 |
PDBsum entry 1br0
|
|
|
|
 |
|
|
|
|
|
|
|
|
|
|
|
|
 |
|
|
|
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
|
|
|
|
|
|
|
|
|
|
Membrane protein
|
PDB id
|
|
|
|
1br0
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
 |
Contents |
 |
|
|
|
|
|
|
|
* Residue conservation analysis
|
|
|
|
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
|
|
|
| |
|
DOI no:
|
Cell
94:841-849
(1998)
|
|
PubMed id:
|
|
|
|
|
| |
|
Three-dimensional structure of an evolutionarily conserved N-terminal domain of syntaxin 1A.
|
|
I.Fernandez,
J.Ubach,
I.Dulubova,
X.Zhang,
T.C.Südhof,
J.Rizo.
|
|
|
|
| |
ABSTRACT
|
|
|
| |
|
Syntaxin 1A plays a central role in neurotransmitter release through multiple
protein-protein interactions. We have used NMR spectroscopy to identify an
autonomously folded N-terminal domain in syntaxin 1A and to elucidate its
three-dimensional structure. This 120-residue N-terminal domain is conserved in
plasma membrane syntaxins but not in other syntaxins, indicating a specific role
in exocytosis. The domain contains three long alpha helices that form an
up-and-down bundle with a left-handed twist. A striking residue conservation is
observed throughout a long groove that is likely to provide a specific surface
for protein-protein interactions. A highly acidic region binds to the C2A domain
of synaptotagmin I in a Ca2+-dependent interaction that may serve as an
electrostatic switch in neurotransmitter release.
|
|
|
|
|
| |
Selected figure(s)
|
|
|
| |
 |
 |
|
 |
|
 |
Figure 1.
Figure 1. Domain Structure of Syntaxins and Sequence
Alignment of a Conserved N-Terminal Fragment of Plasma Membrane
Syntaxins(a) Schematic diagram of the sequence of syntaxins.
Plasma membrane syntaxins contain a transmembrane region
(black), a C-terminal sequence of the cytosplasmic region that
is involved in formation of the core complex (striped), and an
N-terminal region that is likely to have a specific role in
exocytosis. The latter is shown in white, with the sequences
corresponding to the three helices observed by NMR spectroscopy,
HA, HB, and HC, colored in blue, green, and red, respectively.
Residue numbers corresponding to the syntaxin 1A sequence are
indicated below the bar.(b) The sequence alignment shown
corresponds to the segment of the N-terminal region that is
autonomously folded in syntaxin 1A. Five of the sequences
correspond to Rattus norvegicus syntaxins that have been
localized to the plasma membrane (Rn 1A, 1B, 2, 3, and 4), five
to syntaxins from other species (Ac, Aplysia californica; Dm,
Drosophila melanogaster; Hm, Hirudo medicinalis; Lp, Loligo
pealei; Ce, Caenorhabditis elegans) and two sequences are from
yeast plasma membrane syntaxins (SSO1 and SSO2). Residue numbers
are indicated at the left and the right sides of the sequences.
Residues that are identical in at least 6 out of the 12
sequences shown are colored. Blue, green, and red correspond to
helix A, B, and C, respectively, and yellow corresponds to
residues outside the helices. The bar indicates the sequence of
syntaxin 1A involved in binding to the C[2]A domain of
synaptotagmin I (see Figure 6).
|
 |
Figure 3.
Figure 3. Structure of the Nsyx Domain(a) Superposition of
the backbone of the 15 simulated annealing structures with the
fewest violations from the NMR restraints. The three helices are
labeled HA, HB, and HC. The positions of the N and C termini, as
well as those of two residues in the loops (residues 69 and
108), are indicated. The backbone atoms of the three helices
(residues 28–62, 71–104, and 111–144) were used to
superimpose the structures.(b and c) Ribbon diagrams of the
structure of Nsyx in two different orientations. Helix A, B, and
C are colored in blue, green, and red, respectively. The
orientation in (c) results from a 90° rotation of the
structure in (b) (pulling the N terminus to the front) and
illustrates the left-handed twist of the bundle. The ribbon
diagrams were generated with the programs MOLSCRIPT ([29]) and
Raster3D ( [37]).
|
 |
|
|
|
| |
The above figures are
reprinted
by permission from Cell Press:
Cell
(1998,
94,
841-849)
copyright 1998.
|
|
| |
Figures were
selected
by the author.
|
|
|
|
|
 |
 |
|
 |
 |
 |
 |
 |
 |
 |
 |
 |
|
Literature references that cite this PDB file's key reference
|
|
 |
| |
PubMed id
|
 |
Reference
|
 |
|
|
|
 |
R.Jahn,
and
D.Fasshauer
(2012).
Molecular machines governing exocytosis of synaptic vesicles.
|
| |
Nature,
490,
201-207.
|
 |
|
|
|
|
 |
C.Ma,
W.Li,
Y.Xu,
and
J.Rizo
(2011).
Munc13 mediates the transition from the closed syntaxin-Munc18 complex to the SNARE complex.
|
| |
Nat Struct Mol Biol,
18,
542-549.
|
 |
|
|
|
|
 |
J.Shen,
S.S.Rathore,
L.Khandan,
and
J.E.Rothman
(2010).
SNARE bundle and syntaxin N-peptide constitute a minimal complement for Munc18-1 activation of membrane fusion.
|
| |
J Cell Biol,
190,
55-63.
|
 |
|
|
|
|
 |
Q.Yuan,
and
J.Jäntti
(2010).
Functional analysis of phosphorylation on Saccharomyces cerevisiae syntaxin 1 homologues Sso1p and Sso2p.
|
| |
PLoS One,
5,
e13323.
|
 |
|
|
|
|
 |
S.S.Rathore,
E.G.Bend,
H.Yu,
M.Hammarlund,
E.M.Jorgensen,
and
J.Shen
(2010).
Syntaxin N-terminal peptide motif is an initiation factor for the assembly of the SNARE-Sec1/Munc18 membrane fusion complex.
|
| |
Proc Natl Acad Sci U S A,
107,
22399-22406.
|
 |
|
|
|
|
 |
Y.Xu,
L.Su,
and
J.Rizo
(2010).
Binding of Munc18-1 to synaptobrevin and to the SNARE four-helix bundle.
|
| |
Biochemistry,
49,
1568-1576.
|
 |
|
|
|
|
 |
C.S.Chen,
C.M.Nelson,
D.Khauv,
S.Bennett,
E.S.Radisky,
Y.Hirai,
M.J.Bissell,
and
D.C.Radisky
(2009).
Homology with vesicle fusion mediator syntaxin-1a predicts determinants of epimorphin/syntaxin-2 function in mammary epithelial morphogenesis.
|
| |
J Biol Chem,
284,
6877-6884.
|
 |
|
|
|
|
 |
F.Deák,
Y.Xu,
W.P.Chang,
I.Dulubova,
M.Khvotchev,
X.Liu,
T.C.Südhof,
and
J.Rizo
(2009).
Munc18-1 binding to the neuronal SNARE complex controls synaptic vesicle priming.
|
| |
J Cell Biol,
184,
751-764.
|
 |
|
|
|
|
 |
R.Mendonsa,
and
J.Engebrecht
(2009).
Phosphatidylinositol-4,5-bisphosphate and phospholipase D-generated phosphatidic acid specify SNARE-mediated vesicle fusion for prospore membrane formation.
|
| |
Eukaryot Cell,
8,
1094-1105.
|
 |
|
|
|
|
 |
Y.Maeda,
J.Kashiwazaki,
C.Shimoda,
and
T.Nakamura
(2009).
The Schizosaccharomyces pombe syntaxin 1 homolog, Psy1, is essential in the development of the forespore membrane.
|
| |
Biosci Biotechnol Biochem,
73,
339-345.
|
 |
|
|
|
|
 |
E.R.Chapman
(2008).
How does synaptotagmin trigger neurotransmitter release?
|
| |
Annu Rev Biochem,
77,
615-641.
|
 |
|
|
|
|
 |
E.V.Elias,
R.Quiroga,
N.Gottig,
H.Nakanishi,
T.E.Nash,
A.Neiman,
and
H.D.Lujan
(2008).
Characterization of SNAREs Determines the Absence of a Typical Golgi Apparatus in the Ancient Eukaryote Giardia lamblia.
|
| |
J Biol Chem,
283,
35996-36010.
|
 |
|
|
|
|
 |
J.D.Gaffaney,
F.M.Dunning,
Z.Wang,
E.Hui,
and
E.R.Chapman
(2008).
Synaptotagmin C2B Domain Regulates Ca2+-triggered Fusion in Vitro: CRITICAL RESIDUES REVEALED BY SCANNING ALANINE MUTAGENESIS.
|
| |
J Biol Chem,
283,
31763-31775.
|
 |
|
|
|
|
 |
J.Rizo,
and
C.Rosenmund
(2008).
Synaptic vesicle fusion.
|
| |
Nat Struct Mol Biol,
15,
665-674.
|
 |
|
|
|
|
 |
J.Rizo,
and
C.Rosenmund
(2008).
Synaptic vesicle fusion.
|
| |
Nat Struct Mol Biol,
15,
665-674.
|
 |
|
|
|
|
 |
P.Burkhardt,
D.A.Hattendorf,
W.I.Weis,
and
D.Fasshauer
(2008).
Munc18a controls SNARE assembly through its interaction with the syntaxin N-peptide.
|
| |
EMBO J,
27,
923-933.
|
 |
|
PDB code:
|
 |
|
|
|
|
|
 |
X.Chen,
J.Lu,
I.Dulubova,
and
J.Rizo
(2008).
NMR analysis of the closed conformation of syntaxin-1.
|
| |
J Biomol NMR,
41,
43-54.
|
 |
|
|
|
|
 |
C.Hu,
D.Hardee,
and
F.Minnear
(2007).
Membrane fusion by VAMP3 and plasma membrane t-SNAREs.
|
| |
Exp Cell Res,
313,
3198-3209.
|
 |
|
|
|
|
 |
F.Li,
F.Pincet,
E.Perez,
W.S.Eng,
T.J.Melia,
J.E.Rothman,
and
D.Tareste
(2007).
Energetics and dynamics of SNAREpin folding across lipid bilayers.
|
| |
Nat Struct Mol Biol,
14,
890-896.
|
 |
|
|
|
|
 |
H.Dai,
N.Shen,
D.Araç,
and
J.Rizo
(2007).
A quaternary SNARE-synaptotagmin-Ca2+-phospholipid complex in neurotransmitter release.
|
| |
J Mol Biol,
367,
848-863.
|
 |
|
|
|
|
 |
I.Dulubova,
M.Khvotchev,
S.Liu,
I.Huryeva,
T.C.Südhof,
and
J.Rizo
(2007).
Munc18-1 binds directly to the neuronal SNARE complex.
|
| |
Proc Natl Acad Sci U S A,
104,
2697-2702.
|
 |
|
|
|
|
 |
J.Shen,
D.C.Tareste,
F.Paumet,
J.E.Rothman,
and
T.J.Melia
(2007).
Selective activation of cognate SNAREpins by Sec1/Munc18 proteins.
|
| |
Cell,
128,
183-195.
|
 |
|
|
|
|
 |
R.Kissmehl,
C.Schilde,
T.Wassmer,
C.Danzer,
K.Nuehse,
K.Lutter,
and
H.Plattner
(2007).
Molecular identification of 26 syntaxin genes and their assignment to the different trafficking pathways in Paramecium.
|
| |
Traffic,
8,
523-542.
|
 |
|
|
|
|
 |
T.H.Kloepper,
C.N.Kienle,
and
D.Fasshauer
(2007).
An elaborate classification of SNARE proteins sheds light on the conservation of the eukaryotic endomembrane system.
|
| |
Mol Biol Cell,
18,
3463-3471.
|
 |
|
|
|
|
 |
V.Lipka,
C.Kwon,
and
R.Panstruga
(2007).
SNARE-ware: the role of SNARE-domain proteins in plant biology.
|
| |
Annu Rev Cell Dev Biol,
23,
147-174.
|
 |
|
|
|
|
 |
C.A.Loewen,
S.M.Lee,
Y.K.Shin,
and
N.E.Reist
(2006).
C2B polylysine motif of synaptotagmin facilitates a Ca2+-independent stage of synaptic vesicle priming in vivo.
|
| |
Mol Biol Cell,
17,
5211-5226.
|
 |
|
|
|
|
 |
E.H.Sklan,
E.Podoly,
and
H.Soreq
(2006).
RACK1 has the nerve to act: structure meets function in the nervous system.
|
| |
Prog Neurobiol,
78,
117-134.
|
 |
|
|
|
|
 |
F.E.Zilly,
J.B.Sørensen,
R.Jahn,
and
T.Lang
(2006).
Munc18-bound syntaxin readily forms SNARE complexes with synaptobrevin in native plasma membranes.
|
| |
PLoS Biol,
4,
e330.
|
 |
|
|
|
|
 |
J.Rizo,
X.Chen,
and
D.Araç
(2006).
Unraveling the mechanisms of synaptotagmin and SNARE function in neurotransmitter release.
|
| |
Trends Cell Biol,
16,
339-350.
|
 |
|
|
|
|
 |
J.S.Van Komen,
X.Bai,
B.L.Scott,
and
J.A.McNew
(2006).
An intramolecular t-SNARE complex functions in vivo without the syntaxin NH2-terminal regulatory domain.
|
| |
J Cell Biol,
172,
295-307.
|
 |
|
|
|
|
 |
N.Sharma,
S.H.Low,
S.Misra,
B.Pallavi,
and
T.Weimbs
(2006).
Apical targeting of syntaxin 3 is essential for epithelial cell polarity.
|
| |
J Cell Biol,
173,
937-948.
|
 |
|
|
|
|
 |
D.Schütz,
F.Zilly,
T.Lang,
R.Jahn,
and
D.Bruns
(2005).
A dual function for Munc-18 in exocytosis of PC12 cells.
|
| |
Eur J Neurosci,
21,
2419-2432.
|
 |
|
|
|
|
 |
F.Paumet,
V.Rahimian,
M.Di Liberto,
and
J.E.Rothman
(2005).
Concerted auto-regulation in yeast endosomal t-SNAREs.
|
| |
J Biol Chem,
280,
21137-21143.
|
 |
|
|
|
|
 |
R.F.Toonen,
K.J.de Vries,
R.Zalm,
T.C.Südhof,
and
M.Verhage
(2005).
Munc18-1 stabilizes syntaxin 1, but is not essential for syntaxin 1 targeting and SNARE complex formation.
|
| |
J Neurochem,
93,
1393-1400.
|
 |
|
|
|
|
 |
A.Bracher,
and
W.Weissenhorn
(2004).
Crystal structure of the Habc domain of neuronal syntaxin from the squid Loligo pealei reveals conformational plasticity at its C-terminus.
|
| |
BMC Struct Biol,
4,
6.
|
 |
|
PDB code:
|
 |
|
|
|
|
|
 |
A.L.Williams,
S.Ehm,
N.C.Jacobson,
D.Xu,
and
J.C.Hay
(2004).
rsly1 binding to syntaxin 5 is required for endoplasmic reticulum-to-Golgi transport but does not promote SNARE motif accessibility.
|
| |
Mol Biol Cell,
15,
162-175.
|
 |
|
|
|
|
 |
A.Shimada,
M.Nyitrai,
I.R.Vetter,
D.Kühlmann,
B.Bugyi,
S.Narumiya,
M.A.Geeves,
and
A.Wittinghofer
(2004).
The core FH2 domain of diaphanous-related formins is an elongated actin binding protein that inhibits polymerization.
|
| |
Mol Cell,
13,
511-522.
|
 |
|
PDB code:
|
 |
|
|
|
|
|
 |
J.Liu,
S.A.Ernst,
S.E.Gladycheva,
Y.Y.Lee,
S.I.Lentz,
C.S.Ho,
Q.Li,
and
E.L.Stuenkel
(2004).
Fluorescence resonance energy transfer reports properties of syntaxin1a interaction with Munc18-1 in vivo.
|
| |
J Biol Chem,
279,
55924-55936.
|
 |
|
|
|
|
 |
J.S.Bonifacino
(2004).
The GGA proteins: adaptors on the move.
|
| |
Nat Rev Mol Cell Biol,
5,
23-32.
|
 |
|
|
|
|
 |
J.Xiao,
Z.Xia,
A.Pradhan,
Q.Zhou,
and
Y.Liu
(2004).
An immunohistochemical method that distinguishes free from complexed SNAP-25.
|
| |
J Neurosci Res,
75,
143-151.
|
 |
|
|
|
|
 |
N.Cui,
Y.Kang,
Y.He,
Y.M.Leung,
H.Xie,
E.A.Pasyk,
X.Gao,
L.Sheu,
J.B.Hansen,
P.Wahl,
R.G.Tsushima,
and
H.Y.Gaisano
(2004).
H3 domain of syntaxin 1A inhibits KATP channels by its actions on the sulfonylurea receptor 1 nucleotide-binding folds-1 and -2.
|
| |
J Biol Chem,
279,
53259-53265.
|
 |
|
|
|
|
 |
Y.Liu,
J.J.Flanagan,
and
C.Barlowe
(2004).
Sec22p export from the endoplasmic reticulum is independent of SNARE pairing.
|
| |
J Biol Chem,
279,
27225-27232.
|
 |
|
|
|
|
 |
C.Hu,
M.Ahmed,
T.J.Melia,
T.H.Söllner,
T.Mayer,
and
J.E.Rothman
(2003).
Fusion of cells by flipped SNAREs.
|
| |
Science,
300,
1745-1749.
|
 |
|
|
|
|
 |
D.Araç,
T.Murphy,
and
J.Rizo
(2003).
Facile detection of protein-protein interactions by one-dimensional NMR spectroscopy.
|
| |
Biochemistry,
42,
2774-2780.
|
 |
|
|
|
|
 |
D.H.Kweon,
C.S.Kim,
and
Y.K.Shin
(2003).
Regulation of neuronal SNARE assembly by the membrane.
|
| |
Nat Struct Biol,
10,
440-447.
|
 |
|
|
|
|
 |
D.Ungar,
and
F.M.Hughson
(2003).
SNARE protein structure and function.
|
| |
Annu Rev Cell Dev Biol,
19,
493-517.
|
 |
|
|
|
|
 |
E.Conibear,
J.N.Cleck,
and
T.H.Stevens
(2003).
Vps51p mediates the association of the GARP (Vps52/53/54) complex with the late Golgi t-SNARE Tlg1p.
|
| |
Mol Biol Cell,
14,
1610-1623.
|
 |
|
|
|
|
 |
E.Mossessova,
L.C.Bickford,
and
J.Goldberg
(2003).
SNARE selectivity of the COPII coat.
|
| |
Cell,
114,
483-495.
|
 |
|
PDB codes:
|
 |
|
|
|
|
|
 |
I.Dulubova,
T.Yamaguchi,
D.Arac,
H.Li,
I.Huryeva,
S.W.Min,
J.Rizo,
and
T.C.Sudhof
(2003).
Convergence and divergence in the mechanism of SNARE binding by Sec1/Munc18-like proteins.
|
| |
Proc Natl Acad Sci U S A,
100,
32-37.
|
 |
|
|
|
|
 |
J.A.Ernst,
and
A.T.Brunger
(2003).
High resolution structure, stability, and synaptotagmin binding of a truncated neuronal SNARE complex.
|
| |
J Biol Chem,
278,
8630-8636.
|
 |
|
PDB code:
|
 |
|
|
|
|
|
 |
J.H.Tian,
S.Das,
and
Z.H.Sheng
(2003).
Ca2+-dependent phosphorylation of syntaxin-1A by the death-associated protein (DAP) kinase regulates its interaction with Munc18.
|
| |
J Biol Chem,
278,
26265-26274.
|
 |
|
|
|
|
 |
L.K.Tamm,
J.Crane,
and
V.Kiessling
(2003).
Membrane fusion: a structural perspective on the interplay of lipids and proteins.
|
| |
Curr Opin Struct Biol,
13,
453-466.
|
 |
|
|
|
|
 |
P.Wang,
C.T.Wang,
J.Bai,
M.B.Jackson,
and
E.R.Chapman
(2003).
Mutations in the effector binding loops in the C2A and C2B domains of synaptotagmin I disrupt exocytosis in a nonadditive manner.
|
| |
J Biol Chem,
278,
47030-47037.
|
 |
|
|
|
|
 |
R.F.Toonen,
and
M.Verhage
(2003).
Vesicle trafficking: pleasure and pain from SM genes.
|
| |
Trends Cell Biol,
13,
177-186.
|
 |
|
|
|
|
 |
S.B.Condliffe,
M.D.Carattino,
R.A.Frizzell,
and
H.Zhang
(2003).
Syntaxin 1A regulates ENaC via domain-specific interactions.
|
| |
J Biol Chem,
278,
12796-12804.
|
 |
|
|
|
|
 |
S.Suer,
S.Misra,
L.F.Saidi,
and
J.H.Hurley
(2003).
Structure of the GAT domain of human GGA1: a syntaxin amino-terminal domain fold in an endosomal trafficking adaptor.
|
| |
Proc Natl Acad Sci U S A,
100,
4451-4456.
|
 |
|
PDB code:
|
 |
|
|
|
|
|
 |
Y.Wu,
Y.He,
J.Bai,
S.R.Ji,
W.C.Tucker,
E.R.Chapman,
and
S.F.Sui
(2003).
Visualization of synaptotagmin I oligomers assembled onto lipid monolayers.
|
| |
Proc Natl Acad Sci U S A,
100,
2082-2087.
|
 |
|
|
|
|
 |
A.Yee,
X.Chang,
A.Pineda-Lucena,
B.Wu,
A.Semesi,
B.Le,
T.Ramelot,
G.M.Lee,
S.Bhattacharyya,
P.Gutierrez,
A.Denisov,
C.H.Lee,
J.R.Cort,
G.Kozlov,
J.Liao,
G.Finak,
L.Chen,
D.Wishart,
W.Lee,
L.P.McIntosh,
K.Gehring,
M.A.Kennedy,
A.M.Edwards,
and
C.H.Arrowsmith
(2002).
An NMR approach to structural proteomics.
|
| |
Proc Natl Acad Sci U S A,
99,
1825-1830.
|
 |
|
PDB codes:
|
 |
|
|
|
|
|
 |
E.R.Chapman
(2002).
Synaptotagmin: a Ca(2+) sensor that triggers exocytosis?
|
| |
Nat Rev Mol Cell Biol,
3,
498-508.
|
 |
|
|
|
|
 |
I.Dulubova,
T.Yamaguchi,
Y.Gao,
S.W.Min,
I.Huryeva,
T.C.Südhof,
and
J.Rizo
(2002).
How Tlg2p/syntaxin 16 'snares' Vps45.
|
| |
EMBO J,
21,
3620-3631.
|
 |
|
|
|
|
 |
K.M.Misura,
J.B.Bock,
L.C.Gonzalez,
R.H.Scheller,
and
W.I.Weis
(2002).
Three-dimensional structure of the amino-terminal domain of syntaxin 6, a SNAP-25 C homolog.
|
| |
Proc Natl Acad Sci U S A,
99,
9184-9189.
|
 |
|
PDB code:
|
 |
|
|
|
|
|
 |
L.Lo Conte,
S.E.Brenner,
T.J.Hubbard,
C.Chothia,
and
A.G.Murzin
(2002).
SCOP database in 2002: refinements accommodate structural genomics.
|
| |
Nucleic Acids Res,
30,
264-267.
|
 |
|
|
|
|
 |
M.Kauppi,
G.Wohlfahrt,
and
V.M.Olkkonen
(2002).
Analysis of the Munc18b-syntaxin binding interface. Use of a mutant Munc18b to dissect the functions of syntaxins 2 and 3.
|
| |
J Biol Chem,
277,
43973-43979.
|
 |
|
|
|
|
 |
M.Ohara-Imaizumi,
Y.Nakamichi,
C.Nishiwaki,
and
S.Nagamatsu
(2002).
Transduction of MIN6 beta cells with TAT-syntaxin SNARE motif inhibits insulin exocytosis in biphasic insulin release in a distinct mechanism analyzed by evanescent wave microscopy.
|
| |
J Biol Chem,
277,
50805-50811.
|
 |
|
|
|
|
 |
S.E.Jarvis,
W.Barr,
Z.P.Feng,
J.Hamid,
and
G.W.Zamponi
(2002).
Molecular determinants of syntaxin 1 modulation of N-type calcium channels.
|
| |
J Biol Chem,
277,
44399-44407.
|
 |
|
|
|
|
 |
T.C.Südhof
(2002).
Synaptotagmins: why so many?
|
| |
J Biol Chem,
277,
7629-7632.
|
 |
|
|
|
|
 |
T.J.Melia,
T.Weber,
J.A.McNew,
L.E.Fisher,
R.J.Johnston,
F.Parlati,
L.K.Mahal,
T.H.Sollner,
and
J.E.Rothman
(2002).
Regulation of membrane fusion by the membrane-proximal coil of the t-SNARE during zippering of SNAREpins.
|
| |
J Cell Biol,
158,
929-940.
|
 |
|
|
|
|
 |
W.Antonin,
I.Dulubova,
D.Arac,
S.Pabst,
J.Plitzner,
J.Rizo,
and
R.Jahn
(2002).
The N-terminal domains of syntaxin 7 and vti1b form three-helix bundles that differ in their ability to regulate SNARE complex assembly.
|
| |
J Biol Chem,
277,
36449-36456.
|
 |
|
|
|
|
 |
X.Chen,
D.R.Tomchick,
E.Kovrigin,
D.Araç,
M.Machius,
T.C.Südhof,
and
J.Rizo
(2002).
Three-dimensional structure of the complexin/SNARE complex.
|
| |
Neuron,
33,
397-409.
|
 |
|
PDB code:
|
 |
|
|
|
|
|
 |
A.T.Brunger
(2001).
Structure of proteins involved in synaptic vesicle fusion in neurons.
|
| |
Annu Rev Biophys Biomol Struct,
30,
157-171.
|
 |
|
|
|
|
 |
A.T.Brunger
(2001).
Structural insights into the molecular mechanism of calcium-dependent vesicle-membrane fusion.
|
| |
Curr Opin Struct Biol,
11,
163-173.
|
 |
|
|
|
|
 |
H.Tochio,
M.M.Tsui,
D.K.Banfield,
and
M.Zhang
(2001).
An autoinhibitory mechanism for nonsyntaxin SNARE proteins revealed by the structure of Ykt6p.
|
| |
Science,
293,
698-702.
|
 |
|
PDB codes:
|
 |
|
|
|
|
|
 |
R.Laage,
and
C.Ungermann
(2001).
The N-terminal domain of the t-SNARE Vam3p coordinates priming and docking in yeast vacuole fusion.
|
| |
Mol Biol Cell,
12,
3375-3385.
|
 |
|
|
|
|
 |
S.Takayama,
and
J.C.Reed
(2001).
Molecular chaperone targeting and regulation by BAG family proteins.
|
| |
Nat Cell Biol,
3,
E237-E241.
|
 |
|
|
|
|
 |
A.J.Wallace,
T.J.Stillman,
A.Atkins,
S.J.Jamieson,
P.A.Bullough,
J.Green,
and
P.J.Artymiuk
(2000).
E. coli hemolysin E (HlyE, ClyA, SheA): X-ray crystal structure of the toxin and observation of membrane pores by electron microscopy.
|
| |
Cell,
100,
265-276.
|
 |
|
PDB code:
|
 |
|
|
|
|
|
 |
A.T.Brunger
(2000).
Structural insights into the molecular mechanism of Ca(2+)-dependent exocytosis.
|
| |
Curr Opin Neurobiol,
10,
293-302.
|
 |
|
|
|
|
 |
B.Yang,
M.Steegmaier,
L.C.Gonzalez,
and
R.H.Scheller
(2000).
nSec1 binds a closed conformation of syntaxin1A.
|
| |
J Cell Biol,
148,
247-252.
|
 |
|
|
|
|
 |
H.Fisher,
and
J.E.Braun
(2000).
Modulation of the SNARE core complex by dopamine.
|
| |
Can J Physiol Pharmacol,
78,
856-859.
|
 |
|
|
|
|
 |
I.Bezprozvanny,
P.Zhong,
R.H.Scheller,
and
R.W.Tsien
(2000).
Molecular determinants of the functional interaction between syntaxin and N-type Ca2+ channel gating.
|
| |
Proc Natl Acad Sci U S A,
97,
13943-13948.
|
 |
|
|
|
|
 |
J.A.Ybe,
D.E.Wakeham,
F.M.Brodsky,
and
P.K.Hwang
(2000).
Molecular structures of proteins involved in vesicle fusion.
|
| |
Traffic,
1,
474-479.
|
 |
|
|
|
|
 |
J.C.Lerman,
J.Robblee,
R.Fairman,
and
F.M.Hughson
(2000).
Structural analysis of the neuronal SNARE protein syntaxin-1A.
|
| |
Biochemistry,
39,
8470-8479.
|
 |
|
PDB code:
|
 |
|
|
|
|
|
 |
K.M.Misura,
A.P.May,
and
W.I.Weis
(2000).
Protein-protein interactions in intracellular membrane fusion.
|
| |
Curr Opin Struct Biol,
10,
662-671.
|
 |
|
|
|
|
 |
Q.Zhou,
J.Xiao,
and
Y.Liu
(2000).
Participation of syntaxin 1A in membrane trafficking involving neurite elongation and membrane expansion.
|
| |
J Neurosci Res,
61,
321-328.
|
 |
|
|
|
|
 |
R.A.García,
C.E.Forde,
and
H.A.Godwin
(2000).
Calcium triggers an intramolecular association of the C2 domains in synaptotagmin.
|
| |
Proc Natl Acad Sci U S A,
97,
5883-5888.
|
 |
|
|
|
|
 |
R.C.Lin,
and
R.H.Scheller
(2000).
Mechanisms of synaptic vesicle exocytosis.
|
| |
Annu Rev Cell Dev Biol,
16,
19-49.
|
 |
|
|
|
|
 |
R.Jahn
(2000).
Sec1/Munc18 proteins: mediators of membrane fusion moving to center stage.
|
| |
Neuron,
27,
201-204.
|
 |
|
|
|
|
 |
R.T.Watson,
and
J.E.Pessin
(2000).
Functional cooperation of two independent targeting domains in syntaxin 6 is required for its efficient localization in the trans-golgi network of 3T3L1 adipocytes.
|
| |
J Biol Chem,
275,
1261-1268.
|
 |
|
|
|
|
 |
S.Martinez-Arca,
P.Alberts,
A.Zahraoui,
D.Louvard,
and
T.Galli
(2000).
Role of tetanus neurotoxin insensitive vesicle-associated membrane protein (TI-VAMP) in vesicular transport mediating neurite outgrowth.
|
| |
J Cell Biol,
149,
889-900.
|
 |
|
|
|
|
 |
W.Antonin,
C.Holroyd,
D.Fasshauer,
S.Pabst,
G.F.Von Mollard,
and
R.Jahn
(2000).
A SNARE complex mediating fusion of late endosomes defines conserved properties of SNARE structure and function.
|
| |
EMBO J,
19,
6453-6464.
|
 |
|
|
|
|
 |
C.M.Carr,
E.Grote,
M.Munson,
F.M.Hughson,
and
P.J.Novick
(1999).
Sec1p binds to SNARE complexes and concentrates at sites of secretion.
|
| |
J Cell Biol,
146,
333-344.
|
 |
|
|
|
|
 |
D.Fasshauer,
W.Antonin,
M.Margittai,
S.Pabst,
and
R.Jahn
(1999).
Mixed and non-cognate SNARE complexes. Characterization of assembly and biophysical properties.
|
| |
J Biol Chem,
274,
15440-15446.
|
 |
|
|
|
|
 |
F.M.Hughson
(1999).
Membrane fusion: structure snared at last.
|
| |
Curr Biol,
9,
R49-R52.
|
 |
|
|
|
|
 |
F.Parlati,
T.Weber,
J.A.McNew,
B.Westermann,
T.H.Söllner,
and
J.E.Rothman
(1999).
Rapid and efficient fusion of phospholipid vesicles by the alpha-helical core of a SNARE complex in the absence of an N-terminal regulatory domain.
|
| |
Proc Natl Acad Sci U S A,
96,
12565-12570.
|
 |
|
|
|
|
 |
I.Dulubova,
S.Sugita,
S.Hill,
M.Hosaka,
I.Fernandez,
T.C.Südhof,
and
J.Rizo
(1999).
A conformational switch in syntaxin during exocytosis: role of munc18.
|
| |
EMBO J,
18,
4372-4382.
|
 |
|
|
|
|
 |
R.Jahn,
and
T.C.Südhof
(1999).
Membrane fusion and exocytosis.
|
| |
Annu Rev Biochem,
68,
863-911.
|
 |
|
|
|
|
 |
J.J.Skehel,
and
D.C.Wiley
(1998).
Coiled coils in both intracellular vesicle and viral membrane fusion.
|
| |
Cell,
95,
871-874.
|
 |
|
|
|
|
 |
P.A.Harbury
(1998).
Springs and zippers: coiled coils in SNARE-mediated membrane fusion.
|
| |
Structure,
6,
1487-1491.
|
 |
|
 |
 |
|
The most recent references are shown first.
Citation data come partly from CiteXplore and partly
from an automated harvesting procedure. Note that this is likely to be
only a partial list as not all journals are covered by
either method. However, we are continually building up the citation data
so more and more references will be included with time.
Where a reference describes a PDB structure, the PDB
code is
shown on the right.
|
');
}
}
 |