spacer
spacer

PDBsum entry 1abf

Go to PDB code: 
protein ligands links
Binding protein PDB id
1abf

 

 

 

 

Loading ...

 
JSmol PyMol  
Contents
Protein chain
305 a.a. *
Ligands
FCA
FCB
Waters ×191
* Residue conservation analysis
PDB id:
1abf
Name: Binding protein
Title: Substrate specificity and affinity of a protein modulated by bound water molecules
Structure: L-arabinose-binding protein. Chain: a. Engineered: yes
Source: Escherichia coli. Organism_taxid: 562
Resolution:
1.90Å     R-factor:   0.134    
Authors: D.K.Wilson,F.A.Quiocho
Key ref: F.A.Quiocho et al. (1989). Substrate specificity and affinity of a protein modulated by bound water molecules. Nature, 340, 404-407. PubMed id: 2818726
Date:
23-Apr-92     Release date:   31-Oct-93    
PROCHECK
Go to PROCHECK summary
 Headers
 References

Protein chain
P02924  (ARAF_ECOLI) -  L-arabinose-binding periplasmic protein from Escherichia coli (strain K12)
Seq:
Struc:
329 a.a.
305 a.a.
Key:    Secondary structure  CATH domain

 

 
Nature 340:404-407 (1989)
PubMed id: 2818726  
 
 
Substrate specificity and affinity of a protein modulated by bound water molecules.
F.A.Quiocho, D.K.Wilson, N.K.Vyas.
 
  ABSTRACT  
 
Water molecules influence molecular interactions in all biological systems, yet it is extremely difficult to understand their effects in precise atomic detail. Here we present evidence, based on highly refined atomic structures of the complexes of the L-arabinose-binding protein with L-arabinose, D-fucose and D-galactose, that bound water molecules, coupled with localized conformational changes, can govern substrate specificity and affinity. The atoms common to the three sugars are identically positioned in the binding site and the same nine strong hydrogen bonds are formed in all three complexes. Two hydrogen-bonded water molecules in the site contribute further to tight binding of L-arabinose but create an unfavourable interaction with the methyl group of D-fucose. Equally tight binding of D-galactose is attained by the replacement of one of the hydrogen-bonded water molecules by its--CH2OH group, coordinated with localized structural changes which include a shift and redirection of the hydrogen-bonding interactions of the other water molecule. These observations illustrate how ordered water molecules can contribute directly to the properties of proteins by influencing their interaction with ligands.
 

Literature references that cite this PDB file's key reference

  PubMed id Reference
  20711360 D.J.Huggins, G.J.McKenzie, D.D.Robinson, A.J.Narváez, B.Hardwick, M.Roberts-Thomson, A.R.Venkitaraman, G.H.Grant, and M.C.Payne (2010).
Computational analysis of phosphopeptide binding to the polo-box domain of the mitotic kinase PLK1 using molecular dynamics simulation.
  PLoS Comput Biol, 6, 0.  
19585017 A.Szumna (2009).
Water co-encapsulation in an inverted molecular capsule.
  Chem Commun (Camb), (), 4191-4193.  
19833875 B.Schreier, C.Stumpp, S.Wiesner, and B.Höcker (2009).
Computational design of ligand binding is not a solved problem.
  Proc Natl Acad Sci U S A, 106, 18491-18496.
PDB code: 2wrz
19101978 D.A.Kuntz, W.Zhong, J.Guo, D.R.Rose, and G.J.Boons (2009).
The Molecular Basis of Inhibition of Golgi alpha-Mannosidase II by Mannostatin A.
  Chembiochem, 10, 268-277.
PDB codes: 3dx0 3dx1 3dx2 3dx3 3dx4
19650090 M.Mazik, A.Hartmann, and P.G.Jones (2009).
Highly effective recognition of carbohydrates by phenanthroline-based receptors: alpha- versus beta-anomer binding preference.
  Chemistry, 15, 9147-9159.  
19746363 P.C.Kohler, T.Ritschel, W.B.Schweizer, G.Klebe, and F.Diederich (2009).
High-affinity inhibitors of tRNA-guanine transglycosylase replacing the function of a structural water cluster.
  Chemistry, 15, 10809-10817.  
18074341 A.D.Hill, and P.J.Reilly (2008).
A Gibbs free energy correlation for automated docking of carbohydrates.
  J Comput Chem, 29, 1131-1141.  
18086667 S.Chopra, R.M.Dooling, C.G.Horner, and E.E.Howell (2008).
A balancing act between net uptake of water during dihydrofolate binding and net release of water upon NADPH binding in R67 dihydrofolate reductase.
  J Biol Chem, 283, 4690-4698.  
17766383 A.C.Dumetz, A.M.Snellinger-O'brien, E.W.Kaler, and A.M.Lenhoff (2007).
Patterns of protein protein interactions in salt solutions and implications for protein crystallization.
  Protein Sci, 16, 1867-1877.  
17368482 C.A.MacRaild, A.H.Daranas, A.Bronowska, and S.W.Homans (2007).
Global changes in local protein dynamics reduce the entropic cost of carbohydrate binding in the arabinose-binding protein.
  J Mol Biol, 368, 822-832.  
17242738 Z.Li, and T.Lazaridis (2007).
Water at biomolecular binding interfaces.
  Phys Chem Chem Phys, 9, 573-581.  
16632493 K.Stierand, P.C.Maass, and M.Rarey (2006).
Molecular complexes at a glance: automated generation of two-dimensional complex diagrams.
  Bioinformatics, 22, 1710-1716.  
16905103 M.Renatus, S.G.Parrado, A.D'Arcy, U.Eidhoff, B.Gerhartz, U.Hassiepen, B.Pierrat, R.Riedl, D.Vinzenz, S.Worpenberg, and M.Kroemer (2006).
Structural basis of ubiquitin recognition by the deubiquitinating protease USP2.
  Structure, 14, 1293-1302.
PDB code: 2hd5
15841474 A.E.Cho, V.Guallar, B.J.Berne, and R.Friesner (2005).
Importance of accurate charges in molecular docking: quantum mechanical/molecular mechanical (QM/MM) approach.
  J Comput Chem, 26, 915-931.  
15831490 M.Sobhany, J.Dong, and M.Negishi (2005).
Two-step mechanism that determines the donor binding specificity of human UDP-N-acetylhexosaminyltransferase.
  J Biol Chem, 280, 23441-23445.  
15139817 B.Jayaram, and T.Jain (2004).
The role of water in protein-DNA recognition.
  Annu Rev Biophys Biomol Struct, 33, 343-361.  
12468528 N.K.Karpowich, H.H.Huang, P.C.Smith, and J.F.Hunt (2003).
Crystal structures of the BtuF periplasmic-binding protein for vitamin B12 suggest a functionally important reduction in protein mobility upon ligand binding.
  J Biol Chem, 278, 8429-8434.
PDB codes: 1n4a 1n4d
12925992 Q.Vicens, and E.Westhof (2003).
Molecular recognition of aminoglycoside antibiotics by ribosomal RNA and resistance enzymes: an analysis of x-ray crystal structures.
  Biopolymers, 70, 42-57.  
11967366 H.I.Jung, S.J.Bowden, A.Cooper, and R.N.Perham (2002).
Thermodynamic analysis of the binding of component enzymes in the assembly of the pyruvate dehydrogenase multienzyme complex of Bacillus stearothermophilus.
  Protein Sci, 11, 1091-1100.  
11504727 M.Goel, D.Jain, K.J.Kaur, R.Kenoth, B.G.Maiya, M.J.Swamy, and D.M.Salunke (2001).
Functional equality in the absence of structural similarity: an added dimension to molecular mimicry.
  J Biol Chem, 276, 39277-39281.
PDB code: 1jn2
9873010 C.E.Liu, P.Q.Liu, A.Wolf, E.Lin, and G.F.Ames (1999).
Both lobes of the soluble receptor of the periplasmic histidine permease, an ABC transporter (traffic ATPase), interact with the membrane-bound complex. Effect of different ligands and consequences for the mechanism of action.
  J Biol Chem, 274, 739-747.  
10398928 D.Ringe, and C.Mattos (1999).
Analysis of the binding surfaces of proteins.
  Med Res Rev, 19, 321-331.  
10081963 J.A.Cuff, and G.J.Barton (1999).
Evaluation and improvement of multiple sequence methods for protein secondary structure prediction.
  Proteins, 34, 508-519.  
10506175 J.Bouckaert, T.W.Hamelryck, L.Wyns, and R.Loris (1999).
The crystal structures of Man(alpha1-3)Man(alpha1-O)Me and Man(alpha1-6)Man(alpha1-O)Me in complex with concanavalin A.
  J Biol Chem, 274, 29188-29195.
PDB codes: 1qdc 1qdo
10417405 R.Ravishankar, K.Suguna, A.Surolia, and M.Vijayan (1999).
Structures of the complexes of peanut lectin with methyl-beta-galactose and N-acetyllactosamine and a comparative study of carbohydrate binding in Gal/GalNAc-specific legume lectins.
  Acta Crystallogr D Biol Crystallogr, 55, 1375-1382.
PDB codes: 1ciw 1qf3
9651355 D.G.Vassylyev, H.Tomitori, K.Kashiwagi, K.Morikawa, and K.Igarashi (1998).
Crystal structure and mutational analysis of the Escherichia coli putrescine receptor. Structural basis for substrate specificity.
  J Biol Chem, 273, 17604-17609.
PDB code: 1a99
  9568898 M.Gregoriou, M.E.Noble, K.A.Watson, E.F.Garman, T.M.Krulle, C.de la Fuente, G.W.Fleet, N.G.Oikonomakos, and L.N.Johnson (1998).
The structure of a glycogen phosphorylase glucopyranose spirohydantoin complex at 1.8 A resolution and 100 K: the role of the water structure and its contribution to binding.
  Protein Sci, 7, 915-927.
PDB codes: 1a8i 2gpn
9309217 F.A.Quiocho, J.C.Spurlino, and L.E.Rodseth (1997).
Extensive features of tight oligosaccharide binding revealed in high-resolution structures of the maltodextrin transport/chemosensory receptor.
  Structure, 5, 997.
PDB codes: 1anf 3mbp 4mbp
9188702 L.J.Martins, C.P.Hill, and W.R.Ellis (1997).
Structures of wild-type chloromet and L103N hydroxomet Themiste zostericola myohemerythrins at 1.8 A resolution.
  Biochemistry, 36, 7044-7049.
PDB codes: 1a7d 1a7e
9278422 M.A.Schumacher, A.Glasfeld, H.Zalkin, and R.G.Brennan (1997).
The X-ray structure of the PurR-guanine-purF operator complex reveals the contributions of complementary electrostatic surfaces and a water-mediated hydrogen bond to corepressor specificity and binding affinity.
  J Biol Chem, 272, 22648-22653.
PDB code: 1wet
8702898 A.Wolf, K.C.Lee, J.F.Kirsch, and G.F.Ames (1996).
Ligand-dependent conformational plasticity of the periplasmic histidine-binding protein HisJ. Involvement in transport specificity.
  J Biol Chem, 271, 21243-21250.  
8861200 F.A.Quiocho, and P.S.Ledvina (1996).
Atomic structure and specificity of bacterial periplasmic receptors for active transport and chemotaxis: variation of common themes.
  Mol Microbiol, 20, 17-25.  
9000013 J.E.Ladbury (1996).
Just add water! The effect of water on the specificity of protein-ligand binding sites and its potential application to drug design.
  Chem Biol, 3, 973-980.  
8946852 J.R.Tame, S.H.Sleigh, A.J.Wilkinson, and J.E.Ladbury (1996).
The role of water in sequence-independent ligand binding by an oligopeptide transporter protein.
  Nat Struct Biol, 3, 998.
PDB codes: 1jet 1jeu 1jev
8861535 N.C.Singha, N.Surolia, and A.Surolia (1996).
On the relationship of thermodynamic parameters with the buried surface area in protein-ligand complex formation.
  Biosci Rep, 16, 1.  
8837026 S.Paul (1996).
Natural catalytic antibodies.
  Mol Biotechnol, 5, 197-207.  
8962085 W.E.Royer, A.Pardanani, Q.H.Gibson, E.S.Peterson, and J.M.Friedman (1996).
Ordered water molecules as key allosteric mediators in a cooperative dimeric hemoglobin.
  Proc Natl Acad Sci U S A, 93, 14526-14531.  
8789192 C.S.Poornima, and P.M.Dean (1995).
Hydration in drug design. 1. Multiple hydrogen-bonding features of water molecules in mediating protein-ligand interactions.
  J Comput Aided Mol Des, 9, 500-512.  
8789193 C.S.Poornima, and P.M.Dean (1995).
Hydration in drug design. 2. Influence of local site surface shape on water binding.
  J Comput Aided Mol Des, 9, 513-520.  
7749919 J.R.Cupp-Vickery, and T.L.Poulos (1995).
Structure of cytochrome P450eryF involved in erythromycin biosynthesis.
  Nat Struct Biol, 2, 144-153.
PDB code: 1oxa
  8535235 K.Huang, W.Lu, S.Anderson, M.Laskowski, and M.N.James (1995).
Water molecules participate in proteinase-inhibitor interactions: crystal structures of Leu18, Ala18, and Gly18 variants of turkey ovomucoid inhibitor third domain complexed with Streptomyces griseus proteinase B.
  Protein Sci, 4, 1985-1997.
PDB codes: 1sgp 1sgq 1sgr 2sge
8519982 V.Helms, and R.C.Wade (1995).
Thermodynamics of water mediating protein-ligand interactions in cytochrome P450cam: a molecular dynamics study.
  Biophys J, 69, 810-824.  
9962594 G.Hummer, and D.M.Soumpasis (1994).
Statistical mechanical treatment of the structural hydration of biological macromolecules: Results for B-DNA.
  Phys Rev E Stat Phys Plasmas Fluids Relat Interdiscip Topics, 50, 5085-5095.  
7731955 M.Peräkylä, and T.A.Pakkanen (1994).
Quantum mechanical model assembly study on the energetics of binding of arabinose, fucose, and galactose to L-arabinose-binding protein.
  Proteins, 20, 367-372.  
  7854254 M.Potts (1994).
Desiccation tolerance of prokaryotes.
  Microbiol Rev, 58, 755-805.  
8187102 T.L.Lowary, S.J.Swiedler, and O.Hindsgaul (1994).
Recognition of synthetic analogues of the acceptor, beta-D-Gal p-OR, by the blood-group H gene-specified glycosyltransferase.
  Carbohydr Res, 256, 257-273.  
8302837 T.N.Bhat, G.A.Bentley, G.Boulot, M.I.Greene, D.Tello, W.Dall'Acqua, H.Souchon, F.P.Schwarz, R.A.Mariuzza, and R.J.Poljak (1994).
Bound water molecules and conformational stabilization help mediate an antigen-antibody association.
  Proc Natl Acad Sci U S A, 91, 1089-1093.
PDB codes: 1vfa 1vfb
8464908 K.Warncke, and P.L.Dutton (1993).
Experimental resolution of the free energies of aqueous solvation contributions to ligand-protein binding: quinone-QA site interactions in the photosynthetic reaction center protein.
  Proc Natl Acad Sci U S A, 90, 2920-2924.  
8473916 S.H.Rotstein, and M.A.Murcko (1993).
GenStar: a method for de novo drug design.
  J Comput Aided Mol Des, 7, 23-43.  
8252553 T.L.Lowary, and O.Hindsgaul (1993).
Recognition of synthetic deoxy and deoxyfluoro analogs of the acceptor alpha-L-Fuc p-(1-->2)-beta-D-Gal p-OR by the blood-group A and B gene-specified glycosyltransferases.
  Carbohydr Res, 249, 163-195.  
1518848 A.Perczel, B.M.Foxman, and G.D.Fasman (1992).
How reverse turns may mediate the formation of helical segments in proteins: an x-ray model.
  Proc Natl Acad Sci U S A, 89, 8210-8214.  
1557349 J.S.Finer-Moore, A.A.Kossiakoff, J.H.Hurley, T.Earnest, and R.M.Stroud (1992).
Solvent structure in crystals of trypsin determined by X-ray and neutron diffraction.
  Proteins, 12, 203-222.
PDB code: 5ptp
1476386 K.Peek, S.A.Wilson, M.Prescott, and R.M.Daniel (1992).
Some characteristics of a serine proteinase isolated from an extreme thermophile for use in kinetically controlled peptide bond synthesis.
  Ann N Y Acad Sci, 672, 471-477.  
The most recent references are shown first. Citation data come partly from CiteXplore and partly from an automated harvesting procedure. Note that this is likely to be only a partial list as not all journals are covered by either method. However, we are continually building up the citation data so more and more references will be included with time. Where a reference describes a PDB structure, the PDB code is shown on the right.

 

spacer

spacer