spacer
spacer

PDBsum entry 1aaz

Go to PDB code: 
protein metals Protein-protein interface(s) links
Electron transport PDB id
1aaz

 

 

 

 

Loading ...

 
JSmol PyMol  
Contents
Protein chains
87 a.a. *
Metals
_CD ×2
Waters ×666
* Residue conservation analysis
PDB id:
1aaz
Name: Electron transport
Title: The structure of oxidized bacteriophage t4 glutaredoxin (thioredoxin)
Structure: Glutaredoxin. Chain: a, b. Engineered: yes
Source: Enterobacteria phage t4. Organism_taxid: 10665
Resolution:
2.00Å     R-factor:   0.210    
Authors: H.Eklund,M.Ingelman,B.-O.Soderberg,T.Uhlin,P.Nordlund,M.Nikkola, U.Sonnerstam,T.Joelson,K.Petratos
Key ref:
H.Eklund et al. (1992). Structure of oxidized bacteriophage T4 glutaredoxin (thioredoxin). Refinement of native and mutant proteins. J Mol Biol, 228, 596-618. PubMed id: 1453466 DOI: 10.1016/0022-2836(92)90844-A
Date:
24-Apr-92     Release date:   31-Oct-93    
PROCHECK
Go to PROCHECK summary
 Headers
 References

Protein chains
Pfam   ArchSchema ?
P00276  (GLRX_BPT4) -  Glutaredoxin from Enterobacteria phage T4
Seq:
Struc:
87 a.a.
87 a.a.
Key:    PfamA domain  Secondary structure  CATH domain

 

 
DOI no: 10.1016/0022-2836(92)90844-A J Mol Biol 228:596-618 (1992)
PubMed id: 1453466  
 
 
Structure of oxidized bacteriophage T4 glutaredoxin (thioredoxin). Refinement of native and mutant proteins.
H.Eklund, M.Ingelman, B.O.Söderberg, T.Uhlin, P.Nordlund, M.Nikkola, U.Sonnerstam, T.Joelson, K.Petratos.
 
  ABSTRACT  
 
The structure of wild-type bacteriophage T4 glutaredoxin (earlier called thioredoxin) in its oxidized form has been refined in a monoclinic crystal form at 2.0 A resolution to a crystallographic R-factor of 0.209. A mutant T4 glutaredoxin gives orthorhombic crystals of better quality. The structure of this mutant has been solved by molecular replacement methods and refined at 1.45 A to an R-value of 0.175. In this mutant glutaredoxin, the active site residues Val15 and Tyr16 have been substituted by Gly and Pro, respectively, to mimic that of Escherichia coli thioredoxin. The main-chain conformation of the wild-type protein is similar in the two independently determined molecules in the asymmetric unit of the monoclinic crystals. On the other hand, side-chain conformations differ considerably between the two molecules due to heterologous packing interactions in the crystals. The structure of the mutant protein is very similar to the wild-type protein, except at mutated positions and at parts involved in crystal contacts. The active site disulfide bridge between Cys14 and Cys17 is located at the first turn of helix alpha 1. The torsion angles of these residues are similar to those of Escherichia coli thioredoxin. The torsion angle around the S-S bond is smaller than that normally observed for disulfides: 58 degrees, 67 degrees and 67 degrees for wild-type glutaredoxin molecule A and B and mutant glutaredoxin, respectively. Each sulfur atom of the disulfide cysteines in T4 glutaredoxin forms a hydrogen bond to one main-chain nitrogen atom. The active site is shielded from solvent on one side by the beta-carbon atoms of the cysteine residues plus side-chains of residues 7, 9, 21 and 33. From the opposite side, there is a cleft where the sulfur atom of Cys14 is accessible and can be attacked by a nucleophilic thiolate ion in the initial step of the reduction reaction.
 
  Selected figure(s)  
 
Figure 4.
Figure 4. Electon density maps of mutant glutaredoxi. The electron density 2(F,j -IF,1 contoured at la for (a) a normal tyrosine Tyr7) and (b) Tyr85 for which the elecron density map indicates 2 conformations, (c) for a normal leucine (Leu85) and (d) the ensity for Leu55 indicating 2 conformations. Both conformations have been treated as haf occupied and no attempts hae ben made to refine the occupancies of the individual conformations.
Figure 7.
Figure 7. Hydrogen bonding scheme. Schematic drawing of the main-chain hydrogen bonding in T4 gluta- redoxin. According to normal conventions, we have assigned a hydrogen bond whn donor and acceptor atoms are closer than 3.3 A.
 
  The above figures are reprinted by permission from Elsevier: J Mol Biol (1992, 228, 596-618) copyright 1992.  
  Figures were selected by an automated process.  

Literature references that cite this PDB file's key reference

  PubMed id Reference
21241169 S.R.Shouldice, B.Heras, P.M.Walden, M.Totsika, M.A.Schembri, and J.L.Martin (2011).
Structure and function of DsbA, a key bacterial oxidative folding catalyst.
  Antioxid Redox Signal, 14, 1729-1760.  
19684596 D.D.Rodríguez, C.Grosse, S.Himmel, C.González, I.M.de Ilarduya, S.Becker, G.M.Sheldrick, and I.Usón (2009).
Crystallographic ab initio protein structure solution below atomic resolution.
  Nat Methods, 6, 651-653.
PDB code: 3gwh
18988690 D.Limauro, M.Saviano, I.Galdi, M.Rossi, S.Bartolucci, and E.Pedone (2009).
Sulfolobus solfataricus protein disulphide oxidoreductase: insight into the roles of its redox sites.
  Protein Eng Des Sel, 22, 19-26.  
17508126 R.Ladenstein, and B.Ren (2008).
Reconsideration of an early dogma, saying "there is no evidence for disulfide bonds in proteins from archaea".
  Extremophiles, 12, 29-38.  
17327665 K.O.Håkansson, and J.R.Winther (2007).
Structure of glutaredoxin Grx1p C30S mutant from yeast.
  Acta Crystallogr D Biol Crystallogr, 63, 288-294.
PDB codes: 2jac 2jad
17008712 J.L.Pan, and J.C.Bardwell (2006).
The origami of thioredoxin-like folds.
  Protein Sci, 15, 2217-2227.  
  16946480 K.O.Håkansson, H.Østergaard, and J.R.Winther (2006).
Crystallization of mutant forms of glutaredoxin Grx1p from yeast.
  Acta Crystallogr Sect F Struct Biol Cryst Commun, 62, 920-922.  
16930136 R.Ladenstein, and B.Ren (2006).
Protein disulfides and protein disulfide oxidoreductases in hyperthermophiles.
  FEBS J, 273, 4170-4185.  
  16511065 K.F.Discola, M.A.Oliveira, G.M.Silva, J.A.Barcena, P.Porras, A.Padilla, L.E.Netto, and B.G.Guimarães (2005).
Crystallization and preliminary X-ray crystallographic studies of glutaredoxin 2 from Saccharomyces cerevisiae in different oxidation states.
  Acta Crystallogr Sect F Struct Biol Cryst Commun, 61, 445-447.  
16080146 L.Yin, Y.Xiang, D.Y.Zhu, N.Yan, R.H.Huang, Y.Zhang, and D.C.Wang (2005).
Crystal structure of human SH3BGRL protein: the first structure of the human SH3BGR family representing a novel class of thioredoxin fold proteins.
  Proteins, 61, 213-216.
PDB code: 1u6t
15840565 M.Fladvad, M.Bellanda, A.P.Fernandes, S.Mammi, A.Vlamis-Gardikas, A.Holmgren, and M.Sunnerhagen (2005).
Molecular mapping of functionalities in the solution structure of reduced Grx4, a monothiol glutaredoxin from Escherichia coli.
  J Biol Chem, 280, 24553-24561.
PDB code: 1yka
14713336 A.P.Fernandes, and A.Holmgren (2004).
Glutaredoxins: glutathione-dependent redox enzymes with functions far beyond a simple thioredoxin backup system.
  Antioxid Redox Signal, 6, 63-74.  
15378533 E.Martineau, P.J.L'Heureux, and J.R.Gunn (2004).
Biased fragment distribution in MC simulation of protein folding.
  J Comput Chem, 25, 1895-1903.  
15340164 E.Moutevelis, and J.Warwicker (2004).
Prediction of pKa and redox properties in the thioredoxin superfamily.
  Protein Sci, 13, 2744-2752.  
12777768 K.D'Ambrosio, B.Kauffmann, N.Rouhier, E.Benedetti, J.P.Jacquot, A.Aubry, and C.Corbier (2003).
Crystallization and preliminary X-ray studies of the glutaredoxin from poplar in complex with glutathione.
  Acta Crystallogr D Biol Crystallogr, 59, 1043-1045.  
12138088 G.Bellí, J.Polaina, J.Tamarit, M.A.De La Torre, M.T.Rodríguez-Manzaneque, J.Ros, and E.Herrero (2002).
Structure-function analysis of yeast Grx5 monothiol glutaredoxin defines essential amino acids for the function of the protein.
  J Biol Chem, 277, 37590-37596.  
11213487 J.Qin, Y.Yang, A.Velyvis, and A.Gronenborn (2000).
Molecular views of redox regulation: three-dimensional structures of redox regulatory proteins and protein complexes.
  Antioxid Redox Signal, 2, 827-840.  
9665175 B.Ren, G.Tibbelin, D.de Pascale, M.Rossi, S.Bartolucci, and R.Ladenstein (1998).
A protein disulfide oxidoreductase from the archaeon Pyrococcus furiosus contains two thioredoxin fold units.
  Nat Struct Biol, 5, 602-611.
PDB code: 1a8l
9572841 H.J.Schirra, C.Renner, M.Czisch, M.Huber-Wunderlich, T.A.Holak, and R.Glockshuber (1998).
Structure of reduced DsbA from Escherichia coli in solution.
  Biochemistry, 37, 6263-6276.
PDB codes: 1a23 1a24
9578564 P.M.Fitzgerald, J.K.Wu, and J.H.Toney (1998).
Unanticipated inhibition of the metallo-beta-lactamase from Bacteroides fragilis by 4-morpholineethanesulfonic acid (MES): a crystallographic study at 1.85-A resolution.
  Biochemistry, 37, 6791-6800.
PDB code: 1a7t
9218434 A.Jordan, F.Aslund, E.Pontis, P.Reichard, and A.Holmgren (1997).
Characterization of Escherichia coli NrdH. A glutaredoxin-like protein with a thioredoxin-like activity profile.
  J Biol Chem, 272, 18044-18050.  
9080780 B.F.Volkman, and D.E.Wemmer (1997).
Deletion of a single amino acid changes the folding of an apamin hybrid sequence peptide to that of endothelin.
  Biopolymers, 41, 451-460.  
9125525 J.J.Kelley, T.M.Caputo, S.F.Eaton, T.M.Laue, and J.H.Bushweller (1997).
Comparison of backbone dynamics of reduced and oxidized Escherichia coli glutaredoxin-1 using 15N NMR relaxation measurements.
  Biochemistry, 36, 5029-5044.  
9099998 P.T.Chivers, K.E.Prehoda, and R.T.Raines (1997).
The CXXC motif: a rheostat in the active site.
  Biochemistry, 36, 4061-4066.  
8804824 J.F.Gibrat, T.Madej, and S.H.Bryant (1996).
Surprising similarities in structure comparison.
  Curr Opin Struct Biol, 6, 377-385.  
7788290 J.L.Martin (1995).
Thioredoxin--a fold for all reasons.
  Structure, 3, 245-250.  
8590004 M.Saarinen, F.K.Gleason, and H.Eklund (1995).
Crystal structure of thioredoxin-2 from Anabaena.
  Structure, 3, 1097-1108.
PDB code: 1thx
  8535236 S.K.Katti, A.H.Robbins, Y.Yang, and W.W.Wells (1995).
Crystal structure of thioltransferase at 2.2 A resolution.
  Protein Sci, 4, 1998-2005.
PDB code: 1kte
8143720 H.Dirr, P.Reinemer, and R.Huber (1994).
X-ray crystal structures of cytosolic glutathione S-transferases. Implications for protein architecture, substrate recognition and catalytic function.
  Eur J Biochem, 220, 645-661.  
The most recent references are shown first. Citation data come partly from CiteXplore and partly from an automated harvesting procedure. Note that this is likely to be only a partial list as not all journals are covered by either method. However, we are continually building up the citation data so more and more references will be included with time. Where a reference describes a PDB structure, the PDB code is shown on the right.

 

spacer

spacer