolution:
|
 |
|
2.80Å
|
R-factor:
|
0.240
|
R-free:
|
0.281
|
|
|
Authors:
|
 |
A.N.Plotnikov,J.Schlessinger,S.R.Hubbard,M.Mohammadi
|
Key ref:
|
 |
A.N.Plotnikov
et al.
(1999).
Structural basis for FGF receptor dimerization and activation.
Cell,
98,
641-650.
PubMed id:
DOI:
|
 |
|
Date:
|
 |
|
24-Aug-99
|
Release date:
|
28-Jan-00
|
|
|
|
|
|
PROCHECK
|
|
|
|
|
Headers
|
 |
|
|
References
|
|
|
|
|
|
|
P09038
(FGF2_HUMAN) -
Fibroblast growth factor 2 from Homo sapiens
|
|
|
|
Seq: Struc:
|
 |
 |
 |
288 a.a.
129 a.a.*
|
|
|
|
|
|
|
|
|
 |
 |
|
 |
|
|
 |
 |
 |
 |
Enzyme class:
|
 |
Chains C, D:
E.C.2.7.10.1
- receptor protein-tyrosine kinase.
|
|
 |
 |
 |
 |
 |
Reaction:
|
 |
L-tyrosyl-[protein] + ATP = O-phospho-L-tyrosyl-[protein] + ADP + H+
|
 |
 |
 |
 |
 |
L-tyrosyl-[protein]
|
+
|
ATP
|
=
|
O-phospho-L-tyrosyl-[protein]
|
+
|
ADP
|
+
|
H(+)
|
|
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
|
Molecule diagrams generated from .mol files obtained from the
KEGG ftp site
|
|
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
|
|
|
| |
|
|
| |
|
DOI no:
|
Cell
98:641-650
(1999)
|
|
PubMed id:
|
|
|
|
|
| |
|
Structural basis for FGF receptor dimerization and activation.
|
|
A.N.Plotnikov,
J.Schlessinger,
S.R.Hubbard,
M.Mohammadi.
|
|
|
|
| |
ABSTRACT
|
|
|
| |
|
The crystal structure of FGF2 bound to a naturally occurring variant of FGF
receptor 1 (FGFR1) consisting of immunoglobulin-like domains 2 (D2) and 3 (D3)
has been determined at 2.8 A resolution. Two FGF2:FGFR1 complexes form a 2-fold
symmetric dimer. Within each complex, FGF2 interacts extensively with D2 and D3
as well as with the linker between the two domains. The dimer is stabilized by
interactions between FGF2 and D2 of the adjoining complex and by a direct
interaction between D2 of each receptor. A positively charged canyon formed by a
cluster of exposed basic residues likely represents the heparin-binding site. A
general model for FGF- and heparin-induced FGFR dimerization is inferred from
the crystal structure, unifying a wealth of biochemical data.
|
|
|
|
|
| |
Selected figure(s)
|
|
|
| |
 |
 |
|
 |
|
 |
Figure 4.
Figure 4. Mapping of the Different Interaction Sites onto
the Molecular Surfaces of FGF2 and FGFR1The surface color
codings for D2, D3, the linker, and FGF2 are the same as in
Figure 1. The surfaces of FGF2 and FGFR1 that form the primary
and secondary interaction sites are shown in red and purple,
respectively. The heparin-binding surfaces are depicted in blue.
The surface on D2 engaged in direct receptor–receptor
interaction is colored yellow. To better visualize the different
functional surfaces on FGF2 and D23, the two molecules are
pulled away from each other and rotated 90° about the
vertical axis. This figure was created using the program GRASP (
[33]).
|
 |
Figure 5.
Figure 5. The Primary Interaction Site between FGF2 and
FGFR1(A) Stereo view of the hydrophobic interface between FGF2
and D2 of FGFR1. Only side chains of interacting residues are
shown. Color coding is the same as in Figure 1: FGF2 in orange,
D2 in green, D3 in blue, and the linker in gray. Dotted lines
represent hydrogen bonds.(B) Stereo view of the network of
hydrogen bonds between FGF2 and FGFR1 in the vicinity of Arg-250
in the D2–D3 linker.(C) Stereo view of the interface between
FGF2 and D3 of FGFR1. This figure was created using the programs
Molscript and Raster3D.
|
 |
|
|
|
| |
The above figures are
reprinted
by permission from Cell Press:
Cell
(1999,
98,
641-650)
copyright 1999.
|
|
| |
Figures were
selected
by an automated process.
|
|
|
|
|
 |
 |
|
 |
 |
 |
 |
 |
 |
 |
 |
 |
|
Literature references that cite this PDB file's key reference
|
|
 |
| |
PubMed id
|
 |
Reference
|
 |
|
|
|
 |
R.Goetz,
and
M.Mohammadi
(2013).
Exploring mechanisms of FGF signalling through the lens of structural biology.
|
| |
Nat Rev Mol Cell Biol,
14,
166-180.
|
 |
|
|
|
|
 |
A.Sensi,
S.Ceruti,
P.Trevisi,
F.Gualandi,
M.Busi,
I.Donati,
M.Neri,
A.Ferlini,
and
A.Martini
(2011).
LAMM syndrome with middle ear dysplasia associated with compound heterozygosity for FGF3 mutations.
|
| |
Am J Med Genet A,
155,
1096-1101.
|
 |
|
|
|
|
 |
B.Trueb
(2011).
Biology of FGFRL1, the fifth fibroblast growth factor receptor.
|
| |
Cell Mol Life Sci,
68,
951-964.
|
 |
|
|
|
|
 |
J.Gupte,
L.Yang,
X.Wu,
J.Weiszmann,
R.Hecht,
B.Lemon,
R.Lindberg,
Z.Wang,
and
Y.Li
(2011).
The FGFR D3 domain determines receptor selectivity for fibroblast growth factor 21.
|
| |
J Mol Biol,
408,
491-502.
|
 |
|
|
|
|
 |
C.R.Degnin,
M.B.Laederich,
and
W.A.Horton
(2010).
FGFs in endochondral skeletal development.
|
| |
J Cell Biochem,
110,
1046-1057.
|
 |
|
|
|
|
 |
G.Ren,
J.Yin,
W.Wang,
L.Li,
and
D.Li
(2010).
Fibroblast growth factor (FGF)-21 signals through both FGF receptor-1 and 2.
|
| |
Sci China Life Sci,
53,
1000-1008.
|
 |
|
|
|
|
 |
J.Gutiérrez,
and
E.Brandan
(2010).
A novel mechanism of sequestering fibroblast growth factor 2 by glypican in lipid rafts, allowing skeletal muscle differentiation.
|
| |
Mol Cell Biol,
30,
1634-1649.
|
 |
|
|
|
|
 |
J.H.Bae,
and
J.Schlessinger
(2010).
Asymmetric tyrosine kinase arrangements in activation or autophosphorylation of receptor tyrosine kinases.
|
| |
Mol Cells,
29,
443-448.
|
 |
|
|
|
|
 |
K.Raman,
and
B.Kuberan
(2010).
Chemical Tumor Biology of Heparan Sulfate Proteoglycans.
|
| |
Curr Chem Biol,
4,
20-31.
|
 |
|
|
|
|
 |
M.B.Laederich,
and
W.A.Horton
(2010).
Achondroplasia: pathogenesis and implications for future treatment.
|
| |
Curr Opin Pediatr,
22,
516-523.
|
 |
|
|
|
|
 |
S.Li,
E.Bock,
and
V.Berezin
(2010).
Neuritogenic and neuroprotective properties of Peptide agonists of the fibroblast growth factor receptor.
|
| |
Int J Mol Sci,
11,
2291-2305.
|
 |
|
|
|
|
 |
V.Knights,
and
S.J.Cook
(2010).
De-regulated FGF receptors as therapeutic targets in cancer.
|
| |
Pharmacol Ther,
125,
105-117.
|
 |
|
|
|
|
 |
W.J.Kuo,
M.A.Digman,
and
A.D.Lander
(2010).
Heparan sulfate acts as a bone morphogenetic protein coreceptor by facilitating ligand-induced receptor hetero-oligomerization.
|
| |
Mol Biol Cell,
21,
4028-4041.
|
 |
|
|
|
|
 |
C.J.Lehiy,
O.Martinez,
and
A.L.Passarelli
(2009).
Virion-associated viral fibroblast growth factor stimulates cell motility.
|
| |
Virology,
395,
152-160.
|
 |
|
|
|
|
 |
E.Stuttfeld,
and
K.Ballmer-Hofer
(2009).
Structure and function of VEGF receptors.
|
| |
IUBMB Life,
61,
915-922.
|
 |
|
|
|
|
 |
J.Dengjel,
I.Kratchmarova,
and
B.Blagoev
(2009).
Receptor tyrosine kinase signaling: a view from quantitative proteomics.
|
| |
Mol Biosyst,
5,
1112-1121.
|
 |
|
|
|
|
 |
J.Kalinina,
S.A.Byron,
H.P.Makarenkova,
S.K.Olsen,
A.V.Eliseenkova,
W.J.Larochelle,
M.Dhanabal,
S.Blais,
D.M.Ornitz,
L.A.Day,
T.A.Neubert,
P.M.Pollock,
and
M.Mohammadi
(2009).
Homodimerization controls the fibroblast growth factor 9 subfamily's receptor binding and heparan sulfate-dependent diffusion in the extracellular matrix.
|
| |
Mol Cell Biol,
29,
4663-4678.
|
 |
|
PDB code:
|
 |
|
|
|
|
|
 |
J.Qing,
X.Du,
Y.Chen,
P.Chan,
H.Li,
P.Wu,
S.Marsters,
S.Stawicki,
J.Tien,
K.Totpal,
S.Ross,
S.Stinson,
D.Dornan,
D.French,
Q.R.Wang,
J.P.Stephan,
Y.Wu,
C.Wiesmann,
and
A.Ashkenazi
(2009).
Antibody-based targeting of FGFR3 in bladder carcinoma and t(4;14)-positive multiple myeloma in mice.
|
| |
J Clin Invest,
119,
1216-1229.
|
 |
|
PDB code:
|
 |
|
|
|
|
|
 |
L.Chen,
M.Merzlyakov,
T.Cohen,
Y.Shai,
and
K.Hristova
(2009).
Energetics of ErbB1 transmembrane domain dimerization in lipid bilayers.
|
| |
Biophys J,
96,
4622-4630.
|
 |
|
|
|
|
 |
M.K.Hajihosseini,
R.Duarte,
J.Pegrum,
A.Donjacour,
E.Lana-Elola,
D.P.Rice,
J.Sharpe,
and
C.Dickson
(2009).
Evidence that Fgf10 contributes to the skeletal and visceral defects of an apert syndrome mouse model.
|
| |
Dev Dyn,
238,
376-385.
|
 |
|
|
|
|
 |
M.R.Bryant,
C.B.Marta,
F.S.Kim,
and
R.Bansal
(2009).
Phosphorylation and lipid raft association of fibroblast growth factor receptor-2 in oligodendrocytes.
|
| |
Glia,
57,
935-946.
|
 |
|
|
|
|
 |
M.R.Schenauer,
J.K.Meissen,
Y.Seo,
J.B.Ames,
and
J.A.Leary
(2009).
Heparan sulfate separation, sequencing, and isomeric differentiation: ion mobility spectrometry reveals specific iduronic and glucuronic acid-containing hexasaccharides.
|
| |
Anal Chem,
81,
10179-10185.
|
 |
|
|
|
|
 |
O.Gorbenko,
G.Ovcharenko,
D.Volkova,
D.Mayilo,
N.Gaman,
Y.Khozhayenko,
V.Usenko,
I.Gout,
and
V.Filonenko
(2009).
Monoclonal antibodies with selective specificity towards different glycosylation isoforms of FGFR1.
|
| |
Hybridoma (Larchmt),
28,
287-293.
|
 |
|
|
|
|
 |
S.Li,
C.Christensen,
L.B.Køhler,
V.V.Kiselyov,
V.Berezin,
and
E.Bock
(2009).
Agonists of fibroblast growth factor receptor induce neurite outgrowth and survival of cerebellar granule neurons.
|
| |
Dev Neurobiol,
69,
837-854.
|
 |
|
|
|
|
 |
Y.Hadari,
and
J.Schlessinger
(2009).
FGFR3-targeted mAb therapy for bladder cancer and multiple myeloma.
|
| |
J Clin Invest,
119,
1077-1079.
|
 |
|
|
|
|
 |
Y.Hu,
S.E.Guimond,
P.Travers,
S.Cadman,
E.Hohenester,
J.E.Turnbull,
S.H.Kim,
and
P.M.Bouloux
(2009).
Novel mechanisms of fibroblast growth factor receptor 1 regulation by extracellular matrix protein anosmin-1.
|
| |
J Biol Chem,
284,
29905-29920.
|
 |
|
|
|
|
 |
A.Kaushansky,
A.Gordus,
B.Chang,
J.Rush,
and
G.MacBeath
(2008).
A quantitative study of the recruitment potential of all intracellular tyrosine residues on EGFR, FGFR1 and IGF1R.
|
| |
Mol Biosyst,
4,
643-653.
|
 |
|
|
|
|
 |
A.Kochoyan,
F.M.Poulsen,
V.Berezin,
E.Bock,
and
V.V.Kiselyov
(2008).
Structural basis for the activation of FGFR by NCAM.
|
| |
Protein Sci,
17,
1698-1705.
|
 |
|
|
|
|
 |
B.A.Kwiatkowski,
I.Kirillova,
R.E.Richard,
D.Israeli,
and
Z.Yablonka-Reuveni
(2008).
FGFR4 and its novel splice form in myogenic cells: Interplay of glycosylation and tyrosine phosphorylation.
|
| |
J Cell Physiol,
215,
803-817.
|
 |
|
|
|
|
 |
B.Hausott,
B.Schlick,
N.Vallant,
R.Dorn,
and
L.Klimaschewski
(2008).
Promotion of neurite outgrowth by fibroblast growth factor receptor 1 overexpression and lysosomal inhibition of receptor degradation in pheochromocytoma cells and adult sensory neurons.
|
| |
Neuroscience,
153,
461-473.
|
 |
|
|
|
|
 |
I.Matsumura,
M.Mizuki,
and
Y.Kanakura
(2008).
Roles for deregulated receptor tyrosine kinases and their downstream signaling molecules in hematologic malignancies.
|
| |
Cancer Sci,
99,
479-485.
|
 |
|
|
|
|
 |
N.Kulahin,
V.Kiselyov,
A.Kochoyan,
O.Kristensen,
J.S.Kastrup,
V.Berezin,
E.Bock,
and
M.Gajhede
(2008).
Dimerization effect of sucrose octasulfate on rat FGF1.
|
| |
Acta Crystallogr Sect F Struct Biol Cryst Commun,
64,
448-452.
|
 |
|
PDB code:
|
 |
|
|
|
|
|
 |
P.Sharma,
D.Rajalingam,
T.K.Kumar,
and
S.Singh
(2008).
A light scattering study of the interaction of fibroblast growth factor (FGF) with its receptor.
|
| |
Biophys J,
94,
L71-L73.
|
 |
|
|
|
|
 |
S.B.Joshi,
T.J.Kamerzell,
C.McNown,
and
C.R.Middaugh
(2008).
The interaction of heparin/polyanions with bovine, porcine, and human growth hormone.
|
| |
J Pharm Sci,
97,
1368-1385.
|
 |
|
|
|
|
 |
S.Nadanaka,
M.Ishida,
M.Ikegami,
and
H.Kitagawa
(2008).
Chondroitin 4-O-Sulfotransferase-1 Modulates Wnt-3a Signaling through Control of E Disaccharide Expression of Chondroitin Sulfate.
|
| |
J Biol Chem,
283,
27333-27343.
|
 |
|
|
|
|
 |
W.Zhang,
Y.Chen,
M.R.Swift,
E.Tassi,
D.C.Stylianou,
K.A.Gibby,
A.T.Riegel,
and
A.Wellstein
(2008).
Effect of FGF-binding Protein 3 on Vascular Permeability.
|
| |
J Biol Chem,
283,
28329-28337.
|
 |
|
|
|
|
 |
Y.Yamazaki,
T.Tamada,
N.Kasai,
I.Urakawa,
Y.Aono,
H.Hasegawa,
T.Fujita,
R.Kuroki,
T.Yamashita,
S.Fukumoto,
and
T.Shimada
(2008).
Anti-FGF23 neutralizing antibodies show the physiological role and structural features of FGF23.
|
| |
J Bone Miner Res,
23,
1509-1518.
|
 |
|
|
|
|
 |
B.C.Lin,
M.Wang,
C.Blackmore,
and
L.R.Desnoyers
(2007).
Liver-specific activities of FGF19 require Klotho beta.
|
| |
J Biol Chem,
282,
27277-27284.
|
 |
|
|
|
|
 |
K.M.Kathir,
K.Ibrahim,
D.Rajalingam,
I.Prudovsky,
C.Yu,
and
T.K.Kumar
(2007).
S100A13-lipid interactions-role in the non-classical release of the acidic fibroblast growth factor.
|
| |
Biochim Biophys Acta,
1768,
3080-3089.
|
 |
|
|
|
|
 |
R.S.Ashton,
J.Peltier,
C.A.Fasano,
A.O'Neill,
J.Leonard,
S.Temple,
D.V.Schaffer,
and
R.S.Kane
(2007).
High-throughput screening of gene function in stem cells using clonal microarrays.
|
| |
Stem Cells,
25,
2928-2935.
|
 |
|
|
|
|
 |
T.J.Kamerzell,
S.B.Joshi,
D.McClean,
L.Peplinskie,
K.Toney,
D.Papac,
M.Li,
and
C.R.Middaugh
(2007).
Parathyroid hormone is a heparin/polyanion binding protein: binding energetics and structure modification.
|
| |
Protein Sci,
16,
1193-1203.
|
 |
|
|
|
|
 |
A.L.Stiegler,
S.J.Burden,
and
S.R.Hubbard
(2006).
Crystal structure of the agrin-responsive immunoglobulin-like domains 1 and 2 of the receptor tyrosine kinase MuSK.
|
| |
J Mol Biol,
364,
424-433.
|
 |
|
PDB code:
|
 |
|
|
|
|
|
 |
E.Sanchez-Heras,
F.V.Howell,
G.Williams,
and
P.Doherty
(2006).
The fibroblast growth factor receptor acid box is essential for interactions with N-cadherin and all of the major isoforms of neural cell adhesion molecule.
|
| |
J Biol Chem,
281,
35208-35216.
|
 |
|
|
|
|
 |
M.Stevenson,
E.Boos,
C.Herbert,
A.Hale,
N.Green,
M.Lyons,
L.Chandler,
K.Ulbrich,
N.van Rooijen,
V.Mautner,
K.Fisher,
and
L.Seymour
(2006).
Chick embryo lethal orphan virus can be polymer-coated and retargeted to infect mammalian cells.
|
| |
Gene Ther,
13,
356-368.
|
 |
|
|
|
|
 |
N.Tang,
M.He,
M.A.O'Riordan,
C.Farkas,
K.Buck,
V.Lemmon,
and
C.F.Bearer
(2006).
Ethanol inhibits L1 cell adhesion molecule activation of mitogen-activated protein kinases.
|
| |
J Neurochem,
96,
1480-1490.
|
 |
|
|
|
|
 |
P.Aloy,
and
R.B.Russell
(2006).
Structural systems biology: modelling protein interactions.
|
| |
Nat Rev Mol Cell Biol,
7,
188-197.
|
 |
|
|
|
|
 |
R.Sasisekharan,
R.Raman,
and
V.Prabhakar
(2006).
Glycomics approach to structure-function relationships of glycosaminoglycans.
|
| |
Annu Rev Biomed Eng,
8,
181-231.
|
 |
|
|
|
|
 |
S.K.Olsen,
J.Y.Li,
C.Bromleigh,
A.V.Eliseenkova,
O.A.Ibrahimi,
Z.Lao,
F.Zhang,
R.J.Linhardt,
A.L.Joyner,
and
M.Mohammadi
(2006).
Structural basis by which alternative splicing modulates the organizer activity of FGF8 in the brain.
|
| |
Genes Dev,
20,
185-198.
|
 |
|
PDB code:
|
 |
|
|
|
|
|
 |
V.P.Eswarakumar,
F.Ozcan,
E.D.Lew,
J.H.Bae,
F.Tomé,
C.J.Booth,
D.J.Adams,
I.Lax,
and
J.Schlessinger
(2006).
Attenuation of signaling pathways stimulated by pathologically activated FGF-receptor 2 mutants prevents craniosynostosis.
|
| |
Proc Natl Acad Sci U S A,
103,
18603-18608.
|
 |
|
|
|
|
 |
V.V.Kiselyov,
A.Kochoyan,
F.M.Poulsen,
E.Bock,
and
V.Berezin
(2006).
Elucidation of the mechanism of the regulatory function of the Ig1 module of the fibroblast growth factor receptor 1.
|
| |
Protein Sci,
15,
2318-2322.
|
 |
|
|
|
|
 |
V.V.Kiselyov,
E.Bock,
V.Berezin,
and
F.M.Poulsen
(2006).
NMR structure of the first Ig module of mouse FGFR1.
|
| |
Protein Sci,
15,
1512-1515.
|
 |
|
PDB code:
|
 |
|
|
|
|
|
 |
A.A.Anderson,
C.E.Kendal,
M.Garcia-Maya,
A.V.Kenny,
S.A.Morris-Triggs,
T.Wu,
R.Reynolds,
E.Hohenester,
and
J.L.Saffell
(2005).
A peptide from the first fibronectin domain of NCAM acts as an inverse agonist and stimulates FGF receptor activation, neurite outgrowth and survival.
|
| |
J Neurochem,
95,
570-583.
|
 |
|
|
|
|
 |
C.Melendez-Vasquez,
D.J.Carey,
G.Zanazzi,
O.Reizes,
P.Maurel,
and
J.L.Salzer
(2005).
Differential expression of proteoglycans at central and peripheral nodes of Ranvier.
|
| |
Glia,
52,
301-308.
|
 |
|
|
|
|
 |
J.E.Sanders,
S.E.Lamont,
A.Karchin,
S.L.Golledge,
and
B.D.Ratner
(2005).
Fibro-porous meshes made from polyurethane micro-fibers: effects of surface charge on tissue response.
|
| |
Biomaterials,
26,
813-818.
|
 |
|
|
|
|
 |
K.McDonnell,
E.T.Bowden,
R.Cabal-Manzano,
B.Hoxter,
A.T.Riegel,
and
A.Wellstein
(2005).
Vascular leakage in chick embryos after expression of a secreted binding protein for fibroblast growth factors.
|
| |
Lab Invest,
85,
747-755.
|
 |
|
|
|
|
 |
L.Dailey,
D.Ambrosetti,
A.Mansukhani,
and
C.Basilico
(2005).
Mechanisms underlying differential responses to FGF signaling.
|
| |
Cytokine Growth Factor Rev,
16,
233-247.
|
 |
|
|
|
|
 |
M.Mohammadi,
S.K.Olsen,
and
O.A.Ibrahimi
(2005).
Structural basis for fibroblast growth factor receptor activation.
|
| |
Cytokine Growth Factor Rev,
16,
107-137.
|
 |
|
|
|
|
 |
O.A.Ibrahimi,
B.K.Yeh,
A.V.Eliseenkova,
F.Zhang,
S.K.Olsen,
M.Igarashi,
S.A.Aaronson,
R.J.Linhardt,
and
M.Mohammadi
(2005).
Analysis of mutations in fibroblast growth factor (FGF) and a pathogenic mutation in FGF receptor (FGFR) provides direct evidence for the symmetric two-end model for FGFR dimerization.
|
| |
Mol Cell Biol,
25,
671-684.
|
 |
|
|
|
|
 |
Q.Wu,
J.Wang,
L.Zhang,
A.Hong,
and
J.Ren
(2005).
Molecular recognition of basic fibroblast growth factor by polyoxometalates.
|
| |
Angew Chem Int Ed Engl,
44,
4048-4052.
|
 |
|
|
|
|
 |
V.P.Eswarakumar,
I.Lax,
and
J.Schlessinger
(2005).
Cellular signaling by fibroblast growth factor receptors.
|
| |
Cytokine Growth Factor Rev,
16,
139-149.
|
 |
|
|
|
|
 |
V.V.Kiselyov,
V.Soroka,
V.Berezin,
and
E.Bock
(2005).
Structural biology of NCAM homophilic binding and activation of FGFR.
|
| |
J Neurochem,
94,
1169-1179.
|
 |
|
|
|
|
 |
W.Zhang,
R.Swanson,
G.Izaguirre,
Y.Xiong,
L.F.Lau,
and
S.T.Olson
(2005).
The heparin-binding site of antithrombin is crucial for antiangiogenic activity.
|
| |
Blood,
106,
1621-1628.
|
 |
|
|
|
|
 |
B.Kaur,
C.Tan,
D.J.Brat,
D.E.Post,
and
E.G.Van Meir
(2004).
Genetic and hypoxic regulation of angiogenesis in gliomas.
|
| |
J Neurooncol,
70,
229-243.
|
 |
|
|
|
|
 |
C.Dodé,
and
J.P.Hardelin
(2004).
Kallmann syndrome: fibroblast growth factor signaling insufficiency?
|
| |
J Mol Med,
82,
725-734.
|
 |
|
|
|
|
 |
C.Heiring,
B.Dahlbäck,
and
Y.A.Muller
(2004).
Ligand recognition and homophilic interactions in Tyro3: structural insights into the Axl/Tyro3 receptor tyrosine kinase family.
|
| |
J Biol Chem,
279,
6952-6958.
|
 |
|
PDB code:
|
 |
|
|
|
|
|
 |
E.Krieger,
E.Geretti,
B.Brandner,
B.Goger,
T.N.Wells,
and
A.J.Kungl
(2004).
A structural and dynamic model for the interaction of interleukin-8 and glycosaminoglycans: support from isothermal fluorescence titrations.
|
| |
Proteins,
54,
768-775.
|
 |
|
|
|
|
 |
M.J.Bernett,
T.Somasundaram,
and
M.Blaber
(2004).
An atomic resolution structure for human fibroblast growth factor 1.
|
| |
Proteins,
57,
626-634.
|
 |
|
PDB code:
|
 |
|
|
|
|
|
 |
N.Numao,
H.Fujii,
Y.Fukazawa,
N.Hanagata,
and
K.Tanaka
(2004).
Hydrophobic scale: a second parameter to elucidating various specific ligand-protein interactions.
|
| |
Chem Pharm Bull (Tokyo),
52,
377-379.
|
 |
|
|
|
|
 |
P.M.Lievens,
C.Mutinelli,
D.Baynes,
and
E.Liboi
(2004).
The kinase activity of fibroblast growth factor receptor 3 with activation loop mutations affects receptor trafficking and signaling.
|
| |
J Biol Chem,
279,
43254-43260.
|
 |
|
|
|
|
 |
R.Islam,
L.V.Kristiansen,
S.Romani,
L.Garcia-Alonso,
and
M.Hortsch
(2004).
Activation of EGF receptor kinase by L1-mediated homophilic cell interactions.
|
| |
Mol Biol Cell,
15,
2003-2012.
|
 |
|
|
|
|
 |
S.K.Olsen,
O.A.Ibrahimi,
A.Raucci,
F.Zhang,
A.V.Eliseenkova,
A.Yayon,
C.Basilico,
R.J.Linhardt,
J.Schlessinger,
and
M.Mohammadi
(2004).
Insights into the molecular basis for fibroblast growth factor receptor autoinhibition and ligand-binding promiscuity.
|
| |
Proc Natl Acad Sci U S A,
101,
935-940.
|
 |
|
PDB code:
|
 |
|
|
|
|
|
 |
Y.Wegrowski,
and
F.X.Maquart
(2004).
Involvement of stromal proteoglycans in tumour progression.
|
| |
Crit Rev Oncol Hematol,
49,
259-268.
|
 |
|
|
|
|
 |
A.Facchiano,
K.Russo,
A.M.Facchiano,
F.De Marchis,
F.Facchiano,
D.Ribatti,
M.S.Aguzzi,
and
M.C.Capogrossi
(2003).
Identification of a novel domain of fibroblast growth factor 2 controlling its angiogenic properties.
|
| |
J Biol Chem,
278,
8751-8760.
|
 |
|
|
|
|
 |
B.K.Yeh,
M.Igarashi,
A.V.Eliseenkova,
A.N.Plotnikov,
I.Sher,
D.Ron,
S.A.Aaronson,
and
M.Mohammadi
(2003).
Structural basis by which alternative splicing confers specificity in fibroblast growth factor receptors.
|
| |
Proc Natl Acad Sci U S A,
100,
2266-2271.
|
 |
|
PDB code:
|
 |
|
|
|
|
|
 |
C.Dodé,
J.Levilliers,
J.M.Dupont,
A.De Paepe,
N.Le Dû,
N.Soussi-Yanicostas,
R.S.Coimbra,
S.Delmaghani,
S.Compain-Nouaille,
F.Baverel,
C.Pêcheux,
D.Le Tessier,
C.Cruaud,
M.Delpech,
F.Speleman,
S.Vermeulen,
A.Amalfitano,
Y.Bachelot,
P.Bouchard,
S.Cabrol,
J.C.Carel,
H.Delemarre-van de Waal,
B.Goulet-Salmon,
M.L.Kottler,
O.Richard,
F.Sanchez-Franco,
R.Saura,
J.Young,
C.Petit,
and
J.P.Hardelin
(2003).
Loss-of-function mutations in FGFR1 cause autosomal dominant Kallmann syndrome.
|
| |
Nat Genet,
33,
463-465.
|
 |
|
|
|
|
 |
F.I.Staquicini,
C.R.Moreira,
F.D.Nascimento,
I.L.Tersariol,
H.B.Nader,
C.P.Dietrich,
and
J.D.Lopes
(2003).
Enzyme and integrin expression by high and low metastatic melanoma cell lines.
|
| |
Melanoma Res,
13,
11-18.
|
 |
|
|
|
|
 |
J.M.Myers,
G.G.Martins,
J.Ostrowski,
and
M.K.Stachowiak
(2003).
Nuclear trafficking of FGFR1: a role for the transmembrane domain.
|
| |
J Cell Biochem,
88,
1273-1291.
|
 |
|
|
|
|
 |
K.D.Kent,
and
J.A.Bomser
(2003).
Bovine pituitary extract provides remarkable protection against oxidative stress in human prostate epithelial cells.
|
| |
In Vitro Cell Dev Biol Anim,
39,
388-394.
|
 |
|
|
|
|
 |
L.A.Kueltzo,
and
C.R.Middaugh
(2003).
Nonclassical transport proteins and peptides: an alternative to classical macromolecule delivery systems.
|
| |
J Pharm Sci,
92,
1754-1772.
|
 |
|
|
|
|
 |
M.P.Machner,
S.Frese,
W.D.Schubert,
V.Orian-Rousseau,
E.Gherardi,
J.Wehland,
H.H.Niemann,
and
D.W.Heinz
(2003).
Aromatic amino acids at the surface of InlB are essential for host cell invasion by Listeria monocytogenes.
|
| |
Mol Microbiol,
48,
1525-1536.
|
 |
|
|
|
|
 |
O.De Wever,
and
M.Mareel
(2003).
Role of tissue stroma in cancer cell invasion.
|
| |
J Pathol,
200,
429-447.
|
 |
|
|
|
|
 |
S.Ali,
L.A.Hardy,
and
J.A.Kirby
(2003).
Transplant immunobiology: a crucial role for heparan sulfate glycosaminoglycans?
|
| |
Transplantation,
75,
1773-1782.
|
 |
|
|
|
|
 |
S.K.Olsen,
M.Garbi,
N.Zampieri,
A.V.Eliseenkova,
D.M.Ornitz,
M.Goldfarb,
and
M.Mohammadi
(2003).
Fibroblast growth factor (FGF) homologous factors share structural but not functional homology with FGFs.
|
| |
J Biol Chem,
278,
34226-34236.
|
 |
|
PDB code:
|
 |
|
|
|
|
|
 |
Y.Yang,
M.Børset,
J.K.Langford,
and
R.D.Sanderson
(2003).
Heparan sulfate regulates targeting of syndecan-1 to a functional domain on the cell surface.
|
| |
J Biol Chem,
278,
12888-12893.
|
 |
|
|
|
|
 |
Z.L.Wu,
L.Zhang,
T.Yabe,
B.Kuberan,
D.L.Beeler,
A.Love,
and
R.D.Rosenberg
(2003).
The involvement of heparan sulfate (HS) in FGF1/HS/FGFR1 signaling complex.
|
| |
J Biol Chem,
278,
17121-17129.
|
 |
|
|
|
|
 |
A.I.Arunkumar,
S.Srisailam,
T.K.Kumar,
K.M.Kathir,
Y.H.Chi,
H.M.Wang,
G.G.Chang,
I.Chiu,
and
C.Yu
(2002).
Structure and stability of an acidic fibroblast growth factor from Notophthalmus viridescens.
|
| |
J Biol Chem,
277,
46424-46432.
|
 |
|
PDB code:
|
 |
|
|
|
|
|
 |
A.O.Wilkie,
S.J.Patey,
S.H.Kan,
A.M.van den Ouweland,
and
B.C.Hamel
(2002).
FGFs, their receptors, and human limb malformations: clinical and molecular correlations.
|
| |
Am J Med Genet,
112,
266-278.
|
 |
|
|
|
|
 |
A.R.Aricescu,
I.W.McKinnell,
W.Halfter,
and
A.W.Stoker
(2002).
Heparan sulfate proteoglycans are ligands for receptor protein tyrosine phosphatase sigma.
|
| |
Mol Cell Biol,
22,
1881-1892.
|
 |
|
|
|
|
 |
A.Voigt,
R.Pflanz,
U.Schäfer,
and
H.Jäckle
(2002).
Perlecan participates in proliferation activation of quiescent Drosophila neuroblasts.
|
| |
Dev Dyn,
224,
403-412.
|
 |
|
|
|
|
 |
B.K.Yeh,
A.V.Eliseenkova,
A.N.Plotnikov,
D.Green,
J.Pinnell,
T.Polat,
A.Gritli-Linde,
R.J.Linhardt,
and
M.Mohammadi
(2002).
Structural basis for activation of fibroblast growth factor signaling by sucrose octasulfate.
|
| |
Mol Cell Biol,
22,
7184-7192.
|
 |
|
|
|
|
 |
B.M.Loo,
and
M.Salmivirta
(2002).
Heparin/Heparan sulfate domains in binding and signaling of fibroblast growth factor 8b.
|
| |
J Biol Chem,
277,
32616-32623.
|
 |
|
|
|
|
 |
C.Rolny,
D.Spillmann,
U.Lindahl,
and
L.Claesson-Welsh
(2002).
Heparin amplifies platelet-derived growth factor (PDGF)- BB-induced PDGF alpha -receptor but not PDGF beta -receptor tyrosine phosphorylation in heparan sulfate-deficient cells. Effects on signal transduction and biological responses.
|
| |
J Biol Chem,
277,
19315-19321.
|
 |
|
|
|
|
 |
H.Ogiso,
R.Ishitani,
O.Nureki,
S.Fukai,
M.Yamanaka,
J.H.Kim,
K.Saito,
A.Sakamoto,
M.Inoue,
M.Shirouzu,
and
S.Yokoyama
(2002).
Crystal structure of the complex of human epidermal growth factor and receptor extracellular domains.
|
| |
Cell,
110,
775-787.
|
 |
|
PDB code:
|
 |
|
|
|
|
|
 |
J.D.Esko,
and
S.B.Selleck
(2002).
Order out of chaos: assembly of ligand binding sites in heparan sulfate.
|
| |
Annu Rev Biochem,
71,
435-471.
|
 |
|
|
|
|
 |
J.U.Park,
and
T.Tsuchiya
(2002).
Increase in gap junctional intercellular communication by high molecular weight hyaluronic acid associated with fibroblast growth factor 2 and keratinocyte growth factor production in normal human dermal fibroblasts.
|
| |
Tissue Eng,
8,
419-427.
|
 |
|
|
|
|
 |
K.M.Cadigan
(2002).
Regulating morphogen gradients in the Drosophila wing.
|
| |
Semin Cell Dev Biol,
13,
83-90.
|
 |
|
|
|
|
 |
K.Suyama,
I.Shapiro,
M.Guttman,
and
R.B.Hazan
(2002).
A signaling pathway leading to metastasis is controlled by N-cadherin and the FGF receptor.
|
| |
Cancer Cell,
2,
301-314.
|
 |
|
|
|
|
 |
M.Martin-Fernandez,
D.T.Clarke,
M.J.Tobin,
S.V.Jones,
and
G.R.Jones
(2002).
Preformed oligomeric epidermal growth factor receptors undergo an ectodomain structure change during signaling.
|
| |
Biophys J,
82,
2415-2427.
|
 |
|
|
|
|
 |
M.Zamai,
C.Hariharan,
D.Pines,
M.Safran,
A.Yayon,
V.R.Caiolfa,
R.Cohen-Luria,
E.Pines,
and
A.H.Parola
(2002).
Nature of Interaction between basic fibroblast growth factor and the antiangiogenic drug 7,7-(carbonyl-bis[imino-N-methyl-4,2-pyrrolecarbonylimino[N-methyl-4,2-pyrrole]-carbonylimino])-bis-(1,3-naphtalene disulfonate). II. Removal of polar interactions affects protein folding.
|
| |
Biophys J,
82,
2652-2664.
|
 |
|
|
|
|
 |
P.Aloy,
and
R.B.Russell
(2002).
Interrogating protein interaction networks through structural biology.
|
| |
Proc Natl Acad Sci U S A,
99,
5896-5901.
|
 |
|
|
|
|
 |
R.C.Melcangi,
L.Martini,
and
M.Galbiati
(2002).
Growth factors and steroid hormones: a complex interplay in the hypothalamic control of reproductive functions.
|
| |
Prog Neurobiol,
67,
421-449.
|
 |
|
|
|
|
 |
S.H.Kan,
N.Elanko,
D.Johnson,
L.Cornejo-Roldan,
J.Cook,
E.W.Reich,
S.Tomkins,
A.Verloes,
S.R.Twigg,
S.Rannan-Eliya,
D.M.McDonald-McGinn,
E.H.Zackai,
S.A.Wall,
M.Muenke,
and
A.O.Wilkie
(2002).
Genomic screening of fibroblast growth-factor receptor 2 reveals a wide spectrum of mutations in patients with syndromic craniosynostosis.
|
| |
Am J Hum Genet,
70,
472-486.
|
 |
|
|
|
|
 |
T.Sasaki,
P.G.Knyazev,
Y.Cheburkin,
W.Göhring,
D.Tisi,
A.Ullrich,
R.Timpl,
and
E.Hohenester
(2002).
Crystal structure of a C-terminal fragment of growth arrest-specific protein Gas6. Receptor tyrosine kinase activation by laminin G-like domains.
|
| |
J Biol Chem,
277,
44164-44170.
|
 |
|
PDB code:
|
 |
|
|
|
|
|
 |
V.M.Panin,
L.Shao,
L.Lei,
D.J.Moloney,
K.D.Irvine,
and
R.S.Haltiwanger
(2002).
Notch ligands are substrates for protein O-fucosyltransferase-1 and Fringe.
|
| |
J Biol Chem,
277,
29945-29952.
|
 |
|
|
|
|
 |
V.Orian-Rousseau,
L.Chen,
J.P.Sleeman,
P.Herrlich,
and
H.Ponta
(2002).
CD44 is required for two consecutive steps in HGF/c-Met signaling.
|
| |
Genes Dev,
16,
3074-3086.
|
 |
|
|
|
|
 |
A.Liu,
and
A.L.Joyner
(2001).
Early anterior/posterior patterning of the midbrain and cerebellum.
|
| |
Annu Rev Neurosci,
24,
869-896.
|
 |
|
|
|
|
 |
B.Mulloy,
and
R.J.Linhardt
(2001).
Order out of complexity--protein structures that interact with heparin.
|
| |
Curr Opin Struct Biol,
11,
623-628.
|
 |
|
|
|
|
 |
C.Z.Borland,
J.L.Schutzman,
and
M.J.Stern
(2001).
Fibroblast growth factor signaling in Caenorhabditis elegans.
|
| |
Bioessays,
23,
1120-1130.
|
 |
|
|
|
|
 |
D.M.Ornitz,
and
N.Itoh
(2001).
Fibroblast growth factors.
|
| |
Genome Biol,
2,
REVIEWS3005.
|
 |
|
|
|
|
 |
E.J.Williams,
G.Williams,
F.V.Howell,
S.D.Skaper,
F.S.Walsh,
and
P.Doherty
(2001).
Identification of an N-cadherin motif that can interact with the fibroblast growth factor receptor and is required for axonal growth.
|
| |
J Biol Chem,
276,
43879-43886.
|
 |
|
|
|
|
 |
G.Gasparini
(2001).
Clinical significance of determination of surrogate markers of angiogenesis in breast cancer.
|
| |
Crit Rev Oncol Hematol,
37,
97.
|
 |
|
|
|
|
 |
H.J.Hecht,
R.Adar,
B.Hofmann,
O.Bogin,
H.Weich,
and
A.Yayon
(2001).
Structure of fibroblast growth factor 9 shows a symmetric dimer with unique receptor- and heparin-binding interfaces.
|
| |
Acta Crystallogr D Biol Crystallogr,
57,
378-384.
|
 |
|
PDB code:
|
 |
|
|
|
|
|
 |
J.Schoorlemmer,
and
M.Goldfarb
(2001).
Fibroblast growth factor homologous factors are intracellular signaling proteins.
|
| |
Curr Biol,
11,
793-797.
|
 |
|
|
|
|
 |
L.Pellegrini
(2001).
Role of heparan sulfate in fibroblast growth factor signalling: a structural view.
|
| |
Curr Opin Struct Biol,
11,
629-634.
|
 |
|
|
|
|
 |
M.J.Cross,
and
L.Claesson-Welsh
(2001).
FGF and VEGF function in angiogenesis: signalling pathways, biological responses and therapeutic inhibition.
|
| |
Trends Pharmacol Sci,
22,
201-207.
|
 |
|
|
|
|
 |
O.A.Ibrahimi,
A.V.Eliseenkova,
A.N.Plotnikov,
K.Yu,
D.M.Ornitz,
and
M.Mohammadi
(2001).
Structural basis for fibroblast growth factor receptor 2 activation in Apert syndrome.
|
| |
Proc Natl Acad Sci U S A,
98,
7182-7187.
|
 |
|
PDB codes:
|
 |
|
|
|
|
|
 |
P.Bellosta,
A.Iwahori,
A.N.Plotnikov,
A.V.Eliseenkova,
C.Basilico,
and
M.Mohammadi
(2001).
Identification of receptor and heparin binding sites in fibroblast growth factor 4 by structure-based mutagenesis.
|
| |
Mol Cell Biol,
21,
5946-5957.
|
 |
|
PDB code:
|
 |
|
|
|
|
|
 |
S.Ye,
Y.Luo,
W.Lu,
R.B.Jones,
R.J.Linhardt,
I.Capila,
T.Toida,
M.Kan,
H.Pelletier,
and
W.L.McKeehan
(2001).
Structural basis for interaction of FGF-1, FGF-2, and FGF-7 with different heparan sulfate motifs.
|
| |
Biochemistry,
40,
14429-14439.
|
 |
|
PDB codes:
|
 |
|
|
|
|
|
 |
X.Li,
Y.Chen,
S.Schéele,
E.Arman,
R.Haffner-Krausz,
P.Ekblom,
and
P.Lonai
(2001).
Fibroblast growth factor signaling and basement membrane assembly are connected during epithelial morphogenesis of the embryoid body.
|
| |
J Cell Biol,
153,
811-822.
|
 |
|
|
|
|
 |
Y.V.Fedorov,
R.S.Rosenthal,
and
B.B.Olwin
(2001).
Oncogenic Ras-induced proliferation requires autocrine fibroblast growth factor 2 signaling in skeletal muscle cells.
|
| |
J Cell Biol,
152,
1301-1305.
|
 |
|
|
|
|
 |
Z.Zhang,
C.Coomans,
and
G.David
(2001).
Membrane heparan sulfate proteoglycan-supported FGF2-FGFR1 signaling: evidence in support of the "cooperative end structures" model.
|
| |
J Biol Chem,
276,
41921-41929.
|
 |
|
|
|
|
 |
A.N.Plotnikov,
S.R.Hubbard,
J.Schlessinger,
and
M.Mohammadi
(2000).
Crystal structures of two FGF-FGFR complexes reveal the determinants of ligand-receptor specificity.
|
| |
Cell,
101,
413-424.
|
 |
|
PDB codes:
|
 |
|
|
|
|
|
 |
C.Dickson,
B.Spencer-Dene,
C.Dillon,
and
V.Fantl
(2000).
Tyrosine kinase signalling in breast cancer: fibroblast growth factors and their receptors.
|
| |
Breast Cancer Res,
2,
191-196.
|
 |
|
|
|
|
 |
D.J.Stauber,
A.D.DiGabriele,
and
W.A.Hendrickson
(2000).
Structural interactions of fibroblast growth factor receptor with its ligands.
|
| |
Proc Natl Acad Sci U S A,
97,
49-54.
|
 |
|
PDB code:
|
 |
|
|
|
|
|
 |
D.M.Ornitz
(2000).
FGFs, heparan sulfate and FGFRs: complex interactions essential for development.
|
| |
Bioessays,
22,
108-112.
|
 |
|
|
|
|
 |
F.P.Ottensmeyer,
D.R.Beniac,
R.Z.Luo,
and
C.C.Yip
(2000).
Mechanism of transmembrane signaling: insulin binding and the insulin receptor.
|
| |
Biochemistry,
39,
12103-12112.
|
 |
|
|
|
|
 |
H.Kamiguchi,
and
V.Lemmon
(2000).
IgCAMs: bidirectional signals underlying neurite growth.
|
| |
Curr Opin Cell Biol,
12,
598-605.
|
 |
|
|
|
|
 |
I.McIntosh,
G.A.Bellus,
and
E.W.Jab
(2000).
The pleiotropic effects of fibroblast growth factor receptors in mammalian development.
|
| |
Cell Struct Funct,
25,
85-96.
|
 |
|
|
|
|
 |
J.B.Kim,
S.Islam,
Y.J.Kim,
R.S.Prudoff,
K.M.Sass,
M.J.Wheelock,
and
K.R.Johnson
(2000).
N-Cadherin extracellular repeat 4 mediates epithelial to mesenchymal transition and increased motility.
|
| |
J Cell Biol,
151,
1193-1206.
|
 |
|
|
|
|
 |
J.C.Arevalo,
B.Conde,
B.L.Hempstead,
M.V.Chao,
D.Martin-Zanca,
and
P.Perez
(2000).
TrkA immunoglobulin-like ligand binding domains inhibit spontaneous activation of the receptor.
|
| |
Mol Cell Biol,
20,
5908-5916.
|
 |
|
|
|
|
 |
J.M.Rini,
and
N.Sharon
(2000).
Glycosyltransferases, sugar nucleotide transporters and bacterial surface lectins - at the cutting edge of glycobiology
|
| |
Curr Opin Struct Biol,
10,
507-509.
|
 |
|
|
|
|
 |
J.Schlessinger
(2000).
Cell signaling by receptor tyrosine kinases.
|
| |
Cell,
103,
211-225.
|
 |
|
|
|
|
 |
J.Schlessinger,
A.N.Plotnikov,
O.A.Ibrahimi,
A.V.Eliseenkova,
B.K.Yeh,
A.Yayon,
R.J.Linhardt,
and
M.Mohammadi
(2000).
Crystal structure of a ternary FGF-FGFR-heparin complex reveals a dual role for heparin in FGFR binding and dimerization.
|
| |
Mol Cell,
6,
743-750.
|
 |
|
PDB code:
|
 |
|
|
|
|
|
 |
K.Yu,
A.B.Herr,
G.Waksman,
and
D.M.Ornitz
(2000).
Loss of fibroblast growth factor receptor 2 ligand-binding specificity in Apert syndrome.
|
| |
Proc Natl Acad Sci U S A,
97,
14536-14541.
|
 |
|
|
|
|
 |
K.Zou,
H.Muramatsu,
S.Ikematsu,
S.Sakuma,
R.H.Salama,
T.Shinomura,
K.Kimata,
and
T.Muramatsu
(2000).
A heparin-binding growth factor, midkine, binds to a chondroitin sulfate proteoglycan, PG-M/versican.
|
| |
Eur J Biochem,
267,
4046-4053.
|
 |
|
|
|
|
 |
M.A.Nugent
(2000).
Heparin sequencing brings structure to the function of complex oligosaccharides.
|
| |
Proc Natl Acad Sci U S A,
97,
10301-10303.
|
 |
|
|
|
|
 |
M.C.Deller,
and
E.Yvonne Jones
(2000).
Cell surface receptors.
|
| |
Curr Opin Struct Biol,
10,
213-219.
|
 |
|
|
|
|
 |
R.M.Lozano,
A.Pineda-Lucena,
C.Gonzalez,
M.Angeles Jiménez,
P.Cuevas,
M.Redondo-Horcajo,
J.M.Sanz,
M.Rico,
and
G.Giménez-Gallego
(2000).
1H NMR structural characterization of a nonmitogenic, vasodilatory, ischemia-protector and neuromodulatory acidic fibroblast growth factor.
|
| |
Biochemistry,
39,
4982-4993.
|
 |
|
PDB codes:
|
 |
|
|
|
|
|
 |
S.B.Selleck
(2000).
Proteoglycans and pattern formation: sugar biochemistry meets developmental genetics.
|
| |
Trends Genet,
16,
206-212.
|
 |
|
|
|
|
 |
S.Kumar,
P.C.McDonnell,
R.Lehr,
L.Tierney,
M.N.Tzimas,
D.E.Griswold,
E.A.Capper,
R.Tal-Singer,
G.I.Wells,
M.L.Doyle,
and
P.R.Young
(2000).
Identification and initial characterization of four novel members of the interleukin-1 family.
|
| |
J Biol Chem,
275,
10308-10314.
|
 |
|
|
|
|
 |
S.R.Hubbard,
and
J.H.Till
(2000).
Protein tyrosine kinase structure and function.
|
| |
Annu Rev Biochem,
69,
373-398.
|
 |
|
|
|
|
 |
S.Yoshida,
M.Shibata,
S.Yamamoto,
M.Hagihara,
N.Asai,
M.Takahashi,
S.Mizutani,
T.Muramatsu,
and
K.Kadomatsu
(2000).
Homo-oligomer formation by basigin, an immunoglobulin superfamily member, via its N-terminal immunoglobulin domain.
|
| |
Eur J Biochem,
267,
4372-4380.
|
 |
|
|
|
|
 |
T.L.Blundell,
D.F.Burke,
D.Chirgadze,
V.Dhanaraj,
M.Hyvönen,
C.A.Innis,
E.Parisini,
L.Pellegrini,
M.Sayed,
and
B.L.Sibanda
(2000).
Protein-protein interactions in receptor activation and intracellular signalling.
|
| |
Biol Chem,
381,
955-959.
|
 |
|
|
|
|
 |
X.Jiang,
O.Gurel,
E.A.Mendiaz,
G.W.Stearns,
C.L.Clogston,
H.S.Lu,
T.D.Osslund,
R.S.Syed,
K.E.Langley,
and
W.A.Hendrickson
(2000).
Structure of the active core of human stem cell factor and analysis of binding to its receptor kit.
|
| |
EMBO J,
19,
3192-3203.
|
 |
|
PDB code:
|
 |
|
|
|
|
|
 |
Z.Zhang,
R.Zhang,
A.Joachimiak,
J.Schlessinger,
and
X.P.Kong
(2000).
Crystal structure of human stem cell factor: implication for stem cell factor receptor dimerization and activation.
|
| |
Proc Natl Acad Sci U S A,
97,
7732-7737.
|
 |
|
PDB code:
|
 |
|
|
|
|
|
 |
A.Chellaiah,
W.Yuan,
M.Chellaiah,
and
D.M.Ornitz
(1999).
Mapping ligand binding domains in chimeric fibroblast growth factor receptor molecules. Multiple regions determine ligand binding specificity.
|
| |
J Biol Chem,
274,
34785-34794.
|
 |
|
|
|
|
 |
C.Wiesmann,
and
A.M.de Vos
(1999).
Putting two and two together: crystal structure of the FGF-receptor complex.
|
| |
Structure,
7,
R251-R255.
|
 |
|
|
|
|
 |
S.E.Guimond,
and
J.E.Turnbull
(1999).
Fibroblast growth factor receptor signalling is dictated by specific heparan sulphate saccharides.
|
| |
Curr Biol,
9,
1343-1346.
|
 |
|
 |
 |
|
The most recent references are shown first.
Citation data come partly from CiteXplore and partly
from an automated harvesting procedure. Note that this is likely to be
only a partial list as not all journals are covered by
either method. However, we are continually building up the citation data
so more and more references will be included with time.
Where a reference describes a PDB structure, the PDB
code is
shown on the right.
|
');
}
}
 |
|