spacer
spacer

PDBsum entry 1acv

Go to PDB code: 
protein Protein-protein interface(s) links
Disulfide oxidoreductase PDB id
1acv

 

 

 

 

Loading ...

 
JSmol PyMol  
Contents
Protein chains
188 a.a. *
Waters ×167
* Residue conservation analysis
PDB id:
1acv
Name: Disulfide oxidoreductase
Title: Dsba mutant h32s
Structure: Dsba. Chain: a, b. Synonym: disulfide bond formation protein. Engineered: yes. Mutation: yes
Source: Escherichia coli. Organism_taxid: 562. Cellular_location: periplasm. Expressed in: escherichia coli. Expression_system_taxid: 562
Biol. unit: Dimer (from PQS)
Resolution:
1.90Å     R-factor:   0.182     R-free:   0.216
Authors: L.W.Guddat,J.L.Martin
Key ref: L.W.Guddat et al. (1997). Structural analysis of three His32 mutants of DsbA: support for an electrostatic role of His32 in DsbA stability. Protein Sci, 6, 1893-1900. PubMed id: 9300489 DOI: 10.1002/pro.5560060910
Date:
10-Feb-97     Release date:   15-Oct-97    
PROCHECK
Go to PROCHECK summary
 Headers
 References

Protein chains
Pfam   ArchSchema ?
P0AEG4  (DSBA_ECOLI) -  Thiol:disulfide interchange protein DsbA from Escherichia coli (strain K12)
Seq:
Struc:
208 a.a.
188 a.a.*
Key:    PfamA domain  Secondary structure  CATH domain
* PDB and UniProt seqs differ at 1 residue position (black cross)

 

 
DOI no: 10.1002/pro.5560060910 Protein Sci 6:1893-1900 (1997)
PubMed id: 9300489  
 
 
Structural analysis of three His32 mutants of DsbA: support for an electrostatic role of His32 in DsbA stability.
L.W.Guddat, J.C.Bardwell, R.Glockshuber, M.Huber-Wunderlich, T.Zander, J.L.Martin.
 
  ABSTRACT  
 
DsbA, a 21-kDa protein from Escherichia coli, is a potent oxidizing disulfide catalyst required for disulfide bond formation in secreted proteins. The active site of DsbA is similar to that of mammalian protein disulfide isomerases, and includes a reversible disulfide bond formed from cysteines separated by two residues (Cys30-Pro31-His32-Cys33). Unlike most protein disulfides, the active-site disulfide of DsbA is highly reactive and the oxidized form of DsbA is much less stable than the reduced form at physiological pH. His32, one of the two residues between the active-site cysteines, is critical to the oxidizing power of DsbA and to the relative instability of the protein in the oxidized form. Mutation of this single residue to tyrosine, serine, or leucine results in a significant increase in stability (of approximately 5-7 kcal/mol) of the oxidized His32 variants relative to the oxidized wild-type protein. Despite the dramatic changes in stability, the structures of all three oxidized DsbA His32 variants are very similar to the wild-type oxidized structure, including conservation of solvent atoms near the active-site residue, Cys30. These results show that the His32 residue does not exert a conformational effect on the structure of DsbA. The destabilizing effect of His32 on oxidized DsbA is therefore most likely electrostatic in nature.
 

Literature references that cite this PDB file's key reference

  PubMed id Reference
21241169 S.R.Shouldice, B.Heras, P.M.Walden, M.Totsika, M.A.Schembri, and J.L.Martin (2011).
Structure and function of DsbA, a key bacterial oxidative folding catalyst.
  Antioxid Redox Signal, 14, 1729-1760.  
20340133 H.Fu, G.Grimsley, J.M.Scholtz, and C.N.Pace (2010).
Increasing protein stability: importance of DeltaC(p) and the denatured state.
  Protein Sci, 19, 1044-1052.  
19181668 G.Ren, D.Stephan, Z.Xu, Y.Zheng, D.Tang, R.S.Harrison, M.Kurz, R.Jarrott, S.R.Shouldice, A.Hiniker, J.L.Martin, B.Heras, and J.C.Bardwell (2009).
Properties of the thioredoxin fold superfamily are modulated by a single amino Acid residue.
  J Biol Chem, 284, 10150-10159.
PDB code: 3dyr
19389711 J.J.Paxman, N.A.Borg, J.Horne, P.E.Thompson, Y.Chin, P.Sharma, J.S.Simpson, J.Wielens, S.Piek, C.M.Kahler, H.Sakellaris, M.Pearce, S.P.Bottomley, J.Rossjohn, and M.J.Scanlon (2009).
The structure of the bacterial oxidoreductase enzyme DsbA in complex with a peptide reveals a basis for substrate specificity in the catalytic cycle of DsbA enzymes.
  J Biol Chem, 284, 17835-17845.
PDB code: 3dks
19265485 M.Kurz, I.Iturbe-Ormaetxe, R.Jarrott, S.R.Shouldice, M.A.Wouters, P.Frei, R.Glockshuber, S.L.O'Neill, B.Heras, and J.L.Martin (2009).
Structural and functional characterization of the oxidoreductase alpha-DsbA1 from Wolbachia pipientis.
  Antioxid Redox Signal, 11, 1485-1500.
PDB codes: 3f4r 3f4s 3f4t
19376849 M.Totsika, B.Heras, D.J.Wurpel, and M.A.Schembri (2009).
Characterization of two homologous disulfide bond systems involved in virulence factor biogenesis in uropathogenic Escherichia coli CFT073.
  J Bacteriol, 191, 3901-3908.  
18588487 B.S.Mamathambika, and J.C.Bardwell (2008).
Disulfide-linked protein folding pathways.
  Annu Rev Cell Dev Biol, 24, 211-235.  
  18259058 M.Kurz, I.Iturbe-Ormaetxe, R.Jarrott, S.L.O'Neill, K.A.Byriel, J.L.Martin, and B.Heras (2008).
Crystallization and preliminary diffraction analysis of a DsbA homologue from Wolbachia pipientis.
  Acta Crystallogr Sect F Struct Biol Cryst Commun, 64, 94-97.  
16413482 G.Tian, S.Xiang, R.Noiva, W.J.Lennarz, and H.Schindelin (2006).
The crystal structure of yeast protein disulfide isomerase suggests cooperativity between its active sites.
  Cell, 124, 61-73.
PDB code: 2b5e
16179963 S.Madonna, R.Papa, L.Birolo, F.Autore, N.Doti, G.Marino, E.Quemeneur, G.Sannia, M.L.Tutino, and A.Duilio (2006).
The thiol-disulfide oxidoreductase system in the cold-adapted bacterium Pseudoalteromonas haloplanktis TAC 125: discovery of a novel disulfide oxidoreductase enzyme.
  Extremophiles, 10, 41-51.  
16131664 B.R.Roberts, Z.A.Wood, T.J.Jönsson, L.B.Poole, and P.A.Karplus (2005).
Oxidized and synchrotron cleaved structures of the disulfide redox center in the N-terminal domain of Salmonella typhimurium AhpF.
  Protein Sci, 14, 2414-2420.
PDB codes: 1zyn 1zyp
15687215 J.Tan, Y.Lu, and J.C.Bardwell (2005).
Mutational analysis of the disulfide catalysts DsbA and DsbB.
  J Bacteriol, 187, 1504-1510.  
15340927 A.J.Bordner, and R.A.Abagyan (2004).
Large-scale prediction of protein geometry and stability changes for arbitrary single point mutations.
  Proteins, 57, 400-413.  
14747707 B.A.Manjasetty, J.Hennecke, R.Glockshuber, and U.Heinemann (2004).
Structure of circularly permuted DsbA(Q100T99): preserved global fold and local structural adjustments.
  Acta Crystallogr D Biol Crystallogr, 60, 304-309.
PDB code: 1un2
15515098 J.T.Tan, and J.C.Bardwell (2004).
Key players involved in bacterial disulfide-bond formation.
  Chembiochem, 5, 1479-1487.  
14962389 N.Foloppe, and L.Nilsson (2004).
The glutaredoxin -C-P-Y-C- motif: influence of peripheral residues.
  Structure, 12, 289-300.
PDB codes: 1upy 1upz 1uq0 1uq1 1uq2 1uq3 1uq6 1uq7 1uq8 1uq9 1uqh 1uqi 1uqj 1uqk 1uql 1uqm 1uqn 1uqo 1uqp 1uqq
12533475 C.W.Bouwman, M.Kohli, A.Killoran, G.A.Touchie, R.J.Kadner, and N.L.Martin (2003).
Characterization of SrgA, a Salmonella enterica serovar Typhimurium virulence plasmid-encoded paralogue of the disulfide oxidoreductase DsbA, essential for biogenesis of plasmid-encoded fimbriae.
  J Bacteriol, 185, 991.  
13678522 J.Blank, T.Kupke, E.Lowe, P.Barth, R.B.Freedman, and L.W.Ruddock (2003).
The influence of His94 and Pro149 in modulating the activity of V. cholerae DsbA.
  Antioxid Redox Signal, 5, 359-366.  
12866046 L.N.Kinch, D.Baker, and N.V.Grishin (2003).
Deciphering a novel thioredoxin-like fold family.
  Proteins, 52, 323-331.  
  10210188 J.B.Charbonnier, P.Belin, M.Moutiez, E.A.Stura, and E.Quéméneur (1999).
On the role of the cis-proline residue in the active site of DsbA.
  Protein Sci, 8, 96.
PDB code: 1bq7
  9605329 E.Mössner, M.Huber-Wunderlich, and R.Glockshuber (1998).
Characterization of Escherichia coli thioredoxin variants mimicking the active-sites of other thiol/disulfide oxidoreductases.
  Protein Sci, 7, 1233-1244.  
9572841 H.J.Schirra, C.Renner, M.Czisch, M.Huber-Wunderlich, T.A.Holak, and R.Glockshuber (1998).
Structure of reduced DsbA from Escherichia coli in solution.
  Biochemistry, 37, 6263-6276.
PDB codes: 1a23 1a24
  9792093 J.Couprie, M.L.Remerowski, A.Bailleul, M.Courçon, N.Gilles, E.Quéméneur, and N.Jamin (1998).
Differences between the electronic environments of reduced and oxidized Escherichia coli DsbA inferred from heteronuclear magnetic resonance spectroscopy.
  Protein Sci, 7, 2065-2080.  
The most recent references are shown first. Citation data come partly from CiteXplore and partly from an automated harvesting procedure. Note that this is likely to be only a partial list as not all journals are covered by either method. However, we are continually building up the citation data so more and more references will be included with time. Where a reference describes a PDB structure, the PDB code is shown on the right.

 

spacer

spacer