 |
PDBsum entry 1aqz
|
|
|
|
 |
Contents |
 |
|
|
|
|
|
|
|
|
|
|
|
* Residue conservation analysis
|
|
|
|
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
|
|
|
| |
|
|
Structure
4:837-852
(1996)
|
|
PubMed id:
|
|
|
|
|
| |
|
Insights into specificity of cleavage and mechanism of cell entry from the crystal structure of the highly specific Aspergillus ribotoxin, restrictocin.
|
|
X.Yang,
K.Moffat.
|
|
|
|
| |
ABSTRACT
|
|
|
| |
|
BACKGROUND: Restriction, a highly specific ribotoxin made by the fungus
Aspergillus restrictus, cleaves a single phosphodiester bond in the 28S RNA of
eukaryotic ribosomes, inhibiting protein synthesis. The sequence around this
cleavage site is a binding site for elongation factors, and is conserved in all
cytoplasmic ribosomes. The catalytic mechanism of restrictocin and the reasons
for its high substrate specificity are unknown. No structure has been determined
for any other member of the Aspergillus ribotoxin family. RESULTS: The crystal
structure of restrictocin was determined at 2.1 A resolution by single
isomorphous replacement and anomalous scattering techniques, and refined to 1.7
A resolution using synchrotron Laue data. The structural core of the protein, in
which a three-turn alpha helix is packed against a five-stranded antiparallel
beta sheet, can be well aligned with that of ribonuclease T1. Large positively
charged peripheral loops near the active site construct a platform with a
concave surface for RNA binding. CONCLUSIONS: Restriction appears to combine the
catalytic components of T1 ribonucleases with the base recognition components of
Sa ribonucleases. Modeling studies using an NMR structure of an RNA substrate
analog suggest that the tertiary structure of the substrate RNA is important in
protein-RNA recognition, fitting closely into the concavity of the presumed
binding site. We speculate that the large 39-residue loop L3, which has
similarities to loops found in lectin sugar-binding domains, may be responsible
for restrictocin's ability to cross cell membranes.
|
|
|
|
|
|
|
 |
 |
|
 |
 |
 |
 |
 |
 |
 |
 |
 |
|
Literature references that cite this PDB file's key reference
|
|
 |
| |
PubMed id
|
 |
Reference
|
 |
|
|
|
 |
A.Viegas,
E.Herrero-Galán,
M.Oñaderra,
A.L.Macedo,
and
M.Bruix
(2009).
Solution structure of hirsutellin A--new insights into the active site and interacting interfaces of ribotoxins.
|
| |
FEBS J,
276,
2381-2390.
|
 |
|
PDB code:
|
 |
|
|
|
|
|
 |
E.Herrero-Galán,
J.Lacadena,
A.Martínez del Pozo,
D.G.Boucias,
N.Olmo,
M.Oñaderra,
and
J.G.Gavilanes
(2008).
The insecticidal protein hirsutellin A from the mite fungal pathogen Hirsutella thompsonii is a ribotoxin.
|
| |
Proteins,
72,
217-228.
|
 |
|
|
|
|
 |
J.J.Ellis,
and
S.Jones
(2008).
Evaluating conformational changes in protein structures binding RNA.
|
| |
Proteins,
70,
1518-1526.
|
 |
|
|
|
|
 |
M.J.Plantinga,
A.V.Korennykh,
J.A.Piccirilli,
and
C.C.Correll
(2008).
Electrostatic interactions guide the active site face of a structure-specific ribonuclease to its RNA substrate.
|
| |
Biochemistry,
47,
8912-8918.
|
 |
|
|
|
|
 |
N.Oezguen,
B.Zhou,
S.S.Negi,
O.Ivanciuc,
C.H.Schein,
G.Labesse,
and
W.Braun
(2008).
Comprehensive 3D-modeling of allergenic proteins and amino acid composition of potential conformational IgE epitopes.
|
| |
Mol Immunol,
45,
3740-3747.
|
 |
|
|
|
|
 |
J.Lacadena,
E.Alvarez-García,
N.Carreras-Sangrà,
E.Herrero-Galán,
J.Alegre-Cebollada,
L.García-Ortega,
M.Oñaderra,
J.G.Gavilanes,
and
A.Martínez del Pozo
(2007).
Fungal ribotoxins: molecular dissection of a family of natural killers.
|
| |
FEMS Microbiol Rev,
31,
212-237.
|
 |
|
|
|
|
 |
A.V.Korennykh,
J.A.Piccirilli,
and
C.C.Correll
(2006).
The electrostatic character of the ribosomal surface enables extraordinarily rapid target location by ribotoxins.
|
| |
Nat Struct Mol Biol,
13,
436-443.
|
 |
|
|
|
|
 |
E.Alvarez-García,
L.García-Ortega,
Y.Verdún,
M.Bruix,
A.Martínez del Pozo,
and
J.G.Gavilanes
(2006).
Tyr-48, a conserved residue in ribotoxins, is involved in the RNA-degrading activity of alpha-sarcin.
|
| |
Biol Chem,
387,
535-541.
|
 |
|
|
|
|
 |
L.Garciá-Ortega,
J.Lacadena,
M.Villalba,
R.Rodríguez,
J.F.Crespo,
J.Rodríguez,
C.Pascual,
N.Olmo,
M.Oñaderra,
A.M.del Pozo,
and
J.G.Gavilanes
(2005).
Production and characterization of a noncytotoxic deletion variant of the Aspergillus fumigatus allergen Aspf1 displaying reduced IgE binding.
|
| |
FEBS J,
272,
2536-2544.
|
 |
|
|
|
|
 |
M.F.García-Mayoral,
D.Pantoja-Uceda,
J.Santoro,
A.Martínez del Pozo,
J.G.Gavilanes,
M.Rico,
and
M.Bruix
(2005).
Refined NMR structure of alpha-sarcin by 15N-1H residual dipolar couplings.
|
| |
Eur Biophys J,
34,
1057-1065.
|
 |
|
|
|
|
 |
A.Siemer,
M.Masip,
N.Carreras,
L.García-Ortega,
M.Oñaderra,
M.Bruix,
A.M.Del Pozo,
and
J.G.Gavilanes
(2004).
Conserved asparagine residue 54 of alpha-sarcin plays a role in protein stability and enzyme activity.
|
| |
Biol Chem,
385,
1165-1170.
|
 |
|
|
|
|
 |
L.L.Videau,
W.B.Arendall,
and
J.S.Richardson
(2004).
The cis-Pro touch-turn: a rare motif preferred at functional sites.
|
| |
Proteins,
56,
298-309.
|
 |
|
|
|
|
 |
M.F.García-Mayoral,
L.García-Ortega,
M.P.Lillo,
J.Santoro,
A.Martínez del Pozo,
J.G.Gavilanes,
M.Rico,
and
M.Bruix
(2004).
NMR structure of the noncytotoxic alpha-sarcin mutant Delta(7-22): the importance of the native conformation of peripheral loops for activity.
|
| |
Protein Sci,
13,
1000-1011.
|
 |
|
PDB code:
|
 |
|
|
|
|
|
 |
M.Masip,
L.García-Ortega,
N.Olmo,
M.F.García-Mayoral,
J.M.Pérez-Cañadillas,
M.Bruix,
M.Oñaderra,
A.Martínez del Pozo,
and
J.G.Gavilanes
(2003).
Leucine 145 of the ribotoxin alpha-sarcin plays a key role for determining the specificity of the ribosome-inactivating activity of the protein.
|
| |
Protein Sci,
12,
161-169.
|
 |
|
|
|
|
 |
O.Schrader,
T.Baumstark,
and
D.Riesner
(2003).
A mini-RNA containing the tetraloop, wobble-pair and loop E motifs of the central conserved region of potato spindle tuber viroid is processed into a minicircle.
|
| |
Nucleic Acids Res,
31,
988-998.
|
 |
|
|
|
|
 |
J.P.Langedijk
(2002).
Translocation activity of C-terminal domain of pestivirus Erns and ribotoxin L3 loop.
|
| |
J Biol Chem,
277,
5308-5314.
|
 |
|
|
|
|
 |
J.P.Langedijk,
P.A.van Veelen,
W.M.Schaaper,
A.H.de Ru,
R.H.Meloen,
and
M.M.Hulst
(2002).
A structural model of pestivirus E(rns) based on disulfide bond connectivity and homology modeling reveals an extremely rare vicinal disulfide.
|
| |
J Virol,
76,
10383-10392.
|
 |
|
|
|
|
 |
J.Sevcik,
L.Urbanikova,
P.A.Leland,
and
R.T.Raines
(2002).
X-ray structure of two crystalline forms of a streptomycete ribonuclease with cytotoxic activity.
|
| |
J Biol Chem,
277,
47325-47330.
|
 |
|
PDB codes:
|
 |
|
|
|
|
|
 |
L.Garcia-Ortega,
M.Masip,
J.M.Mancheño,
M.Oñaderra,
M.A.Lizarbe,
M.F.García-Mayoral,
M.Bruix,
A.Martínez del Pozo,
and
J.G.Gavilanes
(2002).
Deletion of the NH2-terminal beta-hairpin of the ribotoxin alpha-sarcin produces a nontoxic but active ribonuclease.
|
| |
J Biol Chem,
277,
18632-18639.
|
 |
|
|
|
|
 |
L.García-Ortega,
J.Lacadena,
J.M.Mancheño,
M.Oñaderra,
R.Kao,
J.Davies,
N.Olmo,
Pozo AM,
and
J.G.Gavilanes
(2001).
Involvement of the amino-terminal beta-hairpin of the Aspergillus ribotoxins on the interaction with membranes and nonspecific ribonuclease activity.
|
| |
Protein Sci,
10,
1658-1668.
|
 |
|
|
|
|
 |
M.Masip,
J.Lacadena,
J.M.Mancheño,
M.Oñaderra,
A.Martínez-Ruiz,
A.Martínez del Pozo,
and
J.G.Gavilanes
(2001).
Arginine 121 is a crucial residue for the specific cytotoxic activity of the ribotoxin alpha-sarcin.
|
| |
Eur J Biochem,
268,
6190-6196.
|
 |
|
|
|
|
 |
X.Yang,
T.Gérczei,
L.T.Glover,
and
C.C.Correll
(2001).
Crystal structures of restrictocin-inhibitor complexes with implications for RNA recognition and base flipping.
|
| |
Nat Struct Biol,
8,
968-973.
|
 |
|
PDB codes:
|
 |
|
|
|
|
|
 |
C.de Antonio,
A.Martínez del Pozo,
J.M.Mancheño,
M.Oñaderra,
J.Lacadena,
A.Martínez-Ruiz,
J.M.Pérez-Cañadillas,
M.Bruix,
and
J.G.Gavilanes
(2000).
Assignment of the contribution of the tryptophan residues to the spectroscopic and functional properties of the ribotoxin alpha-sarcin.
|
| |
Proteins,
41,
350-361.
|
 |
|
|
|
|
 |
L.Hwu,
K.Huang,
D.Chen,
and
A.Lin
(2000).
The action mode of the ribosome-inactivating protein alpha-sarcin.
|
| |
J Biomed Sci,
7,
420-428.
|
 |
|
|
|
|
 |
S.K.Nayak,
Shveta,
and
J.K.Batra
(2000).
Localization of the catalytic activity in restrictocin molecule by deletion mutagenesis.
|
| |
Eur J Biochem,
267,
1777-1783.
|
 |
|
|
|
|
 |
J.Lacadena,
A.Martínez del Pozo,
A.Martínez-Ruiz,
J.M.Pérez-Cañadillas,
M.Bruix,
J.M.Mancheño,
M.Oñaderra,
and
J.G.Gavilanes
(1999).
Role of histidine-50, glutamic acid-96, and histidine-137 in the ribonucleolytic mechanism of the ribotoxin alpha-sarcin.
|
| |
Proteins,
37,
474-484.
|
 |
|
|
|
|
 |
J.P.Latgé
(1999).
Aspergillus fumigatus and aspergillosis.
|
| |
Clin Microbiol Rev,
12,
310-350.
|
 |
|
|
|
|
 |
R.Kao,
and
J.Davies
(1999).
Molecular dissection of mitogillin reveals that the fungal ribotoxins are a family of natural genetically engineered ribonucleases.
|
| |
J Biol Chem,
274,
12576-12582.
|
 |
|
|
|
|
 |
C.C.Correll,
A.Munishkin,
Y.L.Chan,
Z.Ren,
I.G.Wool,
and
T.A.Steitz
(1998).
Crystal structure of the ribosomal RNA domain essential for binding elongation factors.
|
| |
Proc Natl Acad Sci U S A,
95,
13436-13441.
|
 |
|
PDB code:
|
 |
|
|
|
|
|
 |
J.M.Pérez-Cañadillas,
R.Campos-Olivas,
J.Lacadena,
A.Martínez del Pozo,
J.G.Gavilanes,
J.Santoro,
M.Rico,
and
M.Bruix
(1998).
Characterization of pKa values and titration shifts in the cytotoxic ribonuclease alpha-sarcin by NMR. Relationship between electrostatic interactions, structure, and catalytic function.
|
| |
Biochemistry,
37,
15865-15876.
|
 |
|
|
|
|
 |
R.Kao,
J.E.Shea,
J.Davies,
and
D.W.Holden
(1998).
Probing the active site of mitogillin, a fungal ribotoxin.
|
| |
Mol Microbiol,
29,
1019-1027.
|
 |
|
|
|
|
 |
X.Yang,
Z.Ren,
and
K.Moffat
(1998).
Structure refinement against synchrotron Laue data: strategies for data collection and reduction.
|
| |
Acta Crystallogr D Biol Crystallogr,
54,
367-377.
|
 |
|
|
|
|
 |
S.K.Nayak,
and
J.K.Batra
(1997).
A single amino acid substitution in ribonucleolytic toxin restrictocin abolishes its specific substrate recognition activity.
|
| |
Biochemistry,
36,
13693-13699.
|
 |
|
 |
 |
|
The most recent references are shown first.
Citation data come partly from CiteXplore and partly
from an automated harvesting procedure. Note that this is likely to be
only a partial list as not all journals are covered by
either method. However, we are continually building up the citation data
so more and more references will be included with time.
Where a reference describes a PDB structure, the PDB
code is
shown on the right.
|
');
}
}
 |