 |
PDBsum entry 1cii
|
|
|
|
 |
|
|
|
|
|
|
|
|
|
|
|
|
 |
|
|
|
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
|
|
|
|
|
|
|
|
|
|
Transmembrane protein
|
PDB id
|
|
|
|
1cii
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
 |
Contents |
 |
|
|
|
|
|
|
|
* Residue conservation analysis
|
|
|
|
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
|
|
|
| |
|
|
Nature
385:461-464
(1997)
|
|
PubMed id:
|
|
|
|
|
| |
|
Crystal structure of colicin Ia.
|
|
M.Wiener,
D.Freymann,
P.Ghosh,
R.M.Stroud.
|
|
|
|
| |
ABSTRACT
|
|
|
| |
|
The ion-channel forming colicins A, B, E1, Ia, Ib and N all kill bacterial cells
selectively by co-opting bacterial active-transport pathways and forming
voltage-gated ion conducting channels across the plasma membrane of the target
bacterium. The crystal structure of colicin Ia reveals a molecule 210 A long
with three distinct functional domains arranged along a backbone of two
extraordinarily long alpha-helices. A central domain at the bend of the
hairpin-like structure mediates specific recognition and binding to an
outer-membrane receptor. A second domain mediates translocation across the outer
membrane via the TonB transport pathway; the TonB-box recognition element of
colicin Ia is on one side of three 80 A-long helices arranged as a helical
sheet. A third domain is made up of 10 alpha-helices which form a
voltage-activated and voltage-gated ion conducting channel across the plasma
membrane of the target cell. The two 160 A-long alpha-helices that link the
receptor-binding domain to the other domains enable the colicin Ia molecule to
span the periplasmic space and contact both the outer and plasma membranes
simultaneously during function.
|
|
|
|
|
|
|
 |
 |
|
 |
 |
 |
 |
 |
 |
 |
 |
 |
|
Literature references that cite this PDB file's key reference
|
|
 |
| |
PubMed id
|
 |
Reference
|
 |
|
|
|
 |
K.D.Krewulak,
and
H.J.Vogel
(2011).
TonB or not TonB: is that the question?
|
| |
Biochem Cell Biol,
89,
87-97.
|
 |
|
|
|
|
 |
L.Prieto,
and
T.Lazaridis
(2011).
Computational studies of colicin insertion into membranes: the closed state.
|
| |
Proteins,
79,
126-141.
|
 |
|
|
|
|
 |
C.Kleanthous
(2010).
Translocator hunt comes full Cir-Col.
|
| |
Mol Microbiol,
75,
529-533.
|
 |
|
|
|
|
 |
C.Kleanthous
(2010).
Swimming against the tide: progress and challenges in our understanding of colicin translocation.
|
| |
Nat Rev Microbiol,
8,
843-848.
|
 |
|
|
|
|
 |
K.S.Jakes,
and
A.Finkelstein
(2010).
The colicin Ia receptor, Cir, is also the translocator for colicin Ia.
|
| |
Mol Microbiol,
75,
567-578.
|
 |
|
|
|
|
 |
N.Noinaj,
M.Guillier,
T.J.Barnard,
and
S.K.Buchanan
(2010).
TonB-dependent transporters: regulation, structure, and function.
|
| |
Annu Rev Microbiol,
64,
43-60.
|
 |
|
|
|
|
 |
S.L.Greig,
M.Radjainia,
and
A.K.Mitra
(2009).
Oligomeric structure of colicin ia channel in lipid bilayer membranes.
|
| |
J Biol Chem,
284,
16126-16134.
|
 |
|
|
|
|
 |
T.Arnold,
K.Zeth,
and
D.Linke
(2009).
Structure and Function of Colicin S4, a Colicin with a Duplicated Receptor-binding Domain.
|
| |
J Biol Chem,
284,
6403-6413.
|
 |
|
PDB code:
|
 |
|
|
|
|
|
 |
A.C.Doxey,
M.D.Lynch,
K.M.Müller,
E.M.Meiering,
and
B.J.McConkey
(2008).
Insights into the evolutionary origins of clostridial neurotoxins from analysis of the Clostridium botulinum strain A neurotoxin gene cluster.
|
| |
BMC Evol Biol,
8,
316.
|
 |
|
|
|
|
 |
A.Valeva,
I.Siegel,
M.Wylenzek,
T.M.Wassenaar,
S.Weis,
N.Heinz,
R.Schmitt,
C.Fischer,
R.Reinartz,
S.Bhakdi,
and
I.Walev
(2008).
Putative identification of an amphipathic alpha-helical sequence in hemolysin of Escherichia coli (HlyA) involved in transmembrane pore formation.
|
| |
Biol Chem,
389,
1201-1207.
|
 |
|
|
|
|
 |
G.Anderluh,
and
J.H.Lakey
(2008).
Disparate proteins use similar architectures to damage membranes.
|
| |
Trends Biochem Sci,
33,
482-490.
|
 |
|
|
|
|
 |
J.Hullmann,
S.I.Patzer,
C.Römer,
K.Hantke,
and
V.Braun
(2008).
Periplasmic chaperone FkpA is essential for imported colicin M toxicity.
|
| |
Mol Microbiol,
69,
926-937.
|
 |
|
|
|
|
 |
K.Zeth,
C.Römer,
S.I.Patzer,
and
V.Braun
(2008).
Crystal structure of colicin M, a novel phosphatase specifically imported by Escherichia coli.
|
| |
J Biol Chem,
283,
25324-25331.
|
 |
|
PDB codes:
|
 |
|
|
|
|
|
 |
P.K.Kienker,
K.S.Jakes,
and
A.Finkelstein
(2008).
Identification of channel-lining amino acid residues in the hydrophobic segment of colicin Ia.
|
| |
J Gen Physiol,
132,
693-707.
|
 |
|
|
|
|
 |
Y.Zhang,
M.N.Vankemmelbeke,
L.E.Holland,
D.C.Walker,
R.James,
and
C.N.Penfold
(2008).
Investigating early events in receptor binding and translocation of colicin E9 using synchronized cell killing and proteolytic cleavage.
|
| |
J Bacteriol,
190,
4342-4350.
|
 |
|
|
|
|
 |
D.Duché
(2007).
Colicin E2 is still in contact with its receptor and import machinery when its nuclease domain enters the cytoplasm.
|
| |
J Bacteriol,
189,
4217-4222.
|
 |
|
|
|
|
 |
D.Walker,
K.Mosbahi,
M.Vankemmelbeke,
R.James,
and
C.Kleanthous
(2007).
The role of electrostatics in colicin nuclease domain translocation into bacterial cells.
|
| |
J Biol Chem,
282,
31389-31397.
|
 |
|
|
|
|
 |
E.Cascales,
S.K.Buchanan,
D.Duché,
C.Kleanthous,
R.Lloubès,
K.Postle,
M.Riley,
S.Slatin,
and
D.Cavard
(2007).
Colicin biology.
|
| |
Microbiol Mol Biol Rev,
71,
158-229.
|
 |
|
|
|
|
 |
M.Masi,
P.Vuong,
M.Humbard,
K.Malone,
and
R.Misra
(2007).
Initial steps of colicin E1 import across the outer membrane of Escherichia coli.
|
| |
J Bacteriol,
189,
2667-2676.
|
 |
|
|
|
|
 |
O.Sharma,
E.Yamashita,
M.V.Zhalnina,
S.D.Zakharov,
K.A.Datsenko,
B.L.Wanner,
and
W.A.Cramer
(2007).
Structure of the complex of the colicin E2 R-domain and its BtuB receptor. The outer membrane colicin translocon.
|
| |
J Biol Chem,
282,
23163-23170.
|
 |
|
PDB code:
|
 |
|
|
|
|
|
 |
O.Sharma,
and
W.A.Cramer
(2007).
Minimum length requirement of the flexible N-terminal translocation subdomain of colicin E3.
|
| |
J Bacteriol,
189,
363-368.
|
 |
|
|
|
|
 |
S.K.Buchanan,
P.Lukacik,
S.Grizot,
R.Ghirlando,
M.M.Ali,
T.J.Barnard,
K.S.Jakes,
P.K.Kienker,
and
L.Esser
(2007).
Structure of colicin I receptor bound to the R-domain of colicin Ia: implications for protein import.
|
| |
EMBO J,
26,
2594-2604.
|
 |
|
PDB codes:
|
 |
|
|
|
|
|
 |
T.C.Pham,
R.W.Kriwacki,
and
A.L.Parrill
(2007).
Peptide design and structural characterization of a GPCR loop mimetic.
|
| |
Biopolymers,
86,
298-310.
|
 |
|
PDB code:
|
 |
|
|
|
|
|
 |
D.Duché,
A.Frenkian,
V.Prima,
and
R.Lloubès
(2006).
Release of immunity protein requires functional endonuclease colicin import machinery.
|
| |
J Bacteriol,
188,
8593-8600.
|
 |
|
|
|
|
 |
D.White,
A.A.Musse,
J.Wang,
E.London,
and
A.R.Merrill
(2006).
Toward elucidating the membrane topology of helix two of the colicin E1 channel domain.
|
| |
J Biol Chem,
281,
32375-32384.
|
 |
|
|
|
|
 |
S.J.Tilley,
and
H.R.Saibil
(2006).
The mechanism of pore formation by bacterial toxins.
|
| |
Curr Opin Struct Biol,
16,
230-236.
|
 |
|
|
|
|
 |
T.H.Davis,
and
R.M.Stroud
(2006).
Profile of Robert M. Stroud.
|
| |
Proc Natl Acad Sci U S A,
103,
5256-5258.
|
 |
|
|
|
|
 |
Z.Wu,
K.S.Jakes,
B.S.Samelson-Jones,
B.Lai,
G.Zhao,
E.London,
and
A.Finkelstein
(2006).
Protein translocation by bacterial toxin channels: a comparison of diphtheria toxin and colicin Ia.
|
| |
Biophys J,
91,
3249-3256.
|
 |
|
|
|
|
 |
C.Q.Morales,
J.Posada,
E.Macneale,
D.Franklin,
I.Rivas,
M.Bravo,
J.Minsavage,
R.E.Stall,
and
M.C.Whalen
(2005).
Functional analysis of the early chlorosis factor gene.
|
| |
Mol Plant Microbe Interact,
18,
477-486.
|
 |
|
|
|
|
 |
K.Möbius,
A.Savitsky,
C.Wegener,
M.Plato,
M.Fuchs,
A.Schnegg,
A.A.Dubinskii,
Y.A.Grishin,
I.A.Grigor'ev,
M.Kühn,
D.Duché,
H.Zimmermann,
and
H.J.Steinhoff
(2005).
Combining high-field EPR with site-directed spin labeling reveals unique information on proteins in action.
|
| |
Magn Reson Chem,
43,
S4.
|
 |
|
|
|
|
 |
N.G.Housden,
S.R.Loftus,
G.R.Moore,
R.James,
and
C.Kleanthous
(2005).
Cell entry mechanism of enzymatic bacterial colicins: porin recruitment and the thermodynamics of receptor binding.
|
| |
Proc Natl Acad Sci U S A,
102,
13849-13854.
|
 |
|
|
|
|
 |
N.Umadevi,
S.Kumar,
and
N.Narayana
(2005).
Crystallization and preliminary X-ray diffraction studies of the WW4 domain of the Nedd4-2 ubiquitin-protein ligase.
|
| |
Acta Crystallogr Sect F Struct Biol Cryst Commun,
61,
1084-1086.
|
 |
|
|
|
|
 |
S.L.Hands,
L.E.Holland,
M.Vankemmelbeke,
L.Fraser,
C.J.Macdonald,
G.R.Moore,
R.James,
and
C.N.Penfold
(2005).
Interactions of TolB with the translocation domain of colicin E9 require an extended TolB box.
|
| |
J Bacteriol,
187,
6733-6741.
|
 |
|
|
|
|
 |
Z.Shi,
K.F.Chak,
and
H.S.Yuan
(2005).
Identification of an essential cleavage site in ColE7 required for import and killing of cells.
|
| |
J Biol Chem,
280,
24663-24668.
|
 |
|
|
|
|
 |
G.Anderluh,
I.Gökçe,
and
J.H.Lakey
(2004).
A natively unfolded toxin domain uses its receptor as a folding template.
|
| |
J Biol Chem,
279,
22002-22009.
|
 |
|
|
|
|
 |
J.L.Hilsenbeck,
H.Park,
G.Chen,
B.Youn,
K.Postle,
and
C.Kang
(2004).
Crystal structure of the cytotoxic bacterial protein colicin B at 2.5 A resolution.
|
| |
Mol Microbiol,
51,
711-720.
|
 |
|
PDB code:
|
 |
|
|
|
|
|
 |
S.D.Zakharov,
V.Y.Eroukova,
T.I.Rokitskaya,
M.V.Zhalnina,
O.Sharma,
P.J.Loll,
H.I.Zgurskaya,
Y.N.Antonenko,
and
W.A.Cramer
(2004).
Colicin occlusion of OmpF and TolC channels: outer membrane translocons for colicin import.
|
| |
Biophys J,
87,
3901-3911.
|
 |
|
|
|
|
 |
S.L.Slatin,
D.Duché,
P.K.Kienker,
and
D.Baty
(2004).
Gating movements of colicin A and colicin Ia are different.
|
| |
J Membr Biol,
202,
73-83.
|
 |
|
|
|
|
 |
A.A.Musse,
and
A.R.Merrill
(2003).
The molecular basis for the pH-activation mechanism in the channel-forming bacterial colicin E1.
|
| |
J Biol Chem,
278,
24491-24499.
|
 |
|
|
|
|
 |
A.K.Mohanty,
C.M.Bishop,
T.C.Bishop,
W.C.Wimley,
and
M.C.Wiener
(2003).
Enzymatic E-colicins bind to their target receptor BtuB by presentation of a small binding epitope on a coiled-coil scaffold.
|
| |
J Biol Chem,
278,
40953-40958.
|
 |
|
|
|
|
 |
G.Anderluh,
Q.Hong,
R.Boetzel,
C.MacDonald,
G.R.Moore,
R.Virden,
and
J.H.Lakey
(2003).
Concerted folding and binding of a flexible colicin domain to its periplasmic receptor TolA.
|
| |
J Biol Chem,
278,
21860-21868.
|
 |
|
|
|
|
 |
G.Kurisu,
S.D.Zakharov,
M.V.Zhalnina,
S.Bano,
V.Y.Eroukova,
T.I.Rokitskaya,
Y.N.Antonenko,
M.C.Wiener,
and
W.A.Cramer
(2003).
The structure of BtuB with bound colicin E3 R-domain implies a translocon.
|
| |
Nat Struct Biol,
10,
948-954.
|
 |
|
PDB code:
|
 |
|
|
|
|
|
 |
P.K.Kienker,
K.S.Jakes,
R.O.Blaustein,
C.Miller,
and
A.Finkelstein
(2003).
Sizing the protein translocation pathway of colicin Ia channels.
|
| |
J Gen Physiol,
122,
161-176.
|
 |
|
|
|
|
 |
D.Cavard
(2002).
Assembly of colicin A in the outer membrane of producing Escherichia coli cells requires both phospholipase A and one porin, but phospholipase A is sufficient for secretion.
|
| |
J Bacteriol,
184,
3723-3733.
|
 |
|
|
|
|
 |
M.D.Purdy,
P.Ge,
J.Chen,
P.R.Selvin,
and
M.C.Wiener
(2002).
Thiol-reactive lanthanide chelates for phasing protein X-ray diffraction data.
|
| |
Acta Crystallogr D Biol Crystallogr,
58,
1111-1117.
|
 |
|
|
|
|
 |
S.D.Zakharov,
T.I.Rokitskaya,
V.L.Shapovalov,
Y.N.Antonenko,
and
W.A.Cramer
(2002).
Tuning the membrane surface potential for efficient toxin import.
|
| |
Proc Natl Acad Sci U S A,
99,
8654-8659.
|
 |
|
|
|
|
 |
S.L.Slatin,
A.Nardi,
K.S.Jakes,
D.Baty,
and
D.Duché
(2002).
Translocation of a functional protein by a voltage-dependent ion channel.
|
| |
Proc Natl Acad Sci U S A,
99,
1286-1291.
|
 |
|
|
|
|
 |
C.Kleanthous,
and
D.Walker
(2001).
Immunity proteins: enzyme inhibitors that avoid the active site.
|
| |
Trends Biochem Sci,
26,
624-631.
|
 |
|
|
|
|
 |
J.Walshaw,
and
D.N.Woolfson
(2001).
Open-and-shut cases in coiled-coil assembly: alpha-sheets and alpha-cylinders.
|
| |
Protein Sci,
10,
668-673.
|
 |
|
|
|
|
 |
K.C.Usher,
E.Ozkan,
K.H.Gardner,
and
J.Deisenhofer
(2001).
The plug domain of FepA, a TonB-dependent transport protein from Escherichia coli, binds its siderophore in the absence of the transmembrane barrel domain.
|
| |
Proc Natl Acad Sci U S A,
98,
10676-10681.
|
 |
|
|
|
|
 |
K.S.Jakes
(2001).
The importance of being cleaved: an essential step in killing by enzymatic colicins.
|
| |
Mol Cell,
8,
4-6.
|
 |
|
|
|
|
 |
L.Journet,
E.Bouveret,
A.Rigal,
R.Lloubes,
C.Lazdunski,
and
H.Bénédetti
(2001).
Import of colicins across the outer membrane of Escherichia coli involves multiple protein interactions in the periplasm.
|
| |
Mol Microbiol,
42,
331-344.
|
 |
|
|
|
|
 |
M.Lindeberg,
and
W.A.Cramer
(2001).
Identification of specific residues in colicin E1 involved in immunity protein recognition.
|
| |
J Bacteriol,
183,
2132-2136.
|
 |
|
|
|
|
 |
O.Carugo
(2001).
Detection of breaking points in helices linking separate domains.
|
| |
Proteins,
42,
390-398.
|
 |
|
|
|
|
 |
O.I.Loseva,
E.I.Tiktopulo,
V.D.Vasiliev,
A.D.Nikulin,
A.P.Dobritsa,
and
S.A.Potekhin
(2001).
Structure of Cry3A delta-endotoxin within phospholipid membranes.
|
| |
Biochemistry,
40,
14143-14151.
|
 |
|
|
|
|
 |
S.Soelaiman,
K.Jakes,
N.Wu,
C.Li,
and
M.Shoham
(2001).
Crystal structure of colicin E3: implications for cell entry and ribosome inactivation.
|
| |
Mol Cell,
8,
1053-1062.
|
 |
|
PDB code:
|
 |
|
|
|
|
|
 |
A.J.Wallace,
T.J.Stillman,
A.Atkins,
S.J.Jamieson,
P.A.Bullough,
J.Green,
and
P.J.Artymiuk
(2000).
E. coli hemolysin E (HlyE, ClyA, SheA): X-ray crystal structure of the toxin and observation of membrane pores by electron microscopy.
|
| |
Cell,
100,
265-276.
|
 |
|
PDB code:
|
 |
|
|
|
|
|
 |
L.G.Dover,
L.J.Evans,
S.L.Fridd,
G.Bainbridge,
E.M.Raggett,
and
J.H.Lakey
(2000).
Colicin pore-forming domains bind to Escherichia coli trimeric porins.
|
| |
Biochemistry,
39,
8632-8637.
|
 |
|
|
|
|
 |
M.C.Wiener
(2000).
Bacterial export takes its Tol.
|
| |
Structure,
8,
R171-R175.
|
 |
|
|
|
|
 |
P.K.Kienker,
K.S.Jakes,
and
A.Finkelstein
(2000).
Protein translocation across planar bilayers by the colicin Ia channel-forming domain: where will it end?
|
| |
J Gen Physiol,
116,
587-598.
|
 |
|
|
|
|
 |
S.Carr,
D.Walker,
R.James,
C.Kleanthous,
and
A.M.Hemmings
(2000).
Crystallization of the cytotoxic domain of a ribosome-inactivating colicin in complex with its immunity protein.
|
| |
Acta Crystallogr D Biol Crystallogr,
56,
1630-1633.
|
 |
|
|
|
|
 |
A.J.Pommer,
U.C.Kühlmann,
A.Cooper,
A.M.Hemmings,
G.R.Moore,
R.James,
and
C.Kleanthous
(1999).
Homing in on the role of transition metals in the HNH motif of colicin endonucleases.
|
| |
J Biol Chem,
274,
27153-27160.
|
 |
|
|
|
|
 |
H.Zhang,
and
N.V.Grishin
(1999).
The alpha-subunit of protein prenyltransferases is a member of the tetratricopeptide repeat family.
|
| |
Protein Sci,
8,
1658-1667.
|
 |
|
|
|
|
 |
J.Lubkowski,
F.Hennecke,
A.Plückthun,
and
A.Wlodawer
(1999).
Filamentous phage infection: crystal structure of g3p in complex with its coreceptor, the C-terminal domain of TolA.
|
| |
Structure,
7,
711-722.
|
 |
|
PDB code:
|
 |
|
|
|
|
|
 |
K.J.Oh,
L.Senzel,
R.J.Collier,
and
A.Finkelstein
(1999).
Translocation of the catalytic domain of diphtheria toxin across planar phospholipid bilayers by its own T domain.
|
| |
Proc Natl Acad Sci U S A,
96,
8467-8470.
|
 |
|
|
|
|
 |
L.SalwiĆski,
and
W.L.Hubbell
(1999).
Structure in the channel forming domain of colicin E1 bound to membranes: the 402-424 sequence.
|
| |
Protein Sci,
8,
562-572.
|
 |
|
|
|
|
 |
M.C.Tory,
and
A.R.Merrill
(1999).
Adventures in membrane protein topology. A study of the membrane-bound state of colicin E1.
|
| |
J Biol Chem,
274,
24539-24549.
|
 |
|
|
|
|
 |
T.P.Ko,
C.C.Liao,
W.Y.Ku,
K.F.Chak,
and
H.S.Yuan
(1999).
The crystal structure of the DNase domain of colicin E7 in complex with its inhibitor Im7 protein.
|
| |
Structure,
7,
91.
|
 |
|
PDB code:
|
 |
|
|
|
|
|
 |
U.C.Kühlmann,
C.Kleanthous,
R.James,
G.R.Moore,
and
A.M.Hemmings
(1999).
Preliminary X-ray crystallographic analysis of the complex between the DNAase domain of colicin E9 and its cognate immunity protein.
|
| |
Acta Crystallogr D Biol Crystallogr,
55,
256-259.
|
 |
|
|
|
|
 |
C.J.Lazdunski,
E.Bouveret,
A.Rigal,
L.Journet,
R.Lloubès,
and
H.Bénédetti
(1998).
Colicin import into Escherichia coli cells.
|
| |
J Bacteriol,
180,
4993-5002.
|
 |
|
|
|
|
 |
C.Kleanthous,
A.M.Hemmings,
G.R.Moore,
and
R.James
(1998).
Immunity proteins and their specificity for endonuclease colicins: telling right from wrong in protein-protein recognition.
|
| |
Mol Microbiol,
28,
227-233.
|
 |
|
|
|
|
 |
D.B.Lacy,
and
R.C.Stevens
(1998).
Unraveling the structures and modes of action of bacterial toxins.
|
| |
Curr Opin Struct Biol,
8,
778-784.
|
 |
|
|
|
|
 |
D.B.Lacy,
W.Tepp,
A.C.Cohen,
B.R.DasGupta,
and
R.C.Stevens
(1998).
Crystal structure of botulinum neurotoxin type A and implications for toxicity.
|
| |
Nat Struct Biol,
5,
898-902.
|
 |
|
PDB code:
|
 |
|
|
|
|
|
 |
E.Bouveret,
A.Rigal,
C.Lazdunski,
and
H.Bénédetti
(1998).
Distinct regions of the colicin A translocation domain are involved in the interaction with TolA and TolB proteins upon import into Escherichia coli.
|
| |
Mol Microbiol,
27,
143-157.
|
 |
|
|
|
|
 |
E.M.Raggett,
G.Bainbridge,
L.J.Evans,
A.Cooper,
and
J.H.Lakey
(1998).
Discovery of critical Tol A-binding residues in the bactericidal toxin colicin N: a biophysical approach.
|
| |
Mol Microbiol,
28,
1335-1343.
|
 |
|
|
|
|
 |
H.Pilsl,
D.Smajs,
and
V.Braun
(1998).
The tip of the hydrophobic hairpin of colicin U is dispensable for colicin U activity but is important for interaction with the immunity protein.
|
| |
J Bacteriol,
180,
4111-4115.
|
 |
|
|
|
|
 |
I.R.Vetter,
M.W.Parker,
A.D.Tucker,
J.H.Lakey,
F.Pattus,
and
D.Tsernoglou
(1998).
Crystal structure of a colicin N fragment suggests a model for toxicity.
|
| |
Structure,
6,
863-874.
|
 |
|
PDB code:
|
 |
|
|
|
|
|
 |
J.A.Mindell
(1998).
Swimming through the hydrophobic sea: new insights in protein translocation.
|
| |
Proc Natl Acad Sci U S A,
95,
4081-4083.
|
 |
|
|
|
|
 |
K.F.Chak,
S.Y.Hsieh,
C.C.Liao,
and
L.Kan
(1998).
Change of thermal stability of colicin E7 triggered by acidic pH suggests the existence of unfolded intermediate during the membrane-translocation phase.
|
| |
Proteins,
32,
17-25.
|
 |
|
|
|
|
 |
K.S.Jakes,
P.K.Kienker,
S.L.Slatin,
and
A.Finkelstein
(1998).
Translocation of inserted foreign epitopes by a channel-forming protein.
|
| |
Proc Natl Acad Sci U S A,
95,
4321-4326.
|
 |
|
|
|
|
 |
M.A.Riley
(1998).
Molecular mechanisms of bacteriocin evolution.
|
| |
Annu Rev Genet,
32,
255-278.
|
 |
|
|
|
|
 |
R.M.Stroud,
K.Reiling,
M.Wiener,
and
D.Freymann
(1998).
Ion-channel-forming colicins.
|
| |
Curr Opin Struct Biol,
8,
525-533.
|
 |
|
|
|
|
 |
S.D.Zakharov,
M.Lindeberg,
Y.Griko,
Z.Salamon,
G.Tollin,
F.G.Prendergast,
and
W.A.Cramer
(1998).
Membrane-bound state of the colicin E1 channel domain as an extended two-dimensional helical array.
|
| |
Proc Natl Acad Sci U S A,
95,
4282-4287.
|
 |
|
|
|
|
 |
C.Lesieur,
B.Vécsey-Semjén,
L.Abrami,
M.Fivaz,
and
F.Gisou van der Goot
(1997).
Membrane insertion: The strategies of toxins (review).
|
| |
Mol Membr Biol,
14,
45-64.
|
 |
|
|
|
|
 |
D.Smajs,
H.Pilsl,
and
V.Braun
(1997).
Colicin U, a novel colicin produced by Shigella boydii.
|
| |
J Bacteriol,
179,
4919-4928.
|
 |
|
|
|
|
 |
E.Gouaux
(1997).
Channel-forming toxins: tales of transformation.
|
| |
Curr Opin Struct Biol,
7,
566-573.
|
 |
|
|
|
|
 |
E.Gouaux
(1997).
The long and short of colicin action: the molecular basis for the biological activity of channel-forming colicins.
|
| |
Structure,
5,
313-317.
|
 |
|
|
|
|
 |
L.Riechmann,
and
P.Holliger
(1997).
The C-terminal domain of TolA is the coreceptor for filamentous phage infection of E. coli.
|
| |
Cell,
90,
351-360.
|
 |
|
|
|
|
 |
M.A.Payne,
J.D.Igo,
Z.Cao,
S.B.Foster,
S.M.Newton,
and
P.E.Klebba
(1997).
Biphasic binding kinetics between FepA and its ligands.
|
| |
J Biol Chem,
272,
21950-21955.
|
 |
|
|
|
|
 |
M.W.Parker
(1997).
More than one way to make a hole.
|
| |
Nat Struct Biol,
4,
250-253.
|
 |
|
|
|
|
 |
P.Elkins,
A.Bunker,
W.A.Cramer,
and
C.V.Stauffacher
(1997).
A mechanism for toxin insertion into membranes is suggested by the crystal structure of the channel-forming domain of colicin E1.
|
| |
Structure,
5,
443-458.
|
 |
|
PDB code:
|
 |
|
|
|
|
|
 |
P.K.Kienker,
X.Qiu,
S.L.Slatin,
A.Finkelstein,
and
K.S.Jakes
(1997).
Transmembrane insertion of the colicin Ia hydrophobic hairpin.
|
| |
J Membr Biol,
157,
27-37.
|
 |
|
 |
 |
|
The most recent references are shown first.
Citation data come partly from CiteXplore and partly
from an automated harvesting procedure. Note that this is likely to be
only a partial list as not all journals are covered by
either method. However, we are continually building up the citation data
so more and more references will be included with time.
Where a reference describes a PDB structure, the PDB
code is
shown on the right.
|
');
}
}
 |