spacer
spacer

PDBsum entry 1a9b

Go to PDB code: 
protein ligands Protein-protein interface(s) links
Complex (mhc class i/peptide) PDB id
1a9b

 

 

 

 

Loading ...

 
JSmol PyMol  
Contents
Protein chains
277 a.a. *
100 a.a. *
Ligands
LEU-PRO-PRO-LEU-
ASP-ILE-THR-PRO-
TYR
×2
* Residue conservation analysis
PDB id:
1a9b
Name: Complex (mhc class i/peptide)
Title: Decamer-like conformation of a nano-peptide bound to hla-b3501 due to nonstandard positioning of thE C-terminus
Structure: Hla class i histocompatibility antigen, b-35 b 3501 (Alpha chain). Chain: a, d. Engineered: yes. Beta-2-microglobulin. Chain: b, e. Engineered: yes. Peptide lpplditpy. Chain: c, f.
Source: Homo sapiens. Human. Organism_taxid: 9606. Expressed in: escherichia coli. Expression_system_taxid: 562.
Biol. unit: Monomer (from PDB file)
Resolution:
3.20Å     R-factor:   0.251     R-free:   0.305
Authors: R.Menssen,P.Orth,A.Ziegler,W.Saenger
Key ref:
R.Menssen et al. (1999). Decamer-like conformation of a nona-peptide bound to HLA-B*3501 due to non-standard positioning of the C terminus. J Mol Biol, 285, 645-653. PubMed id: 9878435 DOI: 10.1006/jmbi.1998.2363
Date:
03-Apr-98     Release date:   21-Oct-98    
PROCHECK
Go to PROCHECK summary
 Headers
 References

Protein chains
Pfam   ArchSchema ?
P01889  (1B07_HUMAN) -  HLA class I histocompatibility antigen, B alpha chain from Homo sapiens
Seq:
Struc:
362 a.a.
277 a.a.*
Protein chains
Pfam   ArchSchema ?
P61769  (B2MG_HUMAN) -  Beta-2-microglobulin from Homo sapiens
Seq:
Struc:
119 a.a.
100 a.a.*
Key:    PfamA domain  Secondary structure  CATH domain
* PDB and UniProt seqs differ at 23 residue positions (black crosses)

 

 
DOI no: 10.1006/jmbi.1998.2363 J Mol Biol 285:645-653 (1999)
PubMed id: 9878435  
 
 
Decamer-like conformation of a nona-peptide bound to HLA-B*3501 due to non-standard positioning of the C terminus.
R.Menssen, P.Orth, A.Ziegler, W.Saenger.
 
  ABSTRACT  
 
The N and C termini of peptides presented by major histocompatibility complex (MHC) class I molecules are held within the peptide binding groove by a network of hydrogen bonds to conserved MHC residues. However, the published structure of the human allele HLA-B*3501 complexed with the nef octa-peptide VPLRPMTY, revealed non-standard positioning for both peptide termini. To investigate whether these deviations are indeed related to the length of the nef-peptide, we have determined the structure of HLA-B*3501 presenting a nona-peptide to 2.5 A resolution. A comparison of HLA-B*3501/peptide complexes with structures of other HLA molecules exhibits allele-specific properties of HLA-B*3501, as well as peptide-induced structural changes. Independent of the length of the bound peptide, HLA-B*3501 positions the peptide C terminus significantly closer to the alpha1-helix and nearer to the A pocket than observed for other HLA class I/peptide complexes. This reorientation is accompanied by a shift within the N-terminal part of the alpha2-helix towards the middle of the binding groove. Due to the short distance between the N and C termini, the nona-peptide is compressed and forced to zig-zag vertically within the binding groove. Its conformation rather resembles that of a deca-peptide than of other nona-peptides bound to class I molecules. Superposition of both HLA-B*3501/peptide complexes additionally reveals a significant, peptide-dependent deviation between the N-terminal parts of the alpha1-helices which might be due to different positioning of the peptide N termini. Taken together, these data illustrate the strong interdependence between the HLA class I molecule and the bound peptide.
 
  Selected figure(s)  
 
Figure 3.
Figure 3. Representation of the two equivalent positions of Tyr99. The generally observed position (shown in light gray) enables hydrogen-bonding to Tyr9 and usually to the P3 nitrogen, while the alternative orientation (dark) in HLA-B*3501 allows interaction with the side-chain of aspartate at position 5 of the peptide (P D5).
Figure 4.
Figure 4. Stereo-view of the peptide N terminus and the adjacent helices of the B*3501/ebna (red) and B*3501/nef (yellow) molecules. Hydrogen-bonding interactions, involving one water molecule (blue), are shown for the B*3501/ebna complex.
 
  The above figures are reprinted by permission from Elsevier: J Mol Biol (1999, 285, 645-653) copyright 1999.  
  Figures were selected by an automated process.  

Literature references that cite this PDB file's key reference

  PubMed id Reference
21280120 B.Loll, C.Rückert, C.S.Hee, W.Saenger, B.Uchanska-Ziegler, and A.Ziegler (2011).
Loss of recognition by cross-reactive T cells and its relation to a C-terminus-induced conformational reorientation of an HLA-B*2705-bound peptide.
  Protein Sci, 20, 278-290.
PDB code: 3lv3
19617632 P.Kumar, A.Vahedi-Faridi, W.Saenger, E.Merino, J.A.López de Castro, B.Uchanska-Ziegler, and A.Ziegler (2009).
Structural basis for T cell alloreactivity among three HLA-B14 and HLA-B27 antigens.
  J Biol Chem, 284, 29784-29797.
PDB codes: 3bp4 3bp7 3bvn 3bxn
  18941220 B.Sanjanwala, M.Draghi, P.J.Norman, L.A.Guethlein, and P.Parham (2008).
Polymorphic sites away from the Bw4 epitope that affect interaction of Bw4+ HLA-B with KIR3DL1.
  J Immunol, 181, 6293-6300.  
17573425 K.Winkler, A.Winter, C.Rueckert, B.Uchanska-Ziegler, and U.Alexiev (2007).
Natural MHC class I polymorphism controls the pathway of peptide dissociation from HLA-B27 complexes.
  Biophys J, 93, 2743-2755.  
16470819 A.J.Bordner, and R.Abagyan (2006).
Ab initio prediction of peptide-MHC binding geometry for diverse class I MHC allotypes.
  Proteins, 63, 512-526.  
16221670 C.Rückert, M.T.Fiorillo, B.Loll, R.Moretti, J.Biesiadka, W.Saenger, A.Ziegler, R.Sorrentino, and B.Uchanska-Ziegler (2006).
Conformational dimorphism of self-peptides and molecular mimicry in a disease-associated HLA-B27 subtype.
  J Biol Chem, 281, 2306-2316.
PDB code: 2a83
16275762 F.E.Tynan, D.Elhassen, A.W.Purcell, J.M.Burrows, N.A.Borg, J.J.Miles, N.A.Williamson, K.J.Green, J.Tellam, L.Kjer-Nielsen, J.McCluskey, J.Rossjohn, and S.R.Burrows (2005).
The immunogenicity of a viral cytotoxic T cell epitope is controlled by its MHC-bound conformation.
  J Exp Med, 202, 1249-1260.
PDB codes: 2axf 2axg
15849183 F.E.Tynan, N.A.Borg, J.J.Miles, T.Beddoe, D.El-Hassen, S.L.Silins, W.J.van Zuylen, A.W.Purcell, L.Kjer-Nielsen, J.McCluskey, S.R.Burrows, and J.Rossjohn (2005).
High resolution structures of highly bulged viral epitopes bound to major histocompatibility complex class I. Implications for T-cell receptor engagement and T-cell immunodominance.
  J Biol Chem, 280, 23900-23909.
PDB codes: 1zhk 1zhl
15537658 M.Hülsmeyer, P.Chames, R.C.Hillig, R.L.Stanfield, G.Held, P.G.Coulie, C.Alings, G.Wille, W.Saenger, B.Uchanska-Ziegler, H.R.Hoogenboom, and A.Ziegler (2005).
A major histocompatibility complex-peptide-restricted antibody and t cell receptor molecules recognize their target by distinct binding modes: crystal structure of human leukocyte antigen (HLA)-A1-MAGE-A1 in complex with FAB-HYB3.
  J Biol Chem, 280, 2972-2980.
PDB code: 1w72
15388925 A.Korostelev, M.O.Fenley, and M.S.Chapman (2004).
Impact of a Poisson-Boltzmann electrostatic restraint on protein structures refined at medium resolution.
  Acta Crystallogr D Biol Crystallogr, 60, 1786-1794.  
14734527 M.Hülsmeyer, M.T.Fiorillo, F.Bettosini, R.Sorrentino, W.Saenger, A.Ziegler, and B.Uchanska-Ziegler (2004).
Dual, HLA-B27 subtype-dependent conformation of a self-peptide.
  J Exp Med, 199, 271-281.
PDB codes: 1of2 1ogt
14555655 R.C.Hillig, M.Hülsmeyer, W.Saenger, K.Welfle, R.Misselwitz, H.Welfle, C.Kozerski, A.Volz, B.Uchanska-Ziegler, and A.Ziegler (2004).
Thermodynamic and structural analysis of peptide- and allele-dependent properties of two HLA-B27 subtypes exhibiting differential disease association.
  J Biol Chem, 279, 652-663.
PDB code: 1jgd
15223314 Z.Yang, L.Shipman, M.Zhang, B.P.Anton, R.J.Roberts, and X.Cheng (2004).
Structural characterization and comparative phylogenetic analysis of Escherichia coli HemK, a protein (N5)-glutamine methyltransferase.
  J Mol Biol, 340, 695-706.
PDB code: 1t43
12939341 W.A.Macdonald, A.W.Purcell, N.A.Mifsud, L.K.Ely, D.S.Williams, L.Chang, J.J.Gorman, C.S.Clements, L.Kjer-Nielsen, D.M.Koelle, S.R.Burrows, B.D.Tait, R.Holdsworth, A.G.Brooks, G.O.Lovrecz, L.Lu, J.Rossjohn, and J.McCluskey (2003).
A naturally selected dimorphism within the HLA-B44 supertype alters class I structure, peptide repertoire, and T cell recognition.
  J Exp Med, 198, 679-691.
PDB codes: 1m6o 1n2r
12021440 F.Fabiola, R.Bertram, A.Korostelev, and M.S.Chapman (2002).
An improved hydrogen bond potential: impact on medium resolution protein structures.
  Protein Sci, 11, 1415-1423.  
12010576 P.E.Adrian, G.Rajaseger, V.S.Mathura, M.K.Sakharkar, and P.Kangueane (2002).
Types of inter-atomic interactions at the MHC-peptide interface: identifying commonality from accumulated data.
  BMC Struct Biol, 2, 2.  
11369790 M.Probst-Kepper, V.Stroobant, R.Kridel, B.Gaugler, C.Landry, F.Brasseur, J.P.Cosyns, B.Weynand, T.Boon, and B.J.Van Den Eynde (2001).
An alternative open reading frame of the human macrophage colony-stimulating factor gene is independently translated and codes for an antigenic peptide of 14 amino acids recognized by tumor-infiltrating CD8 T lymphocytes.
  J Exp Med, 193, 1189-1198.  
11053110 A.Simon, Z.Dosztányi, E.Rajnavölgyi, and I.Simon (2000).
Function-related regulation of the stability of MHC proteins.
  Biophys J, 79, 2305-2313.  
  11045629 O.Schueler-Furman, Y.Altuvia, A.Sette, and H.Margalit (2000).
Structure-based prediction of binding peptides to MHC class I molecules: application to a broad range of MHC alleles.
  Protein Sci, 9, 1838-1846.  
10607669 K.Maenaka, and E.Y.Jones (1999).
MHC superfamily structure and the immune system.
  Curr Opin Struct Biol, 9, 745-753.  
The most recent references are shown first. Citation data come partly from CiteXplore and partly from an automated harvesting procedure. Note that this is likely to be only a partial list as not all journals are covered by either method. However, we are continually building up the citation data so more and more references will be included with time. Where a reference describes a PDB structure, the PDB code is shown on the right.

 

spacer

spacer