spacer
spacer

PDBsum entry 1cc0

Go to PDB code: 
protein ligands metals Protein-protein interface(s) links
Signaling protein PDB id
1cc0

 

 

 

 

Loading ...

 
JSmol PyMol  
Contents
Protein chains
187 a.a. *
180 a.a. *
Ligands
GDP ×2
Metals
_MG ×2
* Residue conservation analysis
PDB id:
1cc0
Name: Signaling protein
Title: Crystal structure of the rhoa.Gdp-rhogdi complex
Structure: Transforming protein rhoa. Chain: a, c. Synonym: gtp-binding protein rhoa, gtpase rhoa. Engineered: yes. Rho gdp dissociation inhibitor alpha. Chain: e, f. Synonym: rho gdi 1. Engineered: yes
Source: Homo sapiens. Human. Organism_taxid: 9606. Cellular_location: cytoplasm. Expressed in: saccharomyces cerevisiae. Expression_system_taxid: 4932. Other_details: coexpression with rhogdi. Other_details: coexpression with rhoa
Biol. unit: Octamer (from PQS)
Resolution:
5.00Å     R-factor:   not given    
Authors: K.L.Longenecker,P.Read,U.Derewenda,Z.Dauter,S.Garrard,L.Walker, A.V.Somlyo,A.P.Somlyo,R.K.Nakamoto,Z.S.Derewenda
Key ref:
K.Longenecker et al. (1999). How RhoGDI binds Rho. Acta Crystallogr D Biol Crystallogr, 55, 1503-1515. PubMed id: 10489445 DOI: 10.1107/S090744499900801X
Date:
03-Mar-99     Release date:   07-Jan-00    
PROCHECK
Go to PROCHECK summary
 Headers
 References

Protein chains
Pfam   ArchSchema ?
P61586  (RHOA_HUMAN) -  Transforming protein RhoA from Homo sapiens
Seq:
Struc:
193 a.a.
187 a.a.*
Protein chains
Pfam   ArchSchema ?
P52565  (GDIR1_HUMAN) -  Rho GDP-dissociation inhibitor 1 from Homo sapiens
Seq:
Struc:
204 a.a.
180 a.a.
Key:    PfamA domain  Secondary structure
* PDB and UniProt seqs differ at 1 residue position (black cross)

 Enzyme reactions 
   Enzyme class 2: Chains A, C: E.C.3.6.5.2  - small monomeric GTPase.
[IntEnz]   [ExPASy]   [KEGG]   [BRENDA]
      Reaction: GTP + H2O = GDP + phosphate + H+
GTP
+ H2O
=
GDP
Bound ligand (Het Group name = GDP)
corresponds exactly
+ phosphate
+ H(+)
   Enzyme class 3: Chains E, F: E.C.?
[IntEnz]   [ExPASy]   [KEGG]   [BRENDA]
Note, where more than one E.C. class is given (as above), each may correspond to a different protein domain or, in the case of polyprotein precursors, to a different mature protein.
Molecule diagrams generated from .mol files obtained from the KEGG ftp site

 

 
    reference    
 
 
DOI no: 10.1107/S090744499900801X Acta Crystallogr D Biol Crystallogr 55:1503-1515 (1999)
PubMed id: 10489445  
 
 
How RhoGDI binds Rho.
K.Longenecker, P.Read, U.Derewenda, Z.Dauter, X.Liu, S.Garrard, L.Walker, A.V.Somlyo, R.K.Nakamoto, A.P.Somlyo, Z.S.Derewenda.
 
  ABSTRACT  
 
Like all Rho (Ras homology) GTPases, RhoA functions as a molecular switch in cell signaling, alternating between GTP- and GDP-bound states, with its biologically inactive GDP-bound form maintained as a cytosolic complex with RhoGDI (guanine nucleotide-exchange inhibitor). The crystal structures of RhoA-GDP and of the C-terminal immunoglobulin-like domain of RhoGDI (residues 67-203) are known, but the mechanism by which the two proteins interact is not known. The functional human RhoA-RhoGDI complex has been expressed in yeast and crystallized (P6(5)22, unit-cell parameters a = b = 139, c = 253 A, two complexes in the asymmetric unit). Although diffraction from these crystals extends to 3.5 A and is highly anisotropic, the experimentally phased (MAD plus MIR) electron-density map was adequate to reveal the mutual disposition of the two molecules. The result was validated by molecular-replacement calculations when data were corrected for anisotropy. Furthermore, the N-terminus of RhoGDI (the region involved in inhibition of nucleotide exchange) can be identified in the electron-density map: it is bound to the switch I and switch II regions of RhoA, occluding an epitope which binds Dbl-like nucleotide-exchange factors. The entrance of the hydrophobic pocket of RhoGDI is 25 A from the last residue in the RhoA model, with its C-terminus oriented to accommodate the geranylgeranyl group without conformational change in RhoA.
 
  Selected figure(s)  
 
Figure 8.
Figure 8 Model of the complex with the N-terminal fragment of RhoGDI. A model which follows the residual density is highlighted in orange and is shown from the same view as in Fig. 7-.
Figure 10.
Figure 10 Amino-acid sequence conservation is represented on the surface of RhoA as a gradation from gray to dark blue, corresponding to 100% conservation [figure prepared using GRASP with modifications as described by Soisson et al. (1998[Soisson, S. M., Nimnual, A. S., Uy, M., Bar-Sagi, D. & Kuriyan, J. (1998). Cell, 95, 259-268.])].
 
  The above figures are reprinted by permission from the IUCr: Acta Crystallogr D Biol Crystallogr (1999, 55, 1503-1515) copyright 1999.  
  Figures were selected by the author.  

Literature references that cite this PDB file's key reference

  PubMed id Reference
22179043 A.Chandra, H.E.Grecco, V.Pisupati, D.Perera, L.Cassidy, F.Skoulidis, S.A.Ismail, C.Hedberg, M.Hanzal-Bayer, A.R.Venkitaraman, A.Wittinghofer, and P.I.Bastiaens (2012).
The GDI-like solubilizing factor PDEδ sustains the spatial organization and signalling of Ras family proteins.
  Nat Cell Biol, 14, 148-158.  
  21492154 V.Zazueta-Novoa, G.Martínez-Cadena, G.M.Wessel, R.Zazueta-Sandoval, L.Castellano, and J.García-Soto (2011).
Concordance and interaction of guanine nucleotide dissociation inhibitor (RhoGDI) with RhoA in oogenesis and early development of the sea urchin.
  Dev Growth Differ, 53, 427-439.  
19765647 H.Bielek, A.Anselmo, and C.Dermardirossian (2009).
Morphological and proliferative abnormalities in renal mesangial cells lacking RhoGDI.
  Cell Signal, 21, 1974-1983.  
17111235 T.Ota, M.Maeda, S.Sakita-Suto, X.Zhou, M.Murakami, T.Takegami, and M.Tatsuka (2006).
RhoGDIbeta lacking the N-terminal regulatory domain suppresses metastasis by promoting anoikis in v-src-transformed cells.
  Clin Exp Metastasis, 23, 323-334.  
15921909 C.DerMardirossian, and G.M.Bokoch (2005).
GDIs: central regulatory molecules in Rho GTPase activation.
  Trends Cell Biol, 15, 356-363.  
15647276 C.Papaharalambus, W.Sajjad, A.Syed, C.Zhang, M.O.Bergo, R.W.Alexander, and M.Ahmad (2005).
Tumor necrosis factor alpha stimulation of Rac1 activity. Role of isoprenylcysteine carboxylmethyltransferase.
  J Biol Chem, 280, 18790-18796.  
15577926 R.Dvorsky, and M.R.Ahmadian (2004).
Always look on the bright site of Rho: structural implications for a conserved intermolecular interface.
  EMBO Rep, 5, 1130-1136.  
15057873 T.Ota, M.Maeda, S.Suto, and M.Tatsuka (2004).
LyGDI functions in cancer metastasis by anchoring Rho proteins to the cell membrane.
  Mol Carcinog, 39, 206-220.  
12750364 H.Genth, R.Gerhard, A.Maeda, M.Amano, K.Kaibuchi, K.Aktories, and I.Just (2003).
Entrapment of Rho ADP-ribosylated by Clostridium botulinum C3 exoenzyme in the Rho-guanine nucleotide dissociation inhibitor-1 complex.
  J Biol Chem, 278, 28523-28527.  
14576104 P.J.Budge, J.Lebowitz, and B.S.Graham (2003).
Antiviral activity of RhoA-derived peptides against respiratory syncytial virus is dependent on formation of peptide dimers.
  Antimicrob Agents Chemother, 47, 3470-3477.  
11950933 J.C.Patel, A.Hall, and E.Caron (2002).
Vav regulates activation of Rac but not Cdc42 during FcgammaR-mediated phagocytosis.
  Mol Biol Cell, 13, 1215-1226.  
11862216 M.A.Del Pozo, W.B.Kiosses, N.B.Alderson, N.Meller, K.M.Hahn, and M.A.Schwartz (2002).
Integrins regulate GTP-Rac localized effector interactions through dissociation of Rho-GDI.
  Nat Cell Biol, 4, 232-239.  
11967128 N.Brunet, A.Morin, and B.Olofsson (2002).
RhoGDI-3 regulates RhoG and targets this protein to the Golgi complex through its unique N-terminal domain.
  Traffic, 3, 342-357.  
11298742 A.P.Golovanov, D.Hawkins, I.Barsukov, R.Badii, G.M.Bokoch, L.Y.Lian, and G.C.Roberts (2001).
Structural consequences of site-directed mutagenesis in flexible protein domains: NMR characterization of the L(55,56)S mutant of RhoGDI.
  Eur J Biochem, 268, 2253-2260.  
  10639096 A.P.Somlyo, and A.V.Somlyo (2000).
Signal transduction by G-proteins, rho-kinase and protein phosphatase to smooth muscle and non-muscle myosin II.
  J Physiol, 522, 177-185.  
10676816 G.R.Hoffman, N.Nassar, and R.A.Cerione (2000).
Structure of the Rho family GTP-binding protein Cdc42 in complex with the multifunctional regulator RhoGDI.
  Cell, 100, 345-356.
PDB code: 1doa
  10716190 P.W.Read, X.Liu, K.Longenecker, C.G.Dipierro, L.A.Walker, A.V.Somlyo, A.P.Somlyo, and R.K.Nakamoto (2000).
Human RhoA/RhoGDI complex expressed in yeast: GTP exchange is sufficient for translocation of RhoA to liposomes.
  Protein Sci, 9, 376-386.  
The most recent references are shown first. Citation data come partly from CiteXplore and partly from an automated harvesting procedure. Note that this is likely to be only a partial list as not all journals are covered by either method. However, we are continually building up the citation data so more and more references will be included with time. Where a reference describes a PDB structure, the PDB code is shown on the right.

 

spacer

spacer