 |
PDBsum entry 1cel
|
|
|
|
 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
 |
|
|
|
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
|
|
|
|
|
|
|
|
|
|
Hydrolase(o-glycosyl)
|
PDB id
|
|
|
|
1cel
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
 |
Contents |
 |
|
|
|
|
|
|
|
|
|
|
|
|
|
* Residue conservation analysis
|
|
|
|
 |
|
|
 |
 |
 |
 |
Enzyme class:
|
 |
E.C.3.2.1.91
- cellulose 1,4-beta-cellobiosidase (non-reducing end).
|
|
 |
 |
 |
 |
 |
Reaction:
|
 |
Hydrolysis of 1,4-beta-D-glucosidic linkages in cellulose and cellotetraose, releasing cellobiose from the non-reducing ends of the chains.
|
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
|
|
|
| |
|
DOI no:
|
Science
265:524-528
(1994)
|
|
PubMed id:
|
|
|
|
|
| |
|
The three-dimensional crystal structure of the catalytic core of cellobiohydrolase I from Trichoderma reesei.
|
|
C.Divne,
J.Ståhlberg,
T.Reinikainen,
L.Ruohonen,
G.Pettersson,
J.K.Knowles,
T.T.Teeri,
T.A.Jones.
|
|
|
|
| |
ABSTRACT
|
|
|
| |
|
Cellulose is the major polysaccharide of plants where it plays a predominantly
structural role. A variety of highly specialized microorganisms have evolved to
produce enzymes that either synergistically or in complexes can carry out the
complete hydrolysis of cellulose. The structure of the major cellobiohydrolase,
CBHI, of the potent cellulolytic fungus Trichoderma reesei has been determined
and refined to 1.8 angstrom resolution. The molecule contains a 40 angstrom long
active site tunnel that may account for many of the previously poorly understood
macroscopic properties of the enzyme and its interaction with solid cellulose.
The active site residues were identified by solving the structure of the enzyme
complexed with an oligosaccharide, o-iodobenzyl-1-thio-beta-cellobioside. The
three-dimensional structure is very similar to a family of bacterial
beta-glucanases with the main-chain topology of the plant legume lectins.
|
|
|
|
|
|
|
 |
 |
|
 |
 |
 |
 |
 |
 |
 |
 |
 |
|
Literature references that cite this PDB file's key reference
|
|
 |
| |
PubMed id
|
 |
Reference
|
 |
|
|
|
 |
A.C.Tolonen,
W.Haas,
A.C.Chilaka,
J.Aach,
S.P.Gygi,
and
G.M.Church
(2011).
Proteome-wide systems analysis of a cellulosic biofuel-producing microbe.
|
| |
Mol Syst Biol,
7,
461.
|
 |
|
|
|
|
 |
H.Suzuki,
K.Igarashi,
and
M.Samejima
(2010).
Cellotriose and cellotetraose as inducers of the genes encoding cellobiohydrolases in the basidiomycete Phanerochaete chrysosporium.
|
| |
Appl Environ Microbiol,
76,
6164-6170.
|
 |
|
|
|
|
 |
J.Jalak,
and
P.Väljamäe
(2010).
Mechanism of initial rapid rate retardation in cellobiohydrolase catalyzed cellulose hydrolysis.
|
| |
Biotechnol Bioeng,
106,
871-883.
|
 |
|
|
|
|
 |
J.Wohlert,
U.Schnupf,
and
J.W.Brady
(2010).
Free energy surfaces for the interaction of D-glucose with planar aromatic groups in aqueous solution.
|
| |
J Chem Phys,
133,
155103.
|
 |
|
|
|
|
 |
L.J.Yin,
S.T.Jiang,
S.H.Pon,
and
H.H.Lin
(2010).
Hydrolysis of Chlorella by Cellulomonas sp. YJ5 cellulases and its biofunctional properties.
|
| |
J Food Sci,
75,
H317-H323.
|
 |
|
|
|
|
 |
N.Todaka,
T.Inoue,
K.Saita,
M.Ohkuma,
C.A.Nalepa,
M.Lenz,
T.Kudo,
and
S.Moriya
(2010).
Phylogenetic analysis of cellulolytic enzyme genes from representative lineages of termites and a related cockroach.
|
| |
PLoS One,
5,
e8636.
|
 |
|
|
|
|
 |
P.J.Turnbaugh,
B.Henrissat,
and
J.I.Gordon
(2010).
Viewing the human microbiome through three-dimensional glasses: integrating structural and functional studies to better define the properties of myriad carbohydrate-active enzymes.
|
| |
Acta Crystallogr Sect F Struct Biol Cryst Commun,
66,
1261-1264.
|
 |
|
|
|
|
 |
S.E.Lantz,
F.Goedegebuur,
R.Hommes,
T.Kaper,
B.R.Kelemen,
C.Mitchinson,
L.Wallace,
J.Ståhlberg,
and
E.A.Larenas
(2010).
Hypocrea jecorina CEL6A protein engineering.
|
| |
Biotechnol Biofuels,
3,
20.
|
 |
|
|
|
|
 |
S.P.Voutilainen,
P.G.Murray,
M.G.Tuohy,
and
A.Koivula
(2010).
Expression of Talaromyces emersonii cellobiohydrolase Cel7A in Saccharomyces cerevisiae and rational mutagenesis to improve its thermostability and activity.
|
| |
Protein Eng Des Sel,
23,
69-79.
|
 |
|
|
|
|
 |
B.Mertz,
X.Gu,
and
P.J.Reilly
(2009).
Analysis of functional divergence within two structurally related glycoside hydrolase families.
|
| |
Biopolymers,
91,
478-495.
|
 |
|
|
|
|
 |
C.L.Ting,
D.E.Makarov,
and
Z.G.Wang
(2009).
A kinetic model for the enzymatic action of cellulase.
|
| |
J Phys Chem B,
113,
4970-4977.
|
 |
|
|
|
|
 |
H.Zakariassen,
B.B.Aam,
S.J.Horn,
K.M.Vårum,
M.Sørlie,
and
V.G.Eijsink
(2009).
Aromatic residues in the catalytic center of chitinase A from Serratia marcescens affect processivity, enzyme activity, and biomass converting efficiency.
|
| |
J Biol Chem,
284,
10610-10617.
|
 |
|
|
|
|
 |
M.Dashtban,
H.Schraft,
and
W.Qin
(2009).
Fungal bioconversion of lignocellulosic residues; opportunities & perspectives.
|
| |
Int J Biol Sci,
5,
578-595.
|
 |
|
|
|
|
 |
M.Maki,
K.T.Leung,
and
W.Qin
(2009).
The prospects of cellulase-producing bacteria for the bioconversion of lignocellulosic biomass.
|
| |
Int J Biol Sci,
5,
500-516.
|
 |
|
|
|
|
 |
M.Yoshida,
K.Sato,
S.Kaneko,
and
K.Fukuda
(2009).
Cloning and transcript analysis of multiple genes encoding the glycoside hydrolase family 6 enzyme from Coprinopsis cinerea.
|
| |
Biosci Biotechnol Biochem,
73,
67-73.
|
 |
|
|
|
|
 |
R.Suzuki,
Z.Fujimoto,
S.Ito,
S.Kawahara,
S.Kaneko,
K.Taira,
T.Hasegawa,
and
A.Kuno
(2009).
Crystallographic snapshots of an entire reaction cycle for a retaining xylanase from Streptomyces olivaceoviridis E-86.
|
| |
J Biochem,
146,
61-70.
|
 |
|
PDB codes:
|
 |
|
|
|
|
|
 |
S.P.Voutilainen,
H.Boer,
M.Alapuranen,
J.Jänis,
J.Vehmaanperä,
and
A.Koivula
(2009).
Improving the thermostability and activity of Melanocarpus albomyces cellobiohydrolase Cel7B.
|
| |
Appl Microbiol Biotechnol,
83,
261-272.
|
 |
|
|
|
|
 |
A.Viegas,
N.F.Brás,
N.M.Cerqueira,
P.A.Fernandes,
J.A.Prates,
C.M.Fontes,
M.Bruix,
M.J.Romão,
A.L.Carvalho,
M.J.Ramos,
A.L.Macedo,
and
E.J.Cabrita
(2008).
Molecular determinants of ligand specificity in family 11 carbohydrate binding modules: an NMR, X-ray crystallography and computational chemistry approach.
|
| |
FEBS J,
275,
2524-2535.
|
 |
|
|
|
|
 |
D.Martinez,
R.M.Berka,
B.Henrissat,
M.Saloheimo,
M.Arvas,
S.E.Baker,
J.Chapman,
O.Chertkov,
P.M.Coutinho,
D.Cullen,
E.G.Danchin,
I.V.Grigoriev,
P.Harris,
M.Jackson,
C.P.Kubicek,
C.S.Han,
I.Ho,
L.F.Larrondo,
A.L.de Leon,
J.K.Magnuson,
S.Merino,
M.Misra,
B.Nelson,
N.Putnam,
B.Robbertse,
A.A.Salamov,
M.Schmoll,
A.Terry,
N.Thayer,
A.Westerholm-Parvinen,
C.L.Schoch,
J.Yao,
R.Barabote,
R.Barbote,
M.A.Nelson,
C.Detter,
D.Bruce,
C.R.Kuske,
G.Xie,
P.Richardson,
D.S.Rokhsar,
S.M.Lucas,
E.M.Rubin,
N.Dunn-Coleman,
M.Ward,
and
T.S.Brettin
(2008).
Genome sequencing and analysis of the biomass-degrading fungus Trichoderma reesei (syn. Hypocrea jecorina).
|
| |
Nat Biotechnol,
26,
553-560.
|
 |
|
|
|
|
 |
I.Herpoel-Gimbert,
A.Margeot,
A.Dolla,
G.Jan,
D.Molle,
S.Lignon,
H.Mathis,
J.C.Sigoillot,
F.Monot,
and
M.Asther
(2008).
Comparative secretome analyses of two Trichoderma reesei RUT-C30 and CL847 hypersecretory strains.
|
| |
Biotechnol Biofuels,
1,
18.
|
 |
|
|
|
|
 |
T.Parkkinen,
A.Koivula,
J.Vehmaanperä,
and
J.Rouvinen
(2008).
Crystal structures of Melanocarpus albomyces cellobiohydrolase Cel7B in complex with cello-oligomers show high flexibility in the substrate binding.
|
| |
Protein Sci,
17,
1383-1394.
|
 |
|
PDB codes:
|
 |
|
|
|
|
|
 |
K.Igarashi,
M.Wada,
and
M.Samejima
(2007).
Activation of crystalline cellulose to cellulose III(I) results in efficient hydrolysis by cellobiohydrolase.
|
| |
FEBS J,
274,
1785-1792.
|
 |
|
|
|
|
 |
M.Zeng,
N.S.Mosier,
C.P.Huang,
D.M.Sherman,
and
M.R.Ladisch
(2007).
Microscopic examination of changes of plant cell structure in corn stover due to hot water pretreatment and enzymatic hydrolysis.
|
| |
Biotechnol Bioeng,
97,
265-278.
|
 |
|
|
|
|
 |
T.Parkkinen,
A.Koivula,
J.Vehmaanperä,
and
J.Rouvinen
(2007).
Preliminary X-ray analysis of cellobiohydrolase Cel7B from Melanocarpus albomyces.
|
| |
Acta Crystallogr Sect F Struct Biol Cryst Commun,
63,
754-757.
|
 |
|
|
|
|
 |
W.Ubhayasekera,
C.M.Tang,
S.W.Ho,
G.Berglund,
T.Bergfors,
M.L.Chye,
and
S.L.Mowbray
(2007).
Crystal structures of a family 19 chitinase from Brassica juncea show flexibility of binding cleft loops.
|
| |
FEBS J,
274,
3695-3703.
|
 |
|
PDB codes:
|
 |
|
|
|
|
|
 |
A.Fagerström,
M.Nilsson,
U.Berg,
and
R.Isaksson
(2006).
New propranolol analogues: binding and chiral discrimination by cellobiohydrolase Cel7A.
|
| |
Org Biomol Chem,
4,
3067-3076.
|
 |
|
|
|
|
 |
G.Michel,
P.Nyval-Collen,
T.Barbeyron,
M.Czjzek,
and
W.Helbert
(2006).
Bioconversion of red seaweed galactans: a focus on bacterial agarases and carrageenases.
|
| |
Appl Microbiol Biotechnol,
71,
23-33.
|
 |
|
|
|
|
 |
H.Deng,
G.Chen,
W.Yang,
and
J.J.Yang
(2006).
Predicting calcium-binding sites in proteins - a graph theory and geometry approach.
|
| |
Proteins,
64,
34-42.
|
 |
|
|
|
|
 |
K.Igarashi,
M.Wada,
R.Hori,
and
M.Samejima
(2006).
Surface density of cellobiohydrolase on crystalline celluloses. A critical parameter to evaluate enzymatic kinetics at a solid-liquid interface.
|
| |
FEBS J,
273,
2869-2878.
|
 |
|
|
|
|
 |
S.J.Horn,
P.Sikorski,
J.B.Cederkvist,
G.Vaaje-Kolstad,
M.Sørlie,
B.Synstad,
G.Vriend,
K.M.Vårum,
and
V.G.Eijsink
(2006).
Costs and benefits of processivity in enzymatic degradation of recalcitrant polysaccharides.
|
| |
Proc Natl Acad Sci U S A,
103,
18089-18094.
|
 |
|
|
|
|
 |
A.Sørbotten,
S.J.Horn,
V.G.Eijsink,
and
K.M.Vårum
(2005).
Degradation of chitosans with chitinase B from Serratia marcescens. Production of chito-oligosaccharides and insight into enzyme processivity.
|
| |
FEBS J,
272,
538-549.
|
 |
|
|
|
|
 |
C.Mulakala,
and
P.J.Reilly
(2005).
Hypocrea jecorina (Trichoderma reesei) Cel7A as a molecular machine: A docking study.
|
| |
Proteins,
60,
598-605.
|
 |
|
|
|
|
 |
C.Mulakala,
and
P.J.Reilly
(2005).
Force calculations in automated docking: enzyme-substrate interactions in Fusarium oxysporum Cel7B.
|
| |
Proteins,
61,
590-596.
|
 |
|
|
|
|
 |
M.R.Proctor,
E.J.Taylor,
D.Nurizzo,
J.P.Turkenburg,
R.M.Lloyd,
M.Vardakou,
G.J.Davies,
and
H.J.Gilbert
(2005).
Tailored catalysts for plant cell-wall degradation: redesigning the exo/endo preference of Cellvibrio japonicus arabinanase 43A.
|
| |
Proc Natl Acad Sci U S A,
102,
2697-2702.
|
 |
|
PDB code:
|
 |
|
|
|
|
|
 |
W.Ubhayasekera,
I.G.Muñoz,
A.Vasella,
J.Ståhlberg,
and
S.L.Mowbray
(2005).
Structures of Phanerochaete chrysosporium Cel7D in complex with product and inhibitors.
|
| |
FEBS J,
272,
1952-1964.
|
 |
|
PDB codes:
|
 |
|
|
|
|
|
 |
Y.H.Zhang,
and
L.R.Lynd
(2005).
Cellulose utilization by Clostridium thermocellum: bioenergetics and hydrolysis product assimilation.
|
| |
Proc Natl Acad Sci U S A,
102,
7321-7325.
|
 |
|
|
|
|
 |
K.De Vriendt,
K.Sandra,
T.Desmet,
W.Nerinckx,
J.Van Beeumen,
and
B.Devreese
(2004).
Evaluation of automated nano-electrospray mass spectrometry in the determination of non-covalent protein-ligand complexes.
|
| |
Rapid Commun Mass Spectrom,
18,
3061-3067.
|
 |
|
|
|
|
 |
L.Hildén,
and
G.Johansson
(2004).
Recent developments on cellulases and carbohydrate-binding modules with cellulose affinity.
|
| |
Biotechnol Lett,
26,
1683-1693.
|
 |
|
|
|
|
 |
M.Gruno,
P.Väljamäe,
G.Pettersson,
and
G.Johansson
(2004).
Inhibition of the Trichoderma reesei cellulases by cellobiose is strongly dependent on the nature of the substrate.
|
| |
Biotechnol Bioeng,
86,
503-511.
|
 |
|
|
|
|
 |
N.S.Mosier,
J.J.Wilker,
and
M.R.Ladisch
(2004).
Rapid chromatography for evaluating adsorption characteristics of cellulase binding domain mimetics.
|
| |
Biotechnol Bioeng,
86,
756-764.
|
 |
|
|
|
|
 |
T.Eriksson,
I.Stals,
A.Collén,
F.Tjerneld,
M.Claeyssens,
H.Stålbrand,
and
H.Brumer
(2004).
Heterogeneity of homologously expressed Hypocrea jecorina (Trichoderma reesei) Cel7B catalytic module.
|
| |
Eur J Biochem,
271,
1266-1276.
|
 |
|
|
|
|
 |
Y.H.Zhang,
and
L.R.Lynd
(2004).
Toward an aggregated understanding of enzymatic hydrolysis of cellulose: noncomplexed cellulase systems.
|
| |
Biotechnol Bioeng,
88,
797-824.
|
 |
|
|
|
|
 |
A.Grassick,
G.Birrane,
M.Tuohy,
P.Murray,
and
T.Higgins
(2003).
Crystallization and preliminary crystallographic analysis of the catalytic domain cellobiohydrolase I from Talaromyces emersonii.
|
| |
Acta Crystallogr D Biol Crystallogr,
59,
1283-1284.
|
 |
|
|
|
|
 |
A.M.Larsson,
R.Andersson,
J.Ståhlberg,
L.Kenne,
and
T.A.Jones
(2003).
Dextranase from Penicillium minioluteum: reaction course, crystal structure, and product complex.
|
| |
Structure,
11,
1111-1121.
|
 |
|
PDB codes:
|
 |
|
|
|
|
|
 |
D.Yasokawa,
T.Shimizu,
R.Nakagawa,
T.Ikeda,
and
K.Nagashima
(2003).
Cloning, sequencing, and heterologous expression of a cellobiohydrolase cDNA from the basidiomycete Corticium rolfsii.
|
| |
Biosci Biotechnol Biochem,
67,
1319-1326.
|
 |
|
|
|
|
 |
H.Boer,
and
A.Koivula
(2003).
The relationship between thermal stability and pH optimum studied with wild-type and mutant Trichoderma reesei cellobiohydrolase Cel7A.
|
| |
Eur J Biochem,
270,
841-848.
|
 |
|
|
|
|
 |
H.J.Bae,
G.Turcotte,
H.Chamberland,
S.Karita,
and
L.P.Vézina
(2003).
A comparative study between an endoglucanase IV and its fused protein complex Cel5-CBM6.
|
| |
FEMS Microbiol Lett,
227,
175-181.
|
 |
|
|
|
|
 |
H.Jung,
D.B.Wilson,
and
L.P.Walker
(2003).
Binding and reversibility of Thermobifida fusca Cel5A, Cel6B, and Cel48A and their respective catalytic domains to bacterial microcrystalline cellulose.
|
| |
Biotechnol Bioeng,
84,
151-159.
|
 |
|
|
|
|
 |
I.G.Muñoz,
S.L.Mowbray,
and
J.Ståhlberg
(2003).
The catalytic module of Cel7D from Phanerochaete chrysosporium as a chiral selector: structural studies of its complex with the beta blocker (R)-propranolol.
|
| |
Acta Crystallogr D Biol Crystallogr,
59,
637-643.
|
 |
|
PDB code:
|
 |
|
|
|
|
|
 |
P.Johansson,
S.Denman,
H.Brumer,
A.M.Kallas,
H.Henriksson,
T.Bergfors,
T.T.Teeri,
and
T.A.Jones
(2003).
Crystallization and preliminary X-ray analysis of a xyloglucan endotransglycosylase from Populus tremula x tremuloides.
|
| |
Acta Crystallogr D Biol Crystallogr,
59,
535-537.
|
 |
|
|
|
|
 |
P.Väljamäe,
K.Kipper,
G.Pettersson,
and
G.Johansson
(2003).
Synergistic cellulose hydrolysis can be described in terms of fractal-like kinetics.
|
| |
Biotechnol Bioeng,
84,
254-257.
|
 |
|
|
|
|
 |
G.Parsiegla,
A.Belaïch,
J.P.Belaïch,
and
R.Haser
(2002).
Crystal structure of the cellulase Cel9M enlightens structure/function relationships of the variable catalytic modules in glycoside hydrolases.
|
| |
Biochemistry,
41,
11134-11142.
|
 |
|
PDB codes:
|
 |
|
|
|
|
|
 |
I.Kwon,
K.Ekino,
T.Oka,
M.Goto,
and
K.Furukawa
(2002).
Effects of amino acid alterations on the transglycosylation reaction of endoglucanase I from Trichoderma viride HK-75.
|
| |
Biosci Biotechnol Biochem,
66,
110-116.
|
 |
|
|
|
|
 |
L.R.Lynd,
P.J.Weimer,
W.H.van Zyl,
and
I.S.Pretorius
(2002).
Microbial cellulose utilization: fundamentals and biotechnology.
|
| |
Microbiol Mol Biol Rev,
66,
506.
|
 |
|
|
|
|
 |
N.S.Mosier,
C.M.Ladisch,
and
M.R.Ladisch
(2002).
Characterization of acid catalytic domains for cellulose hydrolysis and glucose degradation.
|
| |
Biotechnol Bioeng,
79,
610-618.
|
 |
|
|
|
|
 |
T.J.Oldfield
(2002).
Data mining the protein data bank: residue interactions.
|
| |
Proteins,
49,
510-528.
|
 |
|
|
|
|
 |
C.Boisset,
C.Pétrequin,
H.Chanzy,
B.Henrissat,
and
M.Schülein
(2001).
Optimized mixtures of recombinant Humicola insolens cellulases for the biodegradation of crystalline cellulose.
|
| |
Biotechnol Bioeng,
72,
339-345.
|
 |
|
|
|
|
 |
C.C.Lee,
D.W.Wong,
and
G.H.Robertson
(2001).
Cloning and characterization of two cellulase genes from Lentinula edodes.
|
| |
FEMS Microbiol Lett,
205,
355-360.
|
 |
|
|
|
|
 |
G.Michel,
L.Chantalat,
E.Duee,
T.Barbeyron,
B.Henrissat,
B.Kloareg,
and
O.Dideberg
(2001).
The kappa-carrageenase of P. carrageenovora features a tunnel-shaped active site: a novel insight in the evolution of Clan-B glycoside hydrolases.
|
| |
Structure,
9,
513-525.
|
 |
|
PDB code:
|
 |
|
|
|
|
|
 |
J.Karlsson,
M.Saloheimo,
M.Siika-Aho,
M.Tenkanen,
M.Penttilä,
and
F.Tjerneld
(2001).
Homologous expression and characterization of Cel61A (EG IV) of Trichoderma reesei.
|
| |
Eur J Biochem,
268,
6498-6507.
|
 |
|
|
|
|
 |
C.Boisset,
C.Fraschini,
M.Schülein,
B.Henrissat,
and
H.Chanzy
(2000).
Imaging the enzymatic digestion of bacterial cellulose ribbons reveals the endo character of the cellobiohydrolase Cel6A from Humicola insolens and its mode of synergy with cellobiohydrolase Cel7A.
|
| |
Appl Environ Microbiol,
66,
1444-1452.
|
 |
|
|
|
|
 |
G.J.Kleywegt
(2000).
Validation of protein crystal structures.
|
| |
Acta Crystallogr D Biol Crystallogr,
56,
249-265.
|
 |
|
|
|
|
 |
G.Parsiegla,
C.Reverbel-Leroy,
C.Tardif,
J.P.Belaich,
H.Driguez,
and
R.Haser
(2000).
Crystal structures of the cellulase Cel48F in complex with inhibitors and substrates give insights into its processive action.
|
| |
Biochemistry,
39,
11238-11246.
|
 |
|
PDB codes:
|
 |
|
|
|
|
|
 |
H.Boer,
T.T.Teeri,
and
A.Koivula
(2000).
Characterization of Trichoderma reesei cellobiohydrolase Cel7A secreted from Pichia pastoris using two different promoters.
|
| |
Biotechnol Bioeng,
69,
486-494.
|
 |
|
|
|
|
 |
Q.Zhang,
H.Zou,
X.Chen,
H.Wang,
Q.Luo,
and
J.Ni
(2000).
Synthesis and characteristics of the human serum albumin-triazine chiral stationary phase.
|
| |
Chirality,
12,
714-719.
|
 |
|
|
|
|
 |
S.Zhang,
D.C.Irwin,
and
D.B.Wilson
(2000).
Site-directed mutation of noncatalytic residues of Thermobifida fusca exocellulase Cel6B.
|
| |
Eur J Biochem,
267,
3101-3115.
|
 |
|
|
|
|
 |
Z.Marković-Housley,
G.Miglierini,
L.Soldatova,
P.J.Rizkallah,
U.Müller,
and
T.Schirmer
(2000).
Crystal structure of hyaluronidase, a major allergen of bee venom.
|
| |
Structure,
8,
1025-1035.
|
 |
|
PDB codes:
|
 |
|
|
|
|
|
 |
G.Henriksson,
A.Nutt,
H.Henriksson,
B.Pettersson,
J.Ståhlberg,
G.Johansson,
and
G.Pettersson
(1999).
Endoglucanase 28 (Cel12A), a new Phanerochaete chrysosporium cellulase.
|
| |
Eur J Biochem,
259,
88-95.
|
 |
|
|
|
|
 |
G.J.Kleywegt,
and
T.A.Jones
(1999).
Software for handling macromolecular envelopes.
|
| |
Acta Crystallogr D Biol Crystallogr,
55,
941-944.
|
 |
|
|
|
|
 |
G.Rudenko,
T.Nguyen,
Y.Chelliah,
T.C.Südhof,
and
J.Deisenhofer
(1999).
The structure of the ligand-binding domain of neurexin Ibeta: regulation of LNS domain function by alternative splicing.
|
| |
Cell,
99,
93.
|
 |
|
PDB code:
|
 |
|
|
|
|
|
 |
H.Palonen,
M.Tenkanen,
and
M.Linder
(1999).
Dynamic interaction of Trichoderma reesei cellobiohydrolases Cel6A and Cel7A and cellulose at equilibrium and during hydrolysis.
|
| |
Appl Environ Microbiol,
65,
5229-5233.
|
 |
|
|
|
|
 |
J.Zou,
G.J.Kleywegt,
J.Ståhlberg,
H.Driguez,
W.Nerinckx,
M.Claeyssens,
A.Koivula,
T.T.Teeri,
and
T.A.Jones
(1999).
Crystallographic evidence for substrate ring distortion and protein conformational changes during catalysis in cellobiohydrolase Ce16A from trichoderma reesei.
|
| |
Structure,
7,
1035-1045.
|
 |
|
PDB codes:
|
 |
|
|
|
|
|
 |
M.Hedeland,
S.Holmin,
M.Nygård,
and
C.Pettersson
(1999).
Chromatographic evaluation of structure selective and enantioselective retention of amines and acids on cellobiohydrolase I wild type and its mutant D214N.
|
| |
J Chromatogr A,
864,
1.
|
 |
|
|
|
|
 |
P.Väljamäe,
V.Sild,
A.Nutt,
G.Pettersson,
and
G.Johansson
(1999).
Acid hydrolysis of bacterial cellulose reveals different modes of synergistic action between cellobiohydrolase I and endoglucanase I.
|
| |
Eur J Biochem,
266,
327-334.
|
 |
|
|
|
|
 |
G.J.Kleywegt,
and
T.A.Jones
(1998).
Databases in protein crystallography.
|
| |
Acta Crystallogr D Biol Crystallogr,
54,
1119-1131.
|
 |
|
|
|
|
 |
G.Parsiegla,
M.Juy,
C.Reverbel-Leroy,
C.Tardif,
J.P.Belaïch,
H.Driguez,
and
R.Haser
(1998).
The crystal structure of the processive endocellulase CelF of Clostridium cellulolyticum in complex with a thiooligosaccharide inhibitor at 2.0 A resolution.
|
| |
EMBO J,
17,
5551-5562.
|
 |
|
PDB code:
|
 |
|
|
|
|
|
 |
J.Medve,
J.Karlsson,
D.Lee,
and
F.Tjerneld
(1998).
Hydrolysis of microcrystalline cellulose by cellobiohydrolase I and endoglucanase II from Trichoderma reesei: adsorption, sugar production pattern, and synergism of the enzymes.
|
| |
Biotechnol Bioeng,
59,
621-634.
|
 |
|
|
|
|
 |
T.Pons,
G.Chinea,
O.Olmea,
A.Beldarraín,
H.Roca,
G.Padrón,
and
A.Valencia
(1998).
Structural model of Dex protein from Penicillium minioluteum and its implications in the mechanism of catalysis.
|
| |
Proteins,
31,
345-354.
|
 |
|
|
|
|
 |
C.Malet,
and
A.Planas
(1997).
Mechanism of Bacillus 1,3-1,4-beta-D-glucan 4-glucanohydrolases: kinetics and pH studies with 4-methylumbelliferyl beta-D-glucan oligosaccharides.
|
| |
Biochemistry,
36,
13838-13848.
|
 |
|
|
|
|
 |
F.A.Quiocho,
J.C.Spurlino,
and
L.E.Rodseth
(1997).
Extensive features of tight oligosaccharide binding revealed in high-resolution structures of the maltodextrin transport/chemosensory receptor.
|
| |
Structure,
5,
997.
|
 |
|
PDB codes:
|
 |
|
|
|
|
|
 |
G.Sulzenbacher,
M.Schülein,
and
G.J.Davies
(1997).
Structure of the endoglucanase I from Fusarium oxysporum: native, cellobiose, and 3,4-epoxybutyl beta-D-cellobioside-inhibited forms, at 2.3 A resolution.
|
| |
Biochemistry,
36,
5902-5911.
|
 |
|
PDB codes:
|
 |
|
|
|
|
|
 |
K.Klarskov,
K.Piens,
J.Ståhlberg,
P.B.Høj,
J.V.Beeumen,
and
M.Claeyssens
(1997).
Cellobiohydrolase I from Trichoderma reesei: identification of an active-site nucleophile and additional information on sequence including the glycosylation pattern of the core protein.
|
| |
Carbohydr Res,
304,
143-154.
|
 |
|
|
|
|
 |
L.F.Mackenzie,
G.J.Davies,
M.Schülein,
and
S.G.Withers
(1997).
Identification of the catalytic nucleophile of endoglucanase I from Fusarium oxysporum by mass spectrometry.
|
| |
Biochemistry,
36,
5893-5901.
|
 |
|
|
|
|
 |
M.E.Himmel,
P.A.Karplus,
J.Sakon,
W.S.Adney,
J.O.Baker,
and
S.R.Thomas
(1997).
Polysaccharide hydrolase folds diversity of structure and convergence of function.
|
| |
Appl Biochem Biotechnol,
63,
315-325.
|
 |
|
|
|
|
 |
M.K.Bhat,
and
S.Bhat
(1997).
Cellulose degrading enzymes and their potential industrial applications.
|
| |
Biotechnol Adv,
15,
583-620.
|
 |
|
|
|
|
 |
M.L.Mattinen,
M.Kontteli,
J.Kerovuo,
M.Linder,
A.Annila,
G.Lindeberg,
T.Reinikainen,
and
T.Drakenberg
(1997).
Three-dimensional structures of three engineered cellulose-binding domains of cellobiohydrolase I from Trichoderma reesei.
|
| |
Protein Sci,
6,
294-303.
|
 |
|
PDB codes:
|
 |
|
|
|
|
|
 |
M.Saloheimo,
T.Nakari-Setälä,
M.Tenkanen,
and
M.Penttilä
(1997).
cDNA cloning of a Trichoderma reesei cellulase and demonstration of endoglucanase activity by expression in yeast.
|
| |
Eur J Biochem,
249,
584-591.
|
 |
|
|
|
|
 |
S.Nilsson,
L.Schweitz,
and
M.Petersson
(1997).
Three approaches to enantiomer separation of beta-adrenergic antagonists by capillary electrochromatography.
|
| |
Electrophoresis,
18,
884-890.
|
 |
|
|
|
|
 |
U.Müller,
K.B.Tenberge,
B.Oeser,
and
P.Tudzynski
(1997).
Cel1, probably encoding a cellobiohydrolase lacking the substrate binding domain, is expressed in the initial infection phase of Claviceps purpurea on Secale cereale.
|
| |
Mol Plant Microbe Interact,
10,
268-279.
|
 |
|
|
|
|
 |
B.K.Barr,
Y.L.Hsieh,
B.Ganem,
and
D.B.Wilson
(1996).
Identification of two functionally different classes of exocellulases.
|
| |
Biochemistry,
35,
586-592.
|
 |
|
|
|
|
 |
G.J.Kleywegt,
and
T.A.Jones
(1996).
Phi/psi-chology: Ramachandran revisited.
|
| |
Structure,
4,
1395-1400.
|
 |
|
|
|
|
 |
G.Sulzenbacher,
H.Driguez,
B.Henrissat,
M.Schülein,
and
G.J.Davies
(1996).
Structure of the Fusarium oxysporum endoglucanase I with a nonhydrolyzable substrate analogue: substrate distortion gives rise to the preferred axial orientation for the leaving group.
|
| |
Biochemistry,
35,
15280-15287.
|
 |
|
PDB code:
|
 |
|
|
|
|
|
 |
K.M.Kleman-Leyer,
M.Siika-Aho,
T.T.Teeri,
and
T.K.Kirk
(1996).
The Cellulases Endoglucanase I and Cellobiohydrolase II of Trichoderma reesei Act Synergistically To Solubilize Native Cotton Cellulose but Not To Decrease Its Molecular Size.
|
| |
Appl Environ Microbiol,
62,
2883-2887.
|
 |
|
|
|
|
 |
M.Linder,
and
T.T.Teeri
(1996).
The cellulose-binding domain of the major cellobiohydrolase of Trichoderma reesei exhibits true reversibility and a high exchange rate on crystalline cellulose.
|
| |
Proc Natl Acad Sci U S A,
93,
12251-12255.
|
 |
|
|
|
|
 |
P.E.Johnson,
M.D.Joshi,
P.Tomme,
D.G.Kilburn,
and
L.P.McIntosh
(1996).
Structure of the N-terminal cellulose-binding domain of Cellulomonas fimi CenC determined by nuclear magnetic resonance spectroscopy.
|
| |
Biochemistry,
35,
14381-14394.
|
 |
|
PDB codes:
|
 |
|
|
|
|
|
 |
P.M.Alzari,
H.Souchon,
and
R.Dominguez
(1996).
The crystal structure of endoglucanase CelA, a family 8 glycosyl hydrolase from Clostridium thermocellum.
|
| |
Structure,
4,
265-275.
|
 |
|
PDB code:
|
 |
|
|
|
|
|
 |
P.Tomme,
E.Kwan,
N.R.Gilkes,
D.G.Kilburn,
and
R.A.Warren
(1996).
Characterization of CenC, an enzyme from Cellulomonas fimi with both endo- and exoglucanase activities.
|
| |
J Bacteriol,
178,
4216-4223.
|
 |
|
|
|
|
 |
R.G.Gardner,
J.B.Russell,
D.B.Wilson,
G.R.Wang,
and
N.B.Shoemaker
(1996).
Use of a modified Bacteroides-Prevotella shuttle vector to transfer a reconstructed beta-1,4-D-endoglucanase gene into Bacteroides uniformis and Prevotella ruminicola B(1)4.
|
| |
Appl Environ Microbiol,
62,
196-202.
|
 |
|
|
|
|
 |
V.Harjunpää,
A.Teleman,
A.Koivula,
L.Ruohonen,
T.T.Teeri,
O.Teleman,
and
T.Drakenberg
(1996).
Cello-oligosaccharide hydrolysis by cellobiohydrolase II from Trichoderma reesei. Association and rate constants derived from an analysis of progress curves.
|
| |
Eur J Biochem,
240,
584-591.
|
 |
|
|
|
|
 |
B.Henrissat,
I.Callebaut,
S.Fabrega,
P.Lehn,
J.P.Mornon,
and
G.Davies
(1995).
Conserved catalytic machinery and the prediction of a common fold for several families of glycosyl hydrolases.
|
| |
Proc Natl Acad Sci U S A,
92,
7090-7094.
|
 |
|
|
|
|
 |
D.D.Leonidas,
B.L.Elbert,
Z.Zhou,
H.Leffler,
S.J.Ackerman,
and
K.R.Acharya
(1995).
Crystal structure of human Charcot-Leyden crystal protein, an eosinophil lysophospholipase, identifies it as a new member of the carbohydrate-binding family of galectins.
|
| |
Structure,
3,
1379-1393.
|
 |
|
PDB code:
|
 |
|
|
|
|
|
 |
G.Davies,
and
B.Henrissat
(1995).
Structures and mechanisms of glycosyl hydrolases.
|
| |
Structure,
3,
853-859.
|
 |
|
|
|
|
 |
G.Kreil
(1995).
Hyaluronidases--a group of neglected enzymes.
|
| |
Protein Sci,
4,
1666-1669.
|
 |
|
|
|
|
 |
M.Hahn,
T.Keitel,
and
U.Heinemann
(1995).
Crystal and molecular structure at 0.16-nm resolution of the hybrid Bacillus endo-1,3-1,4-beta-D-glucan 4-glucanohydrolase H(A16-M).
|
| |
Eur J Biochem,
232,
849-858.
|
 |
|
PDB code:
|
 |
|
|
|
|
|
 |
R.Dominguez,
H.Souchon,
S.Spinelli,
Z.Dauter,
K.S.Wilson,
S.Chauvaux,
P.Béguin,
and
P.M.Alzari
(1995).
A common protein fold and similar active site in two distinct families of beta-glycanases.
|
| |
Nat Struct Biol,
2,
569-576.
|
 |
|
PDB codes:
|
 |
|
|
|
|
|
 |
S.Keränen,
and
M.Penttilä
(1995).
Production of recombinant proteins in the filamentous fungus Trichoderma reesei.
|
| |
Curr Opin Biotechnol,
6,
534-537.
|
 |
|
|
|
|
 |
V.Ducros,
M.Czjzek,
A.Belaich,
C.Gaudin,
H.P.Fierobe,
J.P.Belaich,
G.J.Davies,
and
R.Haser
(1995).
Crystal structure of the catalytic domain of a bacterial cellulase belonging to family 5.
|
| |
Structure,
3,
939-949.
|
 |
|
PDB code:
|
 |
|
|
|
|
|
 |
G.E.Norris,
T.J.Stillman,
B.F.Anderson,
and
E.N.Baker
(1994).
The three-dimensional structure of PNGase F, a glycosylasparaginase from Flavobacterium meningosepticum.
|
| |
Structure,
2,
1049-1059.
|
 |
|
PDB code:
|
 |
|
|
|
|
|
 |
J.D.McCarter,
and
S.G.Withers
(1994).
Mechanisms of enzymatic glycoside hydrolysis.
|
| |
Curr Opin Struct Biol,
4,
885-892.
|
 |
|
|
|
|
 |
N.Srinivasan,
H.E.White,
J.Emsley,
S.P.Wood,
M.B.Pepys,
and
T.L.Blundell
(1994).
Comparative analyses of pentraxins: implications for protomer assembly and ligand binding.
|
| |
Structure,
2,
1017-1027.
|
 |
|
PDB codes:
|
 |
|
|
 |
 |
|
The most recent references are shown first.
Citation data come partly from CiteXplore and partly
from an automated harvesting procedure. Note that this is likely to be
only a partial list as not all journals are covered by
either method. However, we are continually building up the citation data
so more and more references will be included with time.
Where a reference describes a PDB structure, the PDB
codes are
shown on the right.
|
');
}
}
 |