spacer
spacer

PDBsum entry 1caa

Go to PDB code: 
protein metals links
Electron transport PDB id
1caa

 

 

 

 

Loading ...

 
JSmol PyMol  
Contents
Protein chain
53 a.a. *
Metals
_FE
Waters ×61
* Residue conservation analysis
PDB id:
1caa
Name: Electron transport
Title: X-ray crystal structures of the oxidized and reduced forms of the rubredoxin from the marine hyperthermophilic archaebacterium pyrococcus furiosus
Structure: Rubredoxin. Chain: a. Engineered: yes
Source: Pyrococcus furiosus. Organism_taxid: 2261
Resolution:
1.80Å     R-factor:   0.178    
Authors: M.W.Day,B.T.Hsu,L.Joshua-Tor,J.B.Park,Z.H.Zhou,M.W.W.Adams,D.C.Rees
Key ref:
M.W.Day et al. (1992). X-ray crystal structures of the oxidized and reduced forms of the rubredoxin from the marine hyperthermophilic archaebacterium Pyrococcus furiosus. Protein Sci, 1, 1494-1507. PubMed id: 1303768 DOI: 10.1002/pro.5560011111
Date:
18-May-92     Release date:   31-Oct-93    
PROCHECK
Go to PROCHECK summary
 Headers
 References

Protein chain
Pfam   ArchSchema ?
P24297  (RUBR_PYRFU) -  Rubredoxin from Pyrococcus furiosus (strain ATCC 43587 / DSM 3638 / JCM 8422 / Vc1)
Seq:
Struc:
54 a.a.
53 a.a.
Key:    PfamA domain  Secondary structure  CATH domain

 Enzyme reactions 
   Enzyme class: E.C.?
[IntEnz]   [ExPASy]   [KEGG]   [BRENDA]

 

 
DOI no: 10.1002/pro.5560011111 Protein Sci 1:1494-1507 (1992)
PubMed id: 1303768  
 
 
X-ray crystal structures of the oxidized and reduced forms of the rubredoxin from the marine hyperthermophilic archaebacterium Pyrococcus furiosus.
M.W.Day, B.T.Hsu, L.Joshua-Tor, J.B.Park, Z.H.Zhou, M.W.Adams, D.C.Rees.
 
  ABSTRACT  
 
The structures of the oxidized and reduced forms of the rubredoxin from the archaebacterium, Pyrococcus furiosus, an organism that grows optimally at 100 degrees C, have been determined by X-ray crystallography to a resolution of 1.8 A. Crystals of this rubredoxin grow in space group P2(1)2(1)2(1) with room temperature cell dimensions a = 34.6 A, b = 35.5 A, and c = 44.4 A. Initial phases were determined by the method of molecular replacement using the oxidized form of the rubredoxin from the mesophilic eubacterium, Clostridium pasteurianum, as a starting model. The oxidized and reduced models of P. furiosus rubredoxin each contain 414 nonhydrogen protein atoms comprising 53 residues. The model of the oxidized form contains 61 solvent H2O oxygen atoms and has been refined with X-PLOR and TNT to a final R = 0.178 with root mean square (rms) deviations from ideality in bond distances and bond angles of 0.014 A and 2.06 degrees, respectively. The model of the reduced form contains 37 solvent H2O oxygen atoms and has been refined to R = 0.193 with rms deviations from ideality in bond lengths of 0.012 A and in bond angles of 1.95 degrees. The overall structure of P. furiosus rubredoxin is similar to the structures of mesophilic rubredoxins, with the exception of a more extensive hydrogen-bonding network in the beta-sheet region and multiple electrostatic interactions (salt bridge, hydrogen bonds) of the Glu 14 side chain with groups on three other residues (the amino-terminal nitrogen of Ala 1; the indole nitrogen of Trp 3; and the amide nitrogen group of Phe 29). The influence of these and other features upon the thermostability of the P. furiosus protein is discussed.
 
  Selected figure(s)  
 
Figure 2.
Fig. 2. Averagemainchainandsidechaintem- eraure factors for the oxidized form. The ainchainis shown y the solid ineandthe idechainis shown by thedashed line.
Figure 10.
Fig. 10. Stereo view of the pseudo-twofold around the iron-sulfur cluster. axis
 
  The above figures are reprinted from an Open Access publication published by the Protein Society: Protein Sci (1992, 1, 1494-1507) copyright 1992.  
  Figures were selected by an automated process.  

Literature references that cite this PDB file's key reference

  PubMed id Reference
21444227 G.Mathies, H.Blok, J.A.Disselhorst, P.Gast, H.van der Meer, D.M.Miedema, R.M.Almeida, J.J.Moura, W.R.Hagen, and E.J.Groenen (2011).
Continuous-wave EPR at 275GHz: application to high-spin Fe(3+) systems.
  J Magn Reson, 210, 126-132.  
  20885930 T.Iwasaki (2010).
Iron-sulfur world in aerobic and hyperthermoacidophilic archaea Sulfolobus.
  Archaea, 2010, 0.  
19799419 I.J.Lin, B.Xia, D.S.King, T.E.Machonkin, W.M.Westler, and J.L.Markley (2009).
Hyperfine-Shifted (13)C and (15)N NMR Signals from Clostridium pasteurianum Rubredoxin: Extensive Assignments and Quantum Chemical Verification.
  J Am Chem Soc, 131, 15555-15563.  
19170065 K.Berka, P.Hobza, and J.Vondrásek (2009).
Analysis of energy stabilization inside the hydrophobic core of rubredoxin.
  Chemphyschem, 10, 543-548.  
  18540070 K.L.Weiss, F.Meilleur, M.P.Blakeley, and D.A.Myles (2008).
Preliminary neutron crystallographic analysis of selectively CH3-protonated deuterated rubredoxin from Pyrococcus furiosus.
  Acta Crystallogr Sect F Struct Biol Cryst Commun, 64, 537-540.  
18021800 M.Proudfoot, S.A.Sanders, A.Singer, R.Zhang, G.Brown, A.Binkowski, L.Xu, J.A.Lukin, A.G.Murzin, A.Joachimiak, C.H.Arrowsmith, A.M.Edwards, A.V.Savchenko, and A.F.Yakunin (2008).
Biochemical and structural characterization of a novel family of cystathionine beta-synthase domain proteins fused to a Zn ribbon-like domain.
  J Mol Biol, 375, 301-315.
PDB codes: 1pvm 2qh1
16331403 B.J.Henriques, L.M.Saraiva, and C.M.Gomes (2006).
Combined spectroscopic and calorimetric characterisation of rubredoxin reversible thermal transition.
  J Biol Inorg Chem, 11, 73-81.  
16362979 M.L.Tan, C.Kang, and T.Ichiye (2006).
The role of backbone stability near Ala44 in the high reduction potential class of rubredoxins.
  Proteins, 62, 708-714.  
  17012793 T.Iwasaki, A.Kounosu, D.Ohmori, and T.Kumasaka (2006).
Crystallization and preliminary X-ray diffraction studies of a hyperthermophilic Rieske protein variant (SDX-triple) with an engineered rubredoxin-like mononuclear iron site.
  Acta Crystallogr Sect F Struct Biol Cryst Commun, 62, 993-995.  
15746356 A.M.Grunden, F.E.Jenney, K.Ma, M.Ji, M.V.Weinberg, and M.W.Adams (2005).
In vitro reconstitution of an NADPH-dependent superoxide reduction pathway from Pyrococcus furiosus.
  Appl Environ Microbiol, 71, 1522-1530.  
16084387 D.M.LeMaster, and G.Hernández (2005).
Additivity in both thermodynamic stability and thermal transition temperature for rubredoxin chimeras via hybrid native partitioning.
  Structure, 13, 1153-1163.  
16130131 D.M.LeMaster, J.Tang, D.I.Paredes, and G.Hernández (2005).
Enhanced thermal stability achieved without increased conformational rigidity at physiological temperatures: spatial propagation of differential flexibility in rubredoxin hybrids.
  Proteins, 61, 608-616.  
15983423 H.Bönisch, C.L.Schmidt, P.Bianco, and R.Ladenstein (2005).
Ultrahigh-resolution study on Pyrococcus abyssi rubredoxin. I. 0.69 A X-ray structure of mutant W4L/R5S.
  Acta Crystallogr D Biol Crystallogr, 61, 990.
PDB codes: 1yk4 1yk5
15326598 D.M.LeMaster, J.Tang, and G.Hernández (2004).
Absence of kinetic thermal stabilization in a hyperthermophile rubredoxin indicated by 40 microsecond folding in the presence of irreversible denaturation.
  Proteins, 57, 118-127.  
14977044 D.Triantafillidou, E.Persidou, D.Lazarou, P.Andrikopoulos, F.Leontiadou, and T.Choli-Papadopoulou (2004).
Structural destabilization of the recombinant thermophilic TthL11 ribosomal protein by a single amino acid substitution.
  Biol Chem, 385, 31-39.  
15272083 K.Kurihara, I.Tanaka, T.Chatake, M.W.Adams, F.E.Jenney, N.Moiseeva, R.Bau, and N.Niimura (2004).
Neutron crystallographic study on rubredoxin from Pyrococcus furiosus by BIX-3, a single-crystal diffractometer for biomacromolecules.
  Proc Natl Acad Sci U S A, 101, 11215-11220.
PDB code: 1vcx
15466556 M.A.Pysz, S.B.Conners, C.I.Montero, K.R.Shockley, M.R.Johnson, D.E.Ward, and R.M.Kelly (2004).
Transcriptional analysis of biofilm formation processes in the anaerobic, hyperthermophilic bacterium Thermotoga maritima.
  Appl Environ Microbiol, 70, 6098-6112.  
15272158 T.Chatake, K.Kurihara, I.Tanaka, I.Tsyba, R.Bau, F.E.Jenney, M.W.Adams, and N.Niimura (2004).
A neutron crystallographic analysis of a rubredoxin mutant at 1.6 A resolution.
  Acta Crystallogr D Biol Crystallogr, 60, 1364-1373.
PDB codes: 1iu5 1iu6
15206928 Y.Hioki, K.Ogasahara, S.J.Lee, J.Ma, M.Ishida, Y.Yamagata, Y.Matsuura, M.Ota, M.Ikeguchi, S.Kuramitsu, and K.Yutani (2004).
The crystal structure of the tryptophan synthase beta subunit from the hyperthermophile Pyrococcus furiosus. Investigation of stabilization factors.
  Eur J Biochem, 271, 2624-2635.
PDB code: 1v8z
11835504 A.Grottesi, M.A.Ceruso, A.Colosimo, and A.Di Nola (2002).
Molecular dynamics study of a hyperthermophilic and a mesophilic rubredoxin.
  Proteins, 46, 287-294.  
12012341 B.Cobucci-Ponzano, M.Moracci, B.Di Lauro, M.Ciaramella, R.D'Avino, and M.Rossi (2002).
Ionic network at the C-terminus of the beta-glycosidase from the hyperthermophilic archaeon Sulfolobus solfataricus: Functional role in the quaternary structure thermal stabilization.
  Proteins, 48, 98.  
12211008 T.A.Ramelot, J.R.Cort, A.A.Yee, A.Semesi, A.M.Edwards, C.H.Arrowsmith, and M.A.Kennedy (2002).
NMR structure of the Escherichia coli protein YacG: a novel sequence motif in the zinc-finger family of proteins.
  Proteins, 49, 289-293.
PDB code: 1lv3
11342043 K.Numata, Y.Hayashi-Iwasaki, J.Kawaguchi, M.Sakurai, H.Moriyama, N.Tanaka, and T.Oshima (2001).
Thermostabilization of a chimeric enzyme by residue substitutions: four amino acid residues in loop regions are responsible for the thermostability of Thermus thermophilus isopropylmalate dehydrogenase.
  Biochim Biophys Acta, 1545, 174-183.  
  11344329 T.Min, C.E.Ergenekan, M.K.Eidsness, T.Ichiye, and C.Kang (2001).
Leucine 41 is a gate for water entry in the reduction of Clostridium pasteurianum rubredoxin.
  Protein Sci, 10, 613-621.
PDB codes: 1fhh 1fhm
11583159 W.Schüler, K.Kloiber, T.Matt, K.Bister, and R.Konrat (2001).
Application of cross-correlated NMR spin relaxation to the zinc-finger protein CRP2(LIM2): evidence for collective motions in LIM domains.
  Biochemistry, 40, 9596-9604.
PDB code: 1ibi
10704199 A.P.Yeh, Y.Hu, F.E.Jenney, M.W.Adams, and D.C.Rees (2000).
Structures of the superoxide reductase from Pyrococcus furiosus in the oxidized and reduced states.
  Biochemistry, 39, 2499-2508.
PDB codes: 1do6 1dqi 1dqk
  11206063 F.Bonomi, D.Fessas, S.Iametti, D.M.Kurtz, and S.Mazzini (2000).
Thermal stability of Clostridium pasteurianum rubredoxin: deconvoluting the contributions of the metal site and the protein.
  Protein Sci, 9, 2413-2426.  
10716696 G.Hernandez, F.E.Jenney, M.W.Adams, and D.M.LeMaster (2000).
Millisecond time scale conformational flexibility in a hyperthermophile protein at ambient temperature.
  Proc Natl Acad Sci U S A, 97, 3166-3170.  
  10975569 K.Schweimer, S.Hoffmann, J.Wastl, U.G.Maier, P.Rösch, and H.Sticht (2000).
Solution structure of a zinc substituted eukaryotic rubredoxin from the cryptomonad alga Guillardia theta.
  Protein Sci, 9, 1474-1486.
PDB codes: 1dx8 1h7v
10684603 P.Strop, and S.L.Mayo (2000).
Contribution of surface salt bridges to protein stability.
  Biochemistry, 39, 1251-1255.
PDB code: 1qcv
10737776 R.Jaenicke (2000).
Do ultrastable proteins from hyperthermophiles have high or low conformational rigidity?
  Proc Natl Acad Sci U S A, 97, 2962-2964.  
10747230 S.Frillingos, A.Linden, F.Niehaus, C.Vargas, J.J.Nieto, A.Ventosa, G.Antranikian, and C.Drainas (2000).
Cloning and expression of alpha-amylase from the hyperthermophilic archaeon Pyrococcus woesei in the moderately halophilic bacterium Halomonas elongata.
  J Appl Microbiol, 88, 495-503.  
10387068 C.G.Schipke, D.B.Goodin, D.E.McRee, and C.D.Stout (1999).
Oxidized and reduced Azotobacter vinelandii ferredoxin I at 1.4 A resolution: conformational change of surface residues without significant change in the [3Fe-4S]+/0 cluster.
  Biochemistry, 38, 8228-8239.
PDB codes: 6fdr 7fd1 7fdr
10651277 C.Li, J.Heatwole, S.Soelaiman, and M.Shoham (1999).
Crystal structure of a thermophilic alcohol dehydrogenase substrate complex suggests determinants of substrate specificity and thermostability.
  Proteins, 37, 619-627.
PDB code: 1bxz
10387028 L.D.Gillès de Pélichy, and E.T.Smith (1999).
Redox properties of mesophilic and hyperthermophilic rubredoxins as a function of pressure and temperature.
  Biochemistry, 38, 7874-7880.  
10216292 M.J.Maher, Z.Xiao, M.C.Wilce, J.M.Guss, and A.G.Wedd (1999).
Rubredoxin from Clostridium pasteurianum. Structures of G10A, G43A and G10VG43A mutant proteins. Mutation of conserved glycine 10 to valine causes the 9-10 peptide link to invert.
  Acta Crystallogr D Biol Crystallogr, 55, 962-968.
PDB codes: 1b13 1b2j 1b2o
10555962 M.K.Eidsness, A.E.Burden, K.A.Richie, D.M.Kurtz, R.A.Scott, E.T.Smith, T.Ichiye, B.Beard, T.Min, and C.Kang (1999).
Modulation of the redox potential of the [Fe(SCys)(4)] site in rubredoxin by the orientation of a peptide dipole.
  Biochemistry, 38, 14803-14809.
PDB code: 1c09
  10338016 M.M.Sun, N.Tolliday, C.Vetriani, F.T.Robb, and D.S.Clark (1999).
Pressure-induced thermostabilization of glutamate dehydrogenase from the hyperthermophile Pyrococcus furiosus.
  Protein Sci, 8, 1056-1063.  
10625442 R.Morales, M.H.Charon, G.Hudry-Clergeon, Y.Pétillot, S.Norager, M.Medina, and M.Frey (1999).
Refined X-ray structures of the oxidized, at 1.3 A, and reduced, at 1.17 A, [2Fe-2S] ferredoxin from the cyanobacterium Anabaena PCC7119 show redox-linked conformational changes.
  Biochemistry, 38, 15764-15773.
PDB codes: 1czp 1qt9
9634694 B.Wang, D.N.Jones, B.P.Kaine, and M.A.Weiss (1998).
High-resolution structure of an archaeal zinc ribbon defines a general architectural motif in eukaryotic RNA polymerases.
  Structure, 6, 555-569.
PDB code: 1qyp
  9761474 E.Farinas, and L.Regan (1998).
The de novo design of a rubredoxin-like Fe site.
  Protein Sci, 7, 1939-1946.  
  9521117 K.C.Usher, A.F.de la Cruz, F.W.Dahlquist, R.V.Swanson, M.I.Simon, and S.J.Remington (1998).
Crystal structures of CheY from Thermotoga maritima do not support conventional explanations for the structural basis of enhanced thermostability.
  Protein Sci, 7, 403-412.
PDB codes: 1tmy 2tmy 3tmy 4tmy
9558328 K.Ogasahara, E.A.Lapshina, M.Sakai, Y.Izu, S.Tsunasawa, I.Kato, and K.Yutani (1998).
Electrostatic stabilization in methionine aminopeptidase from hyperthermophile Pyrococcus furiosus.
  Biochemistry, 37, 5939-5946.  
9860869 K.Ogasahara, M.Nakamura, S.Nakura, S.Tsunasawa, I.Kato, T.Yoshimoto, and K.Yutani (1998).
The unusually slow unfolding rate causes the high stability of pyrrolidone carboxyl peptidase from a hyperthermophile, Pyrococcus furiosus: equilibrium and kinetic studies of guanidine hydrochloride-induced unfolding and refolding.
  Biochemistry, 37, 17537-17544.  
9720321 M.W.Adams, and R.M.Kelly (1998).
Finding and using hyperthermophilic enzymes.
  Trends Biotechnol, 16, 329-332.  
9860830 M.W.Bauer, and R.M.Kelly (1998).
The family 1 beta-glucosidases from Pyrococcus furiosus and Agrobacterium faecalis share a common catalytic mechanism.
  Biochemistry, 37, 17170-17178.  
9521657 S.Cavagnero, D.A.Debe, Z.H.Zhou, M.W.Adams, and S.I.Chan (1998).
Kinetic role of electrostatic interactions in the unfolding of hyperthermophilic and mesophilic rubredoxins.
  Biochemistry, 37, 3369-3376.  
9521658 S.Cavagnero, Z.H.Zhou, M.W.Adams, and S.I.Chan (1998).
Unfolding mechanism of rubredoxin from Pyrococcus furiosus.
  Biochemistry, 37, 3377-3385.  
9501170 V.Villeret, B.Clantin, C.Tricot, C.Legrain, M.Roovers, V.Stalon, N.Glansdorff, and J.Van Beeumen (1998).
The crystal structure of Pyrococcus furiosus ornithine carbamoyltransferase reveals a key role for oligomerization in enzyme stability at extremely high temperatures.
  Proc Natl Acad Sci U S A, 95, 2801-2806.
PDB code: 1a1s
9384563 G.Auerbach, R.Huber, M.Grättinger, K.Zaiss, H.Schurig, R.Jaenicke, and U.Jacob (1997).
Closed structure of phosphoglycerate kinase from Thermotoga maritima reveals the catalytic mechanism and determinants of thermal stability.
  Structure, 5, 1475-1483.
PDB code: 1vpe
9016716 J.R.Kiefer, C.Mao, C.J.Hansen, S.L.Basehore, H.H.Hogrefe, J.C.Braman, and L.S.Beese (1997).
Crystal structure of a thermostable Bacillus DNA polymerase I large fragment at 2.1 A resolution.
  Structure, 5, 95.
PDB codes: 1bdp 1xwl
  9165087 L.Prade, P.Hof, and B.Bieseler (1997).
Dimer interface of glutathione S-transferase from Arabidopsis thaliana: influence of the G-site architecture on the dimer interface and implications for classification.
  Biol Chem, 378, 317-320.  
9166771 M.Hennig, R.Sterner, K.Kirschner, and J.N.Jansonius (1997).
Crystal structure at 2.0 A resolution of phosphoribosyl anthranilate isomerase from the hyperthermophile Thermotoga maritima: possible determinants of protein stability.
  Biochemistry, 36, 6009-6016.
PDB code: 1nsj
9265620 M.K.Eidsness, K.A.Richie, A.E.Burden, D.M.Kurtz, and R.A.Scott (1997).
Dissecting contributions to the thermostability of Pyrococcus furiosus rubredoxin: beta-sheet chimeras.
  Biochemistry, 36, 10406-10413.  
9370467 P.D.Swartz, and T.Ichiye (1997).
Protein contributions to redox potentials of homologous rubredoxins: an energy minimization study.
  Biophys J, 73, 2733-2741.  
9326609 R.Hiller, Z.H.Zhou, M.W.Adams, and S.W.Englander (1997).
Stability and dynamics in a hyperthermophilic protein with melting temperature close to 200 degrees C.
  Proc Natl Acad Sci U S A, 94, 11329-11332.  
9254593 R.J.Russell, J.M.Ferguson, D.W.Hough, M.J.Danson, and G.L.Taylor (1997).
The crystal structure of citrate synthase from the hyperthermophilic archaeon pyrococcus furiosus at 1.9 A resolution,.
  Biochemistry, 36, 9983-9994.
PDB code: 1aj8
8639325 D.W.Rice, K.S.Yip, T.J.Stillman, K.L.Britton, A.Fuentes, I.Connerton, A.Pasquo, R.Scandura, and P.C.Engel (1996).
Insights into the molecular basis of thermal stability from the structure determination of Pyrococcus furiosus glutamate dehydrogenase.
  FEMS Microbiol Rev, 18, 105-117.  
8611563 J.J.Tanner, R.M.Hecht, and K.L.Krause (1996).
Determinants of enzyme thermostability observed in the molecular structure of Thermus aquaticus D-glyceraldehyde-3-phosphate dehydrogenase at 25 Angstroms Resolution.
  Biochemistry, 35, 2597-2609.
PDB code: 1cer
  8732760 K.A.Richie, Q.Teng, C.J.Elkin, and D.M.Kurtz (1996).
2D 1H and 3D 1H-15N NMR of zinc-rubredoxins: contributions of the beta-sheet to thermostability.
  Protein Sci, 5, 883-894.  
8968568 P.D.Swartz, B.W.Beck, and T.Ichiye (1996).
Structural origins of redox potentials in Fe-S proteins: electrostatic potentials of crystal structures.
  Biophys J, 71, 2958-2969.  
8784186 P.L.Wang, A.Donaire, Z.H.Zhou, M.W.Adams, and G.N.La Mar (1996).
Molecular model of the solution structure for the paramagnetic four-iron ferredoxin from the hyperthermophilic archaeon Thermococcus litoralis.
  Biochemistry, 35, 11319-11328.  
8939753 S.Macedo-Ribeiro, B.Darimont, R.Sterner, and R.Huber (1996).
Small structural changes account for the high thermostability of 1[4Fe-4S] ferredoxin from the hyperthermophilic bacterium Thermotoga maritima.
  Structure, 4, 1291-1301.
PDB code: 1vjw
8799113 Z.Dauter, K.S.Wilson, L.C.Sieker, J.M.Moulis, and J.Meyer (1996).
Zinc- and iron-rubredoxins from Clostridium pasteurianum at atomic resolution: a high-precision model of a ZnS4 coordination unit in a protein.
  Proc Natl Acad Sci U S A, 93, 8836-8840.
PDB codes: 1irn 1iro
8747452 A.Goldman (1995).
How to make my blood boil.
  Structure, 3, 1277-1279.  
7788291 D.C.Rees, and M.W.Adams (1995).
Hyperthermophiles: taking the heat and loving it.
  Structure, 3, 251-254.  
8591026 K.S.Yip, T.J.Stillman, K.L.Britton, P.J.Artymiuk, P.J.Baker, S.E.Sedelnikova, P.C.Engel, A.Pasquo, R.Chiaraluce, and V.Consalvi (1995).
The structure of Pyrococcus furiosus glutamate dehydrogenase reveals a key role for ion-pair networks in maintaining enzyme stability at extreme temperatures.
  Structure, 3, 1147-1158.
PDB codes: 1gtm 1hrd
8747456 M.Hennig, B.Darimont, R.Sterner, K.Kirschner, and J.N.Jansonius (1995).
2.0 A structure of indole-3-glycerol phosphate synthase from the hyperthermophile Sulfolobus solfataricus: possible determinants of protein stability.
  Structure, 3, 1295-1306.
PDB code: 1igs
9634802 M.W.Adams, F.B.Perler, and R.M.Kelly (1995).
Extremozymes: expanding the limits of biocatalysis.
  Biotechnology (N Y), 13, 662-668.  
7567963 R.B.Yelle, N.S.Park, and T.Ichiye (1995).
Molecular dynamics simulations of rubredoxin from Clostridium pasteurianum: changes in structure and electrostatic potential during redox reactions.
  Proteins, 22, 154-167.  
8076656 H.E.Christensen, J.M.Hammerstad-Pedersen, A.Holm, G.Iversen, M.H.Jensen, and J.Ulstrup (1994).
Synthesis and characterization of Desulfovibrio gigas rubredoxin and rubredoxin fragments.
  Eur J Biochem, 224, 97.  
7946471 M.W.Adams (1994).
Biochemical diversity among sulfur-dependent, hyperthermophilic microorganisms.
  FEMS Microbiol Rev, 15, 261-277.  
7858973 M.W.Adams, and R.M.Kelly (1994).
Thermostability and thermoactivity of enzymes from hyperthermophilic Archaea.
  Bioorg Med Chem, 2, 659-667.  
  8518735 J.E.Wampler, E.A.Bradley, D.E.Stewart, and M.W.Adams (1993).
Modeling the structure of Pyrococcus furiosus rubredoxin by homology to other X-ray structures.
  Protein Sci, 2, 640-649.  
  8318900 R.C.Hoffman, S.J.Horvath, and R.E.Klevit (1993).
Structures of DNA-binding mutant zinc finger domains: implications for DNA binding.
  Protein Sci, 2, 951-965.
PDB codes: 1ard 1are 1arf 1as9
8265563 V.S.Shenoy, and T.Ichiye (1993).
Influence of protein flexibility on the redox potential of rubredoxin: energy minimization studies.
  Proteins, 17, 152-160.  
  1303769 P.R.Blake, J.B.Park, Z.H.Zhou, D.R.Hare, M.W.Adams, and M.F.Summers (1992).
Solution-state structure by NMR of zinc-substituted rubredoxin from the marine hyperthermophilic archaebacterium Pyrococcus furiosus.
  Protein Sci, 1, 1508-1521.
PDB code: 1zrp
  1303770 P.R.Blake, M.W.Day, B.T.Hsu, L.Joshua-Tor, J.B.Park, D.R.Hare, M.W.Adams, D.C.Rees, and M.F.Summers (1992).
Comparison of the X-ray structure of native rubredoxin from Pyrococcus furiosus with the NMR structure of the zinc-substituted protein.
  Protein Sci, 1, 1522-1525.  
The most recent references are shown first. Citation data come partly from CiteXplore and partly from an automated harvesting procedure. Note that this is likely to be only a partial list as not all journals are covered by either method. However, we are continually building up the citation data so more and more references will be included with time. Where a reference describes a PDB structure, the PDB codes are shown on the right.

 

spacer

spacer