 |
PDBsum entry 1a8o
|
|
|
|
 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
 |
|
|
|
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
|
|
|
|
|
|
|
|
|
|
Viral protein
|
PDB id
|
|
|
|
1a8o
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
PDB id:
|
 |
|
 |
| Name: |
 |
Viral protein
|
 |
|
Title:
|
 |
HIV capsid c-terminal domain
|
|
Structure:
|
 |
HIV capsid. Chain: a. Fragment: c-terminal domain, residues 151 - 231. Engineered: yes. Mutation: yes
|
|
Source:
|
 |
Human immunodeficiency virus 1. Organism_taxid: 11676. Cell_line: bl21. Expressed in: escherichia coli bl21(de3). Expression_system_taxid: 469008.
|
|
Biol. unit:
|
 |
Monomer (from PDB file)
|
|
Resolution:
|
 |
|
1.70Å
|
R-factor:
|
0.215
|
R-free:
|
0.253
|
|
|
Authors:
|
 |
T.R.Gamble,S.Yoo,F.F.Vajdos,U.K.Von Schwedler,D.K.Worthylake,H.Wang, J.P.Mccutcheon,W.I.Sundquist,C.P.Hill
|
Key ref:
|
 |
T.R.Gamble
et al.
(1997).
Structure of the carboxyl-terminal dimerization domain of the HIV-1 capsid protein.
Science,
278,
849-853.
PubMed id:
DOI:
|
 |
|
Date:
|
 |
|
27-Mar-98
|
Release date:
|
14-Oct-98
|
|
|
Supersedes:
|
|
|
|
|
|
|
PROCHECK
|
|
|
|
|
Headers
|
 |
|
|
References
|
|
|
|
|
|
|
P12497
(POL_HV1N5) -
Gag-Pol polyprotein from Human immunodeficiency virus type 1 group M subtype B (isolate NY5)
|
|
|
|
Seq: Struc:
|
 |
 |
 |
1435 a.a.
70 a.a.*
|
|
|
|
|
|
|
|
|
 |
 |
|
|
Key: |
 |
 |
Secondary structure |
 |
 |
CATH domain |
 |
|
*
PDB and UniProt seqs differ
at 1 residue position (black
cross)
|
|
|
|
|
 |
|
|
 |
 |
 |
 |
Enzyme class 1:
|
 |
E.C.2.7.7.-
- ?????
|
|
 |
 |
 |
 |
 |
Enzyme class 2:
|
 |
E.C.2.7.7.49
- RNA-directed Dna polymerase.
|
|
 |
 |
 |
 |
 |
Reaction:
|
 |
DNA(n) + a 2'-deoxyribonucleoside 5'-triphosphate = DNA(n+1) + diphosphate
|
 |
 |
 |
 |
 |
DNA(n)
|
+
|
2'-deoxyribonucleoside 5'-triphosphate
|
=
|
DNA(n+1)
|
+
|
diphosphate
|
|
 |
 |
 |
 |
 |
 |
 |
 |
Enzyme class 3:
|
 |
E.C.2.7.7.7
- DNA-directed Dna polymerase.
|
|
 |
 |
 |
 |
 |
Reaction:
|
 |
DNA(n) + a 2'-deoxyribonucleoside 5'-triphosphate = DNA(n+1) + diphosphate
|
 |
 |
 |
 |
 |
DNA(n)
|
+
|
2'-deoxyribonucleoside 5'-triphosphate
|
=
|
DNA(n+1)
|
+
|
diphosphate
|
|
 |
 |
 |
 |
 |
 |
 |
 |
Enzyme class 4:
|
 |
E.C.3.1.-.-
|
|
 |
 |
 |
 |
 |
Enzyme class 5:
|
 |
E.C.3.1.13.2
- exoribonuclease H.
|
|
 |
 |
 |
 |
 |
Reaction:
|
 |
Exonucleolytic cleavage to 5'-phosphomonoester oligonucleotides in both 5'- to 3'- and 3'- to 5'-directions.
|
 |
 |
 |
 |
 |
Enzyme class 6:
|
 |
E.C.3.1.26.13
- retroviral ribonuclease H.
|
|
 |
 |
 |
 |
 |
Enzyme class 7:
|
 |
E.C.3.4.23.16
- HIV-1 retropepsin.
|
|
 |
 |
 |
 |
 |
Reaction:
|
 |
Specific for a P1 residue that is hydrophobic, and P1' variable, but often Pro.
|
 |
 |
 |
 |
 |
 |
 |
|
Note, where more than one E.C. class is given (as above), each may
correspond to a different protein domain or, in the case of polyprotein
precursors, to a different mature protein.
|
|
 |
|
Molecule diagrams generated from .mol files obtained from the
KEGG ftp site
|
|
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
|
|
|
| |
|
|
| |
|
DOI no:
|
Science
278:849-853
(1997)
|
|
PubMed id:
|
|
|
|
|
| |
|
Structure of the carboxyl-terminal dimerization domain of the HIV-1 capsid protein.
|
|
T.R.Gamble,
S.Yoo,
F.F.Vajdos,
U.K.von Schwedler,
D.K.Worthylake,
H.Wang,
J.P.McCutcheon,
W.I.Sundquist,
C.P.Hill.
|
|
|
|
| |
ABSTRACT
|
|
|
| |
|
The carboxyl-terminal domain, residues 146 to 231, of the human immunodeficiency
virus-1 (HIV-1) capsid protein [CA(146-231)] is required for capsid dimerization
and viral assembly. This domain contains a stretch of 20 residues, called the
major homology region (MHR), which is conserved across retroviruses and is
essential for viral assembly, maturation, and infectivity. The crystal
structures of CA(146-231) and CA(151-231) reveal that the globular domain is
composed of four helices and an extended amino-terminal strand. CA(146-231)
dimerizes through parallel packing of helix 2 across a dyad. The MHR is distinct
from the dimer interface and instead forms an intricate hydrogen-bonding network
that interconnects strand 1 and helices 1 and 2. Alignment of the CA(146-231)
dimer with the crystal structure of the capsid amino-terminal domain provides a
model for the intact protein and extends models for assembly of the central
conical core of HIV-1.
|
|
|
|
|
| |
Selected figure(s)
|
|
|
| |
 |
 |
|
 |
|
 |
Figure 3.
Fig. 3. Representative sedimentation profiles of (A) intact
CA, (B) CA(146-231), and (C) CA(M185A) mutant protein. The
analysis reveals that intact CA and CA(146-231) dimerize with
similar affinities (K[d] = 18 ± 1 and 10 ± 3
µM, respectively), but that the CA(M185A) mutation
abolishes dimerization. Theoretical curves for monomer (M) and
monomer/dimer (M/D) distributions are^ shown assuming K[d] = 18
µM (A and C) or 10 µM (B). A[280], absorbance^ at
280 nm.
|
 |
Figure 5.
Fig. 5. Model for the intact HIV-1 capsid dimer. The
CA(146-231) dimer (cyan) is shown covalently linked to the
CA(1-151) domain (23). The five disordered residues that connect
the two domains can be modeled to allow ~90° range of
relative rotational orientation for the two domains about the
vertical twofold axis.
|
 |
|
|
|
| |
The above figures are
reprinted
by permission from the AAAs:
Science
(1997,
278,
849-853)
copyright 1997.
|
|
| |
Figures were
selected
by an automated process.
|
|
|
|
|
 |
 |
|
 |
 |
 |
 |
 |
 |
 |
 |
 |
|
Literature references that cite this PDB file's key reference
|
|
 |
| |
PubMed id
|
 |
Reference
|
 |
|
|
|
 |
A.Engelman,
and
P.Cherepanov
(2012).
The structural biology of HIV-1: mechanistic and therapeutic insights.
|
| |
Nat Rev Microbiol,
10,
279-290.
|
 |
|
|
|
|
 |
O.Pornillos,
B.K.Ganser-Pornillos,
and
M.Yeager
(2011).
Atomic-level modelling of the HIV capsid.
|
| |
Nature,
469,
424-427.
|
 |
|
PDB codes:
|
 |
|
|
|
|
|
 |
B.Chen,
and
R.Tycko
(2010).
Structural and dynamical characterization of tubular HIV-1 capsid protein assemblies by solid state nuclear magnetic resonance and electron microscopy.
|
| |
Protein Sci,
19,
716-730.
|
 |
|
|
|
|
 |
B.G.Luttge,
and
E.O.Freed
(2010).
FIV Gag: virus assembly and host-cell interactions.
|
| |
Vet Immunol Immunopathol,
134,
3.
|
 |
|
|
|
|
 |
C.S.Adamson,
and
E.O.Freed
(2010).
Novel approaches to inhibiting HIV-1 replication.
|
| |
Antiviral Res,
85,
119-141.
|
 |
|
|
|
|
 |
E.B.Monroe,
S.Kang,
S.K.Kyere,
R.Li,
and
P.E.Prevelige
(2010).
Hydrogen/deuterium exchange analysis of HIV-1 capsid assembly and maturation.
|
| |
Structure,
18,
1483-1491.
|
 |
|
|
|
|
 |
G.N.Llewellyn,
I.B.Hogue,
J.R.Grover,
and
A.Ono
(2010).
Nucleocapsid promotes localization of HIV-1 gag to uropods that participate in virological synapses between T cells.
|
| |
PLoS Pathog,
6,
e1001167.
|
 |
|
|
|
|
 |
J.Jung,
I.J.Byeon,
J.Ahn,
J.Concel,
and
A.M.Gronenborn
(2010).
1H, 15N and 13C assignments of the dimeric C-terminal domain of HIV-1 capsid protein.
|
| |
Biomol NMR Assign,
4,
21-23.
|
 |
|
|
|
|
 |
K.Kono,
H.Song,
M.Yokoyama,
H.Sato,
T.Shioda,
and
E.E.Nakayama
(2010).
Multiple sites in the N-terminal half of simian immunodeficiency virus capsid protein contribute to evasion from rhesus monkey TRIM5α-mediated restriction.
|
| |
Retrovirology,
7,
72.
|
 |
|
|
|
|
 |
M.P.Milev,
C.M.Brown,
and
A.J.Mouland
(2010).
Live cell visualization of the interactions between HIV-1 Gag and the cellular RNA-binding protein Staufen1.
|
| |
Retrovirology,
7,
41.
|
 |
|
|
|
|
 |
N.Inagaki,
H.Takeuchi,
M.Yokoyama,
H.Sato,
A.Ryo,
H.Yamamoto,
M.Kawada,
and
T.Matano
(2010).
A structural constraint for functional interaction between N-terminal and C-terminal domains in simian immunodeficiency virus capsid proteins.
|
| |
Retrovirology,
7,
90.
|
 |
|
|
|
|
 |
S.B.Kutluay,
and
P.D.Bieniasz
(2010).
Analysis of the initiating events in HIV-1 particle assembly and genome packaging.
|
| |
PLoS Pathog,
6,
e1001200.
|
 |
|
|
|
|
 |
S.D.Hicks,
and
C.L.Henley
(2010).
Coarse-grained protein-protein stiffnesses and dynamics from all-atom simulations.
|
| |
Phys Rev E Stat Nonlin Soft Matter Phys,
81,
030903.
|
 |
|
|
|
|
 |
S.Misumi,
M.Inoue,
T.Dochi,
N.Kishimoto,
N.Hasegawa,
N.Takamune,
and
S.Shoji
(2010).
Uncoating of human immunodeficiency virus type 1 requires prolyl isomerase Pin1.
|
| |
J Biol Chem,
285,
25185-25195.
|
 |
|
|
|
|
 |
T.Wu,
S.A.Datta,
M.Mitra,
R.J.Gorelick,
A.Rein,
and
J.G.Levin
(2010).
Fundamental differences between the nucleic acid chaperone activities of HIV-1 nucleocapsid protein and Gag or Gag-derived proteins: biological implications.
|
| |
Virology,
405,
556-567.
|
 |
|
|
|
|
 |
V.Krishna,
G.S.Ayton,
and
G.A.Voth
(2010).
Role of protein interactions in defining HIV-1 viral capsid shape and stability: a coarse-grained analysis.
|
| |
Biophys J,
98,
18-26.
|
 |
|
|
|
|
 |
Y.Han,
J.Ahn,
J.Concel,
I.J.Byeon,
A.M.Gronenborn,
J.Yang,
and
T.Polenova
(2010).
Solid-state NMR studies of HIV-1 capsid protein assemblies.
|
| |
J Am Chem Soc,
132,
1976-1987.
|
 |
|
|
|
|
 |
A.Alfadhli,
R.L.Barklis,
and
E.Barklis
(2009).
HIV-1 matrix organizes as a hexamer of trimers on membranes containing phosphatidylinositol-(4,5)-bisphosphate.
|
| |
Virology,
387,
466-472.
|
 |
|
|
|
|
 |
A.M.Gronenborn
(2009).
Protein acrobatics in pairs--dimerization via domain swapping.
|
| |
Curr Opin Struct Biol,
19,
39-49.
|
 |
|
|
|
|
 |
C.S.Adamson,
K.Salzwedel,
and
E.O.Freed
(2009).
Virus maturation as a new HIV-1 therapeutic target.
|
| |
Expert Opin Ther Targets,
13,
895-908.
|
 |
|
|
|
|
 |
E.Barklis,
A.Alfadhli,
C.McQuaw,
S.Yalamuri,
A.Still,
R.L.Barklis,
B.Kukull,
and
C.S.López
(2009).
Characterization of the in vitro HIV-1 capsid assembly pathway.
|
| |
J Mol Biol,
387,
376-389.
|
 |
|
|
|
|
 |
G.Cardone,
J.G.Purdy,
N.Cheng,
R.C.Craven,
and
A.C.Steven
(2009).
Visualization of a missing link in retrovirus capsid assembly.
|
| |
Nature,
457,
694-698.
|
 |
|
|
|
|
 |
G.D.Bailey,
J.K.Hyun,
A.K.Mitra,
and
R.L.Kingston
(2009).
Proton-linked dimerization of a retroviral capsid protein initiates capsid assembly.
|
| |
Structure,
17,
737-748.
|
 |
|
PDB codes:
|
 |
|
|
|
|
|
 |
I.B.Hogue,
A.Hoppe,
and
A.Ono
(2009).
Quantitative fluorescence resonance energy transfer microscopy analysis of the human immunodeficiency virus type 1 Gag-Gag interaction: relative contributions of the CA and NC domains and membrane binding.
|
| |
J Virol,
83,
7322-7336.
|
 |
|
|
|
|
 |
I.J.Byeon,
X.Meng,
J.Jung,
G.Zhao,
R.Yang,
J.Ahn,
J.Shi,
J.Concel,
C.Aiken,
P.Zhang,
and
A.M.Gronenborn
(2009).
Structural convergence between Cryo-EM and NMR reveals intersubunit interactions critical for HIV-1 capsid function.
|
| |
Cell,
139,
780-790.
|
 |
|
PDB code:
|
 |
|
|
|
|
|
 |
J.A.Briggs,
J.D.Riches,
B.Glass,
V.Bartonova,
G.Zanetti,
and
H.G.Kräusslich
(2009).
Structure and assembly of immature HIV.
|
| |
Proc Natl Acad Sci U S A,
106,
11090-11095.
|
 |
|
|
|
|
 |
J.G.Purdy,
J.M.Flanagan,
I.J.Ropson,
and
R.C.Craven
(2009).
Retroviral capsid assembly: a role for the CA dimer in initiation.
|
| |
J Mol Biol,
389,
438-451.
|
 |
|
|
|
|
 |
J.L.Neira
(2009).
The capsid protein of human immunodeficiency virus: designing inhibitors of capsid assembly.
|
| |
FEBS J,
276,
6110-6117.
|
 |
|
|
|
|
 |
M.G.Mateu
(2009).
The capsid protein of human immunodeficiency virus: intersubunit interactions during virus assembly.
|
| |
FEBS J,
276,
6098-6109.
|
 |
|
|
|
|
 |
O.Pornillos,
B.K.Ganser-Pornillos,
B.N.Kelly,
Y.Hua,
F.G.Whitby,
C.D.Stout,
W.I.Sundquist,
C.P.Hill,
and
M.Yeager
(2009).
X-ray structures of the hexameric building block of the HIV capsid.
|
| |
Cell,
137,
1282-1292.
|
 |
|
PDB codes:
|
 |
|
|
|
|
|
 |
R.B.Jones,
F.Y.Yue,
X.X.Gu,
D.V.Hunter,
S.Mujib,
G.Gyenes,
R.D.Mason,
R.Mohamed,
K.S.MacDonald,
C.Kovacs,
and
M.A.Ostrowski
(2009).
Human immunodeficiency virus type 1 escapes from interleukin-2-producing CD4+ T-cell responses without high-frequency fixation of mutations.
|
| |
J Virol,
83,
8722-8732.
|
 |
|
|
|
|
 |
S.Abdurahman,
A.Végvári,
M.Levi,
S.Höglund,
M.Högberg,
W.Tong,
I.Romero,
J.Balzarini,
and
A.Vahlne
(2009).
Isolation and characterization of a small antiretroviral molecule affecting HIV-1 capsid morphology.
|
| |
Retrovirology,
6,
34.
|
 |
|
|
|
|
 |
S.Matsuoka,
E.Dam,
D.Lecossier,
F.Clavel,
and
A.J.Hance
(2009).
Modulation of HIV-1 infectivity and cyclophilin A-dependence by Gag sequence and target cell type.
|
| |
Retrovirology,
6,
21.
|
 |
|
|
|
|
 |
X.Yu,
Q.Wang,
J.C.Yang,
I.Buch,
C.J.Tsai,
B.Ma,
S.Z.Cheng,
R.Nussinov,
and
J.Zheng
(2009).
Mutational analysis and allosteric effects in the HIV-1 capsid protein carboxyl-terminal dimerization domain.
|
| |
Biomacromolecules,
10,
390-399.
|
 |
|
|
|
|
 |
Y.Kitagawa,
M.Maeda-Sato,
K.Tanaka,
M.Tobiume,
H.Sawa,
H.Hasegawa,
A.Kojima,
W.W.Hall,
T.Kurata,
T.Sata,
and
H.Takahashi
(2009).
Covalent bonded Gag multimers in human immunodeficiency virus type-1 particles.
|
| |
Microbiol Immunol,
53,
609-620.
|
 |
|
|
|
|
 |
Y.Yan,
A.Buckler-White,
K.Wollenberg,
and
C.A.Kozak
(2009).
Origin, antiviral function and evidence for positive selection of the gammaretrovirus restriction gene Fv1 in the genus Mus.
|
| |
Proc Natl Acad Sci U S A,
106,
3259-3263.
|
 |
|
|
|
|
 |
B.K.Ganser-Pornillos,
M.Yeager,
and
W.I.Sundquist
(2008).
The structural biology of HIV assembly.
|
| |
Curr Opin Struct Biol,
18,
203-217.
|
 |
|
|
|
|
 |
H.Zhang,
Q.Zhao,
S.Bhattacharya,
A.A.Waheed,
X.Tong,
A.Hong,
S.Heck,
F.Curreli,
M.Goger,
D.Cowburn,
E.O.Freed,
and
A.K.Debnath
(2008).
A cell-penetrating helical peptide as a potential HIV-1 inhibitor.
|
| |
J Mol Biol,
378,
565-580.
|
 |
|
|
|
|
 |
J.G.Purdy,
J.M.Flanagan,
I.J.Ropson,
K.E.Rennoll-Bankert,
and
R.C.Craven
(2008).
Critical role of conserved hydrophobic residues within the major homology region in mature retroviral capsid assembly.
|
| |
J Virol,
82,
5951-5961.
|
 |
|
|
|
|
 |
J.M.Phillips,
P.S.Murray,
D.Murray,
and
V.M.Vogt
(2008).
A molecular switch required for retrovirus assembly participates in the hexagonal immature lattice.
|
| |
EMBO J,
27,
1411-1420.
|
 |
|
|
|
|
 |
L.A.Alcaraz,
M.Del Alamo,
M.G.Mateu,
and
J.L.Neira
(2008).
Structural mobility of the monomeric C-terminal domain of the HIV-1 capsid protein.
|
| |
FEBS J,
275,
3299-3311.
|
 |
|
|
|
|
 |
P.M.Lokhandwala,
T.L.Nguyen,
J.B.Bowzard,
and
R.C.Craven
(2008).
Cooperative role of the MHR and the CA dimerization helix in the maturation of the functional retrovirus capsid.
|
| |
Virology,
376,
191-198.
|
 |
|
|
|
|
 |
P.W.Keller,
M.C.Johnson,
and
V.M.Vogt
(2008).
Mutations in the spacer peptide and adjoining sequences in Rous sarcoma virus Gag lead to tubular budding.
|
| |
J Virol,
82,
6788-6797.
|
 |
|
|
|
|
 |
S.Abdurahman,
A.Végvári,
M.Youssefi,
M.Levi,
S.Höglund,
E.Andersson,
P.Horal,
B.Svennerholm,
J.Balzarini,
and
A.Vahlne
(2008).
Activity of the small modified amino acid alpha-hydroxy glycineamide on in vitro and in vivo human immunodeficiency virus type 1 capsid assembly and infectivity.
|
| |
Antimicrob Agents Chemother,
52,
3737-3744.
|
 |
|
|
|
|
 |
S.Bhattacharya,
H.Zhang,
A.K.Debnath,
and
D.Cowburn
(2008).
Solution structure of a hydrocarbon stapled peptide inhibitor in complex with monomeric C-terminal domain of HIV-1 capsid.
|
| |
J Biol Chem,
283,
16274-16278.
|
 |
|
PDB codes:
|
 |
|
|
|
|
|
 |
S.Brun,
M.Solignat,
B.Gay,
E.Bernard,
L.Chaloin,
D.Fenard,
C.Devaux,
N.Chazal,
and
L.Briant
(2008).
VSV-G pseudotyping rescues HIV-1 CA mutations that impair core assembly or stability.
|
| |
Retrovirology,
5,
57.
|
 |
|
|
|
|
 |
S.Kageyama,
J.K.Maniar,
D.G.Saple,
K.Numazaki,
T.Kurimura,
and
H.Ichimura
(2008).
HIV-2 amino acid substitutions in Gag and Env proteins occurring simultaneously with viral load upsurge in a drug-naïve patient.
|
| |
J Infect Chemother,
14,
151-155.
|
 |
|
|
|
|
 |
S.Kawada,
T.Goto,
H.Haraguchi,
A.Ono,
and
Y.Morikawa
(2008).
Dominant negative inhibition of human immunodeficiency virus particle production by the nonmyristoylated form of gag.
|
| |
J Virol,
82,
4384-4399.
|
 |
|
|
|
|
 |
S.P.Kenney,
T.L.Lochmann,
C.L.Schmid,
and
L.J.Parent
(2008).
Intermolecular interactions between retroviral Gag proteins in the nucleus.
|
| |
J Virol,
82,
683-691.
|
 |
|
|
|
|
 |
A.K.Dalton,
D.Ako-Adjei,
P.S.Murray,
D.Murray,
and
V.M.Vogt
(2007).
Electrostatic interactions drive membrane association of the human immunodeficiency virus type 1 Gag MA domain.
|
| |
J Virol,
81,
6434-6445.
|
 |
|
|
|
|
 |
A.Leligdowicz,
L.M.Yindom,
C.Onyango,
R.Sarge-Njie,
A.Alabi,
M.Cotten,
T.Vincent,
C.da Costa,
P.Aaby,
A.Jaye,
T.Dong,
A.McMichael,
H.Whittle,
and
S.Rowland-Jones
(2007).
Robust Gag-specific T cell responses characterize viremia control in HIV-2 infection.
|
| |
J Clin Invest,
117,
3067-3074.
|
 |
|
|
|
|
 |
A.Soutullo,
M.N.Santi,
J.C.Perin,
L.M.Beltramini,
I.M.Borel,
R.Frank,
and
G.G.Tonarelli
(2007).
Systematic epitope analysis of the p26 EIAV core protein.
|
| |
J Mol Recognit,
20,
227-237.
|
 |
|
|
|
|
 |
B.K.Ganser-Pornillos,
A.Cheng,
and
M.Yeager
(2007).
Structure of full-length HIV-1 CA: a model for the mature capsid lattice.
|
| |
Cell,
131,
70-79.
|
 |
|
PDB code:
|
 |
|
|
|
|
|
 |
B.N.Kelly,
S.Kyere,
I.Kinde,
C.Tang,
B.R.Howard,
H.Robinson,
W.I.Sundquist,
M.F.Summers,
and
C.P.Hill
(2007).
Structure of the antiviral assembly inhibitor CAP-1 complex with the HIV-1 CA protein.
|
| |
J Mol Biol,
373,
355-366.
|
 |
|
PDB codes:
|
 |
|
|
|
|
|
 |
D.Ivanov,
O.V.Tsodikov,
J.Kasanov,
T.Ellenberger,
G.Wagner,
and
T.Collins
(2007).
Domain-swapped dimerization of the HIV-1 capsid C-terminal domain.
|
| |
Proc Natl Acad Sci U S A,
104,
4353-4358.
|
 |
|
PDB code:
|
 |
|
|
|
|
|
 |
E.Burkala,
and
M.Poss
(2007).
Evolution of feline immunodeficiency virus Gag proteins.
|
| |
Virus Genes,
35,
251-264.
|
 |
|
|
|
|
 |
E.R.Wright,
J.B.Schooler,
H.J.Ding,
C.Kieffer,
C.Fillmore,
W.I.Sundquist,
and
G.J.Jensen
(2007).
Electron cryotomography of immature HIV-1 virions reveals the structure of the CA and SP1 Gag shells.
|
| |
EMBO J,
26,
2218-2226.
|
 |
|
|
|
|
 |
H.Li,
J.Dou,
L.Ding,
and
P.Spearman
(2007).
Myristoylation is required for human immunodeficiency virus type 1 Gag-Gag multimerization in mammalian cells.
|
| |
J Virol,
81,
12899-12910.
|
 |
|
|
|
|
 |
I.Mannigel,
A.Stange,
H.Zentgraf,
and
D.Lindemann
(2007).
Correct capsid assembly mediated by a conserved YXXLGL motif in prototype foamy virus Gag is essential for infectivity and reverse transcription of the viral genome.
|
| |
J Virol,
81,
3317-3326.
|
 |
|
|
|
|
 |
J.A.Borghans,
A.Mølgaard,
R.J.de Boer,
and
C.KeÅŸmir
(2007).
HLA alleles associated with slow progression to AIDS truly prefer to present HIV-1 p24.
|
| |
PLoS ONE,
2,
e920.
|
 |
|
|
|
|
 |
L.A.Alcaraz,
M.del Alamo,
F.N.Barrera,
M.G.Mateu,
and
J.L.Neira
(2007).
Flexibility in HIV-1 assembly subunits: solution structure of the monomeric C-terminal domain of the capsid protein.
|
| |
Biophys J,
93,
1264-1276.
|
 |
|
PDB code:
|
 |
|
|
|
|
|
 |
L.S.Larsen,
M.Zhang,
N.Beliakova-Bethell,
V.Bilanchone,
A.Lamsa,
K.Nagashima,
R.Najdi,
K.Kosaka,
V.Kovacevic,
J.Cheng,
P.Baldi,
G.W.Hatfield,
and
S.Sandmeyer
(2007).
Ty3 capsid mutations reveal early and late functions of the amino-terminal domain.
|
| |
J Virol,
81,
6957-6972.
|
 |
|
|
|
|
 |
S.A.Datta,
J.E.Curtis,
W.Ratcliff,
P.K.Clark,
R.M.Crist,
J.Lebowitz,
S.Krueger,
and
A.Rein
(2007).
Conformation of the HIV-1 Gag protein in solution.
|
| |
J Mol Biol,
365,
812-824.
|
 |
|
|
|
|
 |
S.A.Datta,
Z.Zhao,
P.K.Clark,
S.Tarasov,
J.N.Alexandratos,
S.J.Campbell,
M.Kvaratskhelia,
J.Lebowitz,
and
A.Rein
(2007).
Interactions between HIV-1 Gag molecules in solution: an inositol phosphate-mediated switch.
|
| |
J Mol Biol,
365,
799-811.
|
 |
|
|
|
|
 |
S.Abdurahman,
S.Höglund,
A.Höglund,
and
A.Vahlne
(2007).
Mutation in the loop C-terminal to the cyclophilin A binding site of HIV-1 capsid protein disrupts proper virus assembly and infectivity.
|
| |
Retrovirology,
4,
19.
|
 |
|
|
|
|
 |
S.Tang,
S.Ablan,
M.Dueck,
W.Ayala-López,
B.Soto,
M.Caplan,
K.Nagashima,
I.K.Hewlett,
E.O.Freed,
and
J.G.Levin
(2007).
A second-site suppressor significantly improves the defective phenotype imposed by mutation of an aromatic residue in the N-terminal domain of the HIV-1 capsid protein.
|
| |
Virology,
359,
105-115.
|
 |
|
|
|
|
 |
W.I.Sundquist,
and
C.P.Hill
(2007).
How to assemble a capsid.
|
| |
Cell,
131,
17-19.
|
 |
|
|
|
|
 |
Z.Knejzlík,
Z.Smékalová,
T.Ruml,
and
M.Sakalian
(2007).
Multimerization of the p12 domain is necessary for Mason-Pfizer monkey virus Gag assembly in vitro.
|
| |
Virology,
365,
260-270.
|
 |
|
|
|
|
 |
A.Joshi,
K.Nagashima,
and
E.O.Freed
(2006).
Mutation of dileucine-like motifs in the human immunodeficiency virus type 1 capsid disrupts virus assembly, gag-gag interactions, gag-membrane binding, and virion maturation.
|
| |
J Virol,
80,
7939-7951.
|
 |
|
|
|
|
 |
B.O.Ondondo,
H.Yang,
T.Dong,
K.di Gleria,
A.Suttill,
C.Conlon,
D.Brown,
P.Williams,
S.L.Rowland-Jones,
T.Hanke,
A.J.McMichael,
and
L.Dorrell
(2006).
Immunisation with recombinant modified vaccinia virus Ankara expressing HIV-1 gag in HIV-1-infected subjects stimulates broad functional CD4+ T cell responses.
|
| |
Eur J Immunol,
36,
2585-2594.
|
 |
|
|
|
|
 |
C.J.Tsai,
J.Zheng,
and
R.Nussinov
(2006).
Designing a nanotube using naturally occurring protein building blocks.
|
| |
PLoS Comput Biol,
2,
e42.
|
 |
|
|
|
|
 |
C.S.Adamson,
S.D.Ablan,
I.Boeras,
R.Goila-Gaur,
F.Soheilian,
K.Nagashima,
F.Li,
K.Salzwedel,
M.Sakalian,
C.T.Wild,
and
E.O.Freed
(2006).
In vitro resistance to the human immunodeficiency virus type 1 maturation inhibitor PA-457 (Bevirimat).
|
| |
J Virol,
80,
10957-10971.
|
 |
|
|
|
|
 |
F.C.Peterson,
P.L.Hayes,
J.K.Waltner,
A.K.Heisner,
D.R.Jensen,
T.L.Sander,
and
B.F.Volkman
(2006).
Structure of the SCAN domain from the tumor suppressor protein MZF1.
|
| |
J Mol Biol,
363,
137-147.
|
 |
|
PDB code:
|
 |
|
|
|
|
|
 |
H.H.Chu,
Y.F.Chang,
and
C.T.Wang
(2006).
Mutations in the alpha-helix directly C-terminal to the major homology region of human immunodeficiency virus type 1 capsid protein disrupt Gag multimerization and markedly impair virus particle production.
|
| |
J Biomed Sci,
13,
645-656.
|
 |
|
|
|
|
 |
M.Sakalian,
C.P.McMurtrey,
F.J.Deeg,
C.W.Maloy,
F.Li,
C.T.Wild,
and
K.Salzwedel
(2006).
3-O-(3',3'-dimethysuccinyl) betulinic acid inhibits maturation of the human immunodeficiency virus type 1 Gag precursor assembled in vitro.
|
| |
J Virol,
80,
5716-5722.
|
 |
|
|
|
|
 |
P.Ulbrich,
S.Haubova,
M.V.Nermut,
E.Hunter,
M.Rumlova,
and
T.Ruml
(2006).
Distinct roles for nucleic acid in in vitro assembly of purified Mason-Pfizer monkey virus CANC proteins.
|
| |
J Virol,
80,
7089-7099.
|
 |
|
|
|
|
 |
T.Matsumoto,
M.Hamada,
M.Osanai,
and
H.Fujiwara
(2006).
Essential domains for ribonucleoprotein complex formation required for retrotransposition of telomere-specific non-long terminal repeat retrotransposon SART1.
|
| |
Mol Cell Biol,
26,
5168-5179.
|
 |
|
|
|
|
 |
T.T.Nguyen,
R.F.Bruinsma,
and
W.M.Gelbart
(2006).
Continuum theory of retroviral capsids.
|
| |
Phys Rev Lett,
96,
078102.
|
 |
|
|
|
|
 |
A.K.Dalton,
P.S.Murray,
D.Murray,
and
V.M.Vogt
(2005).
Biochemical characterization of rous sarcoma virus MA protein interaction with membranes.
|
| |
J Virol,
79,
6227-6238.
|
 |
|
|
|
|
 |
A.Ono,
A.A.Waheed,
A.Joshi,
and
E.O.Freed
(2005).
Association of human immunodeficiency virus type 1 gag with membrane does not require highly basic sequences in the nucleocapsid: use of a novel Gag multimerization assay.
|
| |
J Virol,
79,
14131-14140.
|
 |
|
|
|
|
 |
B.M.Forshey,
J.Shi,
and
C.Aiken
(2005).
Structural requirements for recognition of the human immunodeficiency virus type 1 core during host restriction in owl monkey cells.
|
| |
J Virol,
79,
869-875.
|
 |
|
|
|
|
 |
D.Ako-Adjei,
M.C.Johnson,
and
V.M.Vogt
(2005).
The retroviral capsid domain dictates virion size, morphology, and coassembly of gag into virus-like particles.
|
| |
J Virol,
79,
13463-13472.
|
 |
|
|
|
|
 |
D.Ivanov,
J.R.Stone,
J.L.Maki,
T.Collins,
and
G.Wagner
(2005).
Mammalian SCAN domain dimer is a domain-swapped homolog of the HIV capsid C-terminal domain.
|
| |
Mol Cell,
17,
137-143.
|
 |
|
PDB code:
|
 |
|
|
|
|
|
 |
F.Ternois,
J.Sticht,
S.Duquerroy,
H.G.Kräusslich,
and
F.A.Rey
(2005).
The HIV-1 capsid protein C-terminal domain in complex with a virus assembly inhibitor.
|
| |
Nat Struct Mol Biol,
12,
678-682.
|
 |
|
PDB code:
|
 |
|
|
|
|
|
 |
I.Scholz,
B.Arvidson,
D.Huseby,
and
E.Barklis
(2005).
Virus particle core defects caused by mutations in the human immunodeficiency virus capsid N-terminal domain.
|
| |
J Virol,
79,
1470-1479.
|
 |
|
|
|
|
 |
J.Sticht,
M.Humbert,
S.Findlow,
J.Bodem,
B.Müller,
U.Dietrich,
J.Werner,
and
H.G.Kräusslich
(2005).
A peptide inhibitor of HIV-1 assembly in vitro.
|
| |
Nat Struct Mol Biol,
12,
671-677.
|
 |
|
|
|
|
 |
M.C.Lidón-Moya,
F.N.Barrera,
M.Bueno,
R.Pérez-Jiménez,
J.Sancho,
M.G.Mateu,
and
J.L.Neira
(2005).
An extensive thermodynamic characterization of the dimerization domain of the HIV-1 capsid protein.
|
| |
Protein Sci,
14,
2387-2404.
|
 |
|
|
|
|
 |
M.del Alamo,
G.Rivas,
and
M.G.Mateu
(2005).
Effect of macromolecular crowding agents on human immunodeficiency virus type 1 capsid protein assembly in vitro.
|
| |
J Virol,
79,
14271-14281.
|
 |
|
|
|
|
 |
N.Morellet,
S.Druillennec,
C.Lenoir,
S.Bouaziz,
and
B.P.Roques
(2005).
Helical structure determined by NMR of the HIV-1 (345-392)Gag sequence, surrounding p2: implications for particle assembly and RNA packaging.
|
| |
Protein Sci,
14,
375-386.
|
 |
|
PDB code:
|
 |
|
|
|
|
|
 |
R.L.Kingston,
and
V.M.Vogt
(2005).
Domain swapping and retroviral assembly.
|
| |
Mol Cell,
17,
166-167.
|
 |
|
|
|
|
 |
X.Guo,
A.Roldan,
J.Hu,
M.A.Wainberg,
and
C.Liang
(2005).
Mutation of the SP1 sequence impairs both multimerization and membrane-binding activities of human immunodeficiency virus type 1 Gag.
|
| |
J Virol,
79,
1803-1812.
|
 |
|
|
|
|
 |
X.Guo,
B.B.Roy,
J.Hu,
A.Roldan,
M.A.Wainberg,
and
C.Liang
(2005).
The R362A mutation at the C-terminus of CA inhibits packaging of human immunodeficiency virus type 1 RNA.
|
| |
Virology,
343,
190-200.
|
 |
|
|
|
|
 |
B.K.Ganser-Pornillos,
U.K.von Schwedler,
K.M.Stray,
C.Aiken,
and
W.I.Sundquist
(2004).
Assembly properties of the human immunodeficiency virus type 1 CA protein.
|
| |
J Virol,
78,
2545-2552.
|
 |
|
|
|
|
 |
C.M.Owens,
B.Song,
M.J.Perron,
P.C.Yang,
M.Stremlau,
and
J.Sodroski
(2004).
Binding and susceptibility to postentry restriction factors in monkey cells are specified by distinct regions of the human immunodeficiency virus type 1 capsid.
|
| |
J Virol,
78,
5423-5437.
|
 |
|
|
|
|
 |
C.Tang,
E.Loeliger,
P.Luncsford,
I.Kinde,
D.Beckett,
and
M.F.Summers
(2004).
Entropic switch regulates myristate exposure in the HIV-1 matrix protein.
|
| |
Proc Natl Acad Sci U S A,
101,
517-522.
|
 |
|
PDB code:
|
 |
|
|
|
|
|
 |
D.E.Kaufmann,
P.M.Bailey,
J.Sidney,
B.Wagner,
P.J.Norris,
M.N.Johnston,
L.A.Cosimi,
M.M.Addo,
M.Lichterfeld,
M.Altfeld,
N.Frahm,
C.Brander,
A.Sette,
B.D.Walker,
and
E.S.Rosenberg
(2004).
Comprehensive analysis of human immunodeficiency virus type 1-specific CD4 responses reveals marked immunodominance of gag and nef and the presence of broadly recognized peptides.
|
| |
J Virol,
78,
4463-4477.
|
 |
|
|
|
|
 |
D.Melamed,
M.Mark-Danieli,
M.Kenan-Eichler,
O.Kraus,
A.Castiel,
N.Laham,
T.Pupko,
F.Glaser,
N.Ben-Tal,
and
E.Bacharach
(2004).
The conserved carboxy terminus of the capsid domain of human immunodeficiency virus type 1 gag protein is important for virion assembly and release.
|
| |
J Virol,
78,
9675-9688.
|
 |
|
|
|
|
 |
H.C.Chiu,
W.H.Liao,
S.W.Chen,
and
C.T.Wang
(2004).
The human immunodeficiency virus type 1 carboxyl-terminal third of capsid sequence in Gag-Pol is essential but not sufficient for efficient incorporation of Pr160(gag-pol) into virus particles.
|
| |
J Biomed Sci,
11,
398-407.
|
 |
|
|
|
|
 |
J.A.Briggs,
M.N.Simon,
I.Gross,
H.G.Kräusslich,
S.D.Fuller,
V.M.Vogt,
and
M.C.Johnson
(2004).
The stoichiometry of Gag protein in HIV-1.
|
| |
Nat Struct Mol Biol,
11,
672-675.
|
 |
|
|
|
|
 |
J.L.Newman,
E.W.Butcher,
D.T.Patel,
Y.Mikhaylenko,
and
M.F.Summers
(2004).
Flexibility in the P2 domain of the HIV-1 Gag polyprotein.
|
| |
Protein Sci,
13,
2101-2107.
|
 |
|
|
|
|
 |
M.T.Garzón,
M.C.Lidón-Moya,
F.N.Barrera,
A.Prieto,
J.Gómez,
M.G.Mateu,
and
J.L.Neira
(2004).
The dimerization domain of the HIV-1 capsid protein binds a capsid protein-derived peptide: a biophysical characterization.
|
| |
Protein Sci,
13,
1512-1523.
|
 |
|
|
|
|
 |
S.Cen,
M.Niu,
J.Saadatmand,
F.Guo,
Y.Huang,
G.J.Nabel,
and
L.Kleiman
(2004).
Incorporation of pol into human immunodeficiency virus type 1 Gag virus-like particles occurs independently of the upstream Gag domain in Gag-pol.
|
| |
J Virol,
78,
1042-1049.
|
 |
|
|
|
|
 |
T.Hatziioannou,
S.Cowan,
U.K.Von Schwedler,
W.I.Sundquist,
and
P.D.Bieniasz
(2004).
Species-specific tropism determinants in the human immunodeficiency virus type 1 capsid.
|
| |
J Virol,
78,
6005-6012.
|
 |
|
|
|
|
 |
X.Guo,
J.Hu,
J.B.Whitney,
R.S.Russell,
and
C.Liang
(2004).
Important role for the CA-NC spacer region in the assembly of bovine immunodeficiency virus Gag protein.
|
| |
J Virol,
78,
551-560.
|
 |
|
|
|
|
 |
Y.M.Ma,
and
V.M.Vogt
(2004).
Nucleic acid binding-induced Gag dimerization in the assembly of Rous sarcoma virus particles in vitro.
|
| |
J Virol,
78,
52-60.
|
 |
|
|
|
|
 |
B.K.Ganser,
A.Cheng,
W.I.Sundquist,
and
M.Yeager
(2003).
Three-dimensional structure of the M-MuLV CA protein on a lipid monolayer: a general model for retroviral capsid assembly.
|
| |
EMBO J,
22,
2886-2892.
|
 |
|
|
|
|
 |
C.Liang,
J.Hu,
J.B.Whitney,
L.Kleiman,
and
M.A.Wainberg
(2003).
A structurally disordered region at the C terminus of capsid plays essential roles in multimerization and membrane binding of the gag protein of human immunodeficiency virus type 1.
|
| |
J Virol,
77,
1772-1783.
|
 |
|
|
|
|
 |
J.A.Briggs,
T.Wilk,
R.Welker,
H.G.Kräusslich,
and
S.D.Fuller
(2003).
Structural organization of authentic, mature HIV-1 virions and cores.
|
| |
EMBO J,
22,
1707-1715.
|
 |
|
|
|
|
 |
K.Welfle,
R.Misselwitz,
W.Höhne,
and
H.Welfle
(2003).
Interaction of epitope-related and -unrelated peptides with anti-p24 (HIV-1) monoclonal antibody CB4-1 and its Fab fragment.
|
| |
J Mol Recognit,
16,
54-62.
|
 |
|
|
|
|
 |
R.Halwani,
A.Khorchid,
S.Cen,
and
L.Kleiman
(2003).
Rapid localization of Gag/GagPol complexes to detergent-resistant membrane during the assembly of human immunodeficiency virus type 1.
|
| |
J Virol,
77,
3973-3984.
|
 |
|
|
|
|
 |
S.C.Pettit,
S.Gulnik,
L.Everitt,
and
A.H.Kaplan
(2003).
The dimer interfaces of protease and extra-protease domains influence the activation of protease and the specificity of GagPol cleavage.
|
| |
J Virol,
77,
366-374.
|
 |
|
|
|
|
 |
S.M.Rue,
J.W.Roos,
L.M.Amzel,
J.E.Clements,
and
S.A.Barber
(2003).
Hydrogen bonding at a conserved threonine in lentivirus capsid is required for virus replication.
|
| |
J Virol,
77,
8009-8018.
|
 |
|
|
|
|
 |
S.R.Cheslock,
D.T.Poon,
W.Fu,
T.D.Rhodes,
L.E.Henderson,
K.Nagashima,
C.F.McGrath,
and
W.S.Hu
(2003).
Charged assembly helix motif in murine leukemia virus capsid: an important region for virus assembly and particle size determination.
|
| |
J Virol,
77,
7058-7066.
|
 |
|
|
|
|
 |
S.Rashkova,
A.Athanasiadis,
and
M.L.Pardue
(2003).
Intracellular targeting of Gag proteins of the Drosophila telomeric retrotransposons.
|
| |
J Virol,
77,
6376-6384.
|
 |
|
|
|
|
 |
S.Tang,
T.Murakami,
N.Cheng,
A.C.Steven,
E.O.Freed,
and
J.G.Levin
(2003).
Human immunodeficiency virus type 1 N-terminal capsid mutants containing cores with abnormally high levels of capsid protein and virtually no reverse transcriptase.
|
| |
J Virol,
77,
12592-12602.
|
 |
|
|
|
|
 |
U.K.von Schwedler,
K.M.Stray,
J.E.Garrus,
and
W.I.Sundquist
(2003).
Functional surfaces of the human immunodeficiency virus type 1 capsid protein.
|
| |
J Virol,
77,
5439-5450.
|
 |
|
|
|
|
 |
A.C.Saphire,
M.D.Bobardt,
and
P.A.Gallay
(2002).
trans-Complementation rescue of cyclophilin A-deficient viruses reveals that the requirement for cyclophilin A in human immunodeficiency virus type 1 replication is independent of its isomerase activity.
|
| |
J Virol,
76,
2255-2262.
|
 |
|
|
|
|
 |
A.Khorchid,
R.Halwani,
M.A.Wainberg,
and
L.Kleiman
(2002).
Role of RNA in facilitating Gag/Gag-Pol interaction.
|
| |
J Virol,
76,
4131-4137.
|
 |
|
|
|
|
 |
B.M.Forshey,
U.von Schwedler,
W.I.Sundquist,
and
C.Aiken
(2002).
Formation of a human immunodeficiency virus type 1 core of optimal stability is crucial for viral replication.
|
| |
J Virol,
76,
5667-5677.
|
 |
|
|
|
|
 |
C.Liang,
J.Hu,
R.S.Russell,
A.Roldan,
L.Kleiman,
and
M.A.Wainberg
(2002).
Characterization of a putative alpha-helix across the capsid-SP1 boundary that is critical for the multimerization of human immunodeficiency virus type 1 gag.
|
| |
J Virol,
76,
11729-11737.
|
 |
|
|
|
|
 |
C.Tang,
Y.Ndassa,
and
M.F.Summers
(2002).
Structure of the N-terminal 283-residue fragment of the immature HIV-1 Gag polyprotein.
|
| |
Nat Struct Biol,
9,
537-543.
|
 |
|
PDB codes:
|
 |
|
|
|
|
|
 |
H.C.Chiu,
F.D.Wang,
S.Y.Yao,
and
C.T.Wang
(2002).
Effects of gag mutations on human immunodeficiency virus type 1 particle assembly, processing, and cyclophilin A incorporation.
|
| |
J Med Virol,
68,
156-163.
|
 |
|
|
|
|
 |
J.Lanman,
J.Sexton,
M.Sakalian,
and
P.E.Prevelige
(2002).
Kinetic analysis of the role of intersubunit interactions in human immunodeficiency virus type 1 capsid protein assembly in vitro.
|
| |
J Virol,
76,
6900-6908.
|
 |
|
|
|
|
 |
M.C.Johnson,
H.M.Scobie,
Y.M.Ma,
and
V.M.Vogt
(2002).
Nucleic acid-independent retrovirus assembly can be driven by dimerization.
|
| |
J Virol,
76,
11177-11185.
|
 |
|
|
|
|
 |
M.Sakalian,
S.S.Dittmer,
A.D.Gandy,
N.D.Rapp,
A.Zábranský,
and
E.Hunter
(2002).
The Mason-Pfizer monkey virus internal scaffold domain enables in vitro assembly of human immunodeficiency virus type 1 Gag.
|
| |
J Virol,
76,
10811-10820.
|
 |
|
|
|
|
 |
S.Höglund,
J.Su,
S.S.Reneby,
A.Végvári,
S.Hjertén,
I.M.Sintorn,
H.Foster,
Y.P.Wu,
I.Nyström,
and
A.Vahlne
(2002).
Tripeptide interference with human immunodeficiency virus type 1 morphogenesis.
|
| |
Antimicrob Agents Chemother,
46,
3597-3605.
|
 |
|
|
|
|
 |
S.Rashkova,
S.E.Karam,
and
M.L.Pardue
(2002).
Element-specific localization of Drosophila retrotransposon Gag proteins occurs in both nucleus and cytoplasm.
|
| |
Proc Natl Acad Sci U S A,
99,
3621-3626.
|
 |
|
|
|
|
 |
Y.M.Ma,
and
V.M.Vogt
(2002).
Rous sarcoma virus Gag protein-oligonucleotide interaction suggests a critical role for protein dimer formation in assembly.
|
| |
J Virol,
76,
5452-5462.
|
 |
|
|
|
|
 |
F.Rayne,
F.Bouamr,
J.Lalanne,
and
R.Z.Mamoun
(2001).
The NH2-terminal domain of the human T-cell leukemia virus type 1 capsid protein is involved in particle formation.
|
| |
J Virol,
75,
5277-5287.
|
 |
|
|
|
|
 |
F.Yu,
S.M.Joshi,
Y.M.Ma,
R.L.Kingston,
M.N.Simon,
and
V.M.Vogt
(2001).
Characterization of Rous sarcoma virus Gag particles assembled in vitro.
|
| |
J Virol,
75,
2753-2764.
|
 |
|
|
|
|
 |
H.G.Göttlinger
(2001).
The HIV-1 assembly machine.
|
| |
AIDS,
15,
S13-S20.
|
 |
|
|
|
|
 |
J.B.Bowzard,
J.W.Wills,
and
R.C.Craven
(2001).
Second-site suppressors of Rous sarcoma virus Ca mutations: evidence for interdomain interactions.
|
| |
J Virol,
75,
6850-6856.
|
 |
|
|
|
|
 |
L.Dietrich,
L.S.Ehrlich,
T.J.LaGrassa,
D.Ebbets-Reed,
and
C.Carter
(2001).
Structural consequences of cyclophilin A binding on maturational refolding in human immunodeficiency virus type 1 capsid protein.
|
| |
J Virol,
75,
4721-4733.
|
 |
|
|
|
|
 |
L.S.Ehrlich,
T.Liu,
S.Scarlata,
B.Chu,
and
C.A.Carter
(2001).
HIV-1 capsid protein forms spherical (immature-like) and tubular (mature-like) particles in vitro: structure switching by pH-induced conformational changes.
|
| |
Biophys J,
81,
586-594.
|
 |
|
|
|
|
 |
O.W.Lindwasser,
and
M.D.Resh
(2001).
Multimerization of human immunodeficiency virus type 1 Gag promotes its localization to barges, raft-like membrane microdomains.
|
| |
J Virol,
75,
7913-7924.
|
 |
|
|
|
|
 |
P.Provitera,
A.Goff,
A.Harenberg,
F.Bouamr,
C.Carter,
and
S.Scarlata
(2001).
Role of the major homology region in assembly of HIV-1 Gag.
|
| |
Biochemistry,
40,
5565-5572.
|
 |
|
|
|
|
 |
S.D.Parker,
J.S.Wall,
and
E.Hunter
(2001).
Analysis of Mason-Pfizer monkey virus Gag particles by scanning transmission electron microscopy.
|
| |
J Virol,
75,
9543-9548.
|
 |
|
|
|
|
 |
S.Tang,
T.Murakami,
B.E.Agresta,
S.Campbell,
E.O.Freed,
and
J.G.Levin
(2001).
Human immunodeficiency virus type 1 N-terminal capsid mutants that exhibit aberrant core morphology and are blocked in initiation of reverse transcription in infected cells.
|
| |
J Virol,
75,
9357-9366.
|
 |
|
|
|
|
 |
T.M.Cairns,
and
R.C.Craven
(2001).
Viral DNA synthesis defects in assembly-competent Rous sarcoma virus CA mutants.
|
| |
J Virol,
75,
242-250.
|
 |
|
|
|
|
 |
A.Cimarelli,
S.Sandin,
S.Höglund,
and
J.Luban
(2000).
Basic residues in human immunodeficiency virus type 1 nucleocapsid promote virion assembly via interaction with RNA.
|
| |
J Virol,
74,
3046-3057.
|
 |
|
|
|
|
 |
A.Ono,
D.Demirov,
and
E.O.Freed
(2000).
Relationship between human immunodeficiency virus type 1 Gag multimerization and membrane binding.
|
| |
J Virol,
74,
5142-5150.
|
 |
|
|
|
|
 |
G.Zuber,
and
E.Barklis
(2000).
Atomic force microscopy and electron microscopy analysis of retrovirus Gag proteins assembled in vitro on lipid bilayers.
|
| |
Biophys J,
78,
373-384.
|
 |
|
|
|
|
 |
I.Gross,
H.Hohenberg,
T.Wilk,
K.Wiegers,
M.Grättinger,
B.Müller,
S.Fuller,
and
H.G.Kräusslich
(2000).
A conformational switch controlling HIV-1 morphogenesis.
|
| |
EMBO J,
19,
103-113.
|
 |
|
|
|
|
 |
M.A.Accola,
B.Strack,
and
H.G.Göttlinger
(2000).
Efficient particle production by minimal Gag constructs which retain the carboxy-terminal domain of human immunodeficiency virus type 1 capsid-p2 and a late assembly domain.
|
| |
J Virol,
74,
5395-5402.
|
 |
|
|
|
|
 |
R.L.Kingston,
T.Fitzon-Ostendorp,
E.Z.Eisenmesser,
G.W.Schatz,
V.M.Vogt,
C.B.Post,
and
M.G.Rossmann
(2000).
Structure and self-association of the Rous sarcoma virus capsid protein.
|
| |
Structure,
8,
617-628.
|
 |
|
PDB codes:
|
 |
|
|
|
|
|
 |
S.M.Joshi,
and
V.M.Vogt
(2000).
Role of the Rous sarcoma virus p10 domain in shape determination of gag virus-like particles assembled in vitro and within Escherichia coli.
|
| |
J Virol,
74,
10260-10268.
|
 |
|
|
|
|
 |
S.Monaco-Malbet,
C.Berthet-Colominas,
A.Novelli,
N.Battaï,
N.Piga,
V.Cheynet,
F.Mallet,
and
S.Cusack
(2000).
Mutual conformational adaptations in antigen and antibody upon complex formation between an Fab and HIV-1 capsid protein p24.
|
| |
Structure,
8,
1069-1077.
|
 |
|
PDB codes:
|
 |
|
|
|
|
|
 |
Y.Morikawa,
D.J.Hockley,
M.V.Nermut,
and
I.M.Jones
(2000).
Roles of matrix, p2, and N-terminal myristoylation in human immunodeficiency virus type 1 Gag assembly.
|
| |
J Virol,
74,
16-23.
|
 |
|
|
|
|
 |
B.Liu,
R.Dai,
C.J.Tian,
L.Dawson,
R.Gorelick,
and
X.F.Yu
(1999).
Interaction of the human immunodeficiency virus type 1 nucleocapsid with actin.
|
| |
J Virol,
73,
2901-2908.
|
 |
|
|
|
|
 |
B.Yélamos,
E.Núñez,
J.Gómez-Gutiérrez,
M.Datta,
B.Pacheco,
D.L.Peterson,
and
F.Gavilanes
(1999).
Circular dichroism and fluorescence spectroscopic properties of the major core protein of feline immunodeficiency virus and its tryptophan mutants. Assignment of the individual contribution of the aromatic sidechains.
|
| |
Eur J Biochem,
266,
1081-1089.
|
 |
|
|
|
|
 |
C.Berthet-Colominas,
S.Monaco,
A.Novelli,
G.Sibaï,
F.Mallet,
and
S.Cusack
(1999).
Head-to-tail dimers and interdomain flexibility revealed by the crystal structure of HIV-1 capsid protein (p24) complexed with a monoclonal antibody Fab.
|
| |
EMBO J,
18,
1124-1136.
|
 |
|
|
|
|
 |
C.T.Wang,
H.Y.Lai,
and
C.C.Yang
(1999).
Sequence requirements for incorporation of human immunodeficiency virus gag-beta-galactosidase fusion proteins into virus-like particles.
|
| |
J Med Virol,
59,
180-188.
|
 |
|
|
|
|
 |
D.K.Worthylake,
H.Wang,
S.Yoo,
W.I.Sundquist,
and
C.P.Hill
(1999).
Structures of the HIV-1 capsid protein dimerization domain at 2.6 A resolution.
|
| |
Acta Crystallogr D Biol Crystallogr,
55,
85-92.
|
 |
|
PDB codes:
|
 |
|
|
|
|
|
 |
M.Dettenhofer,
and
X.F.Yu
(1999).
Proline residues in human immunodeficiency virus type 1 p6(Gag) exert a cell type-dependent effect on viral replication and virion incorporation of Pol proteins.
|
| |
J Virol,
73,
4696-4704.
|
 |
|
|
|
|
 |
M.T.Burniston,
A.Cimarelli,
J.Colgan,
S.P.Curtis,
and
J.Luban
(1999).
Human immunodeficiency virus type 1 Gag polyprotein multimerization requires the nucleocapsid domain and RNA and is promoted by the capsid-dimer interface and the basic region of matrix protein.
|
| |
J Virol,
73,
8527-8540.
|
 |
|
|
|
|
 |
R.Tuma,
J.K.Bamford,
D.H.Bamford,
and
G.J.Thomas
(1999).
Assembly dynamics of the nucleocapsid shell subunit (P8) of bacteriophage phi6.
|
| |
Biochemistry,
38,
15025-15033.
|
 |
|
|
|
|
 |
S.A.Wynne,
R.A.Crowther,
and
A.G.Leslie
(1999).
The crystal structure of the human hepatitis B virus capsid.
|
| |
Mol Cell,
3,
771-780.
|
 |
|
PDB code:
|
 |
|
|
|
|
|
 |
T.Wilk,
and
S.D.Fuller
(1999).
Towards the structure of the human immunodeficiency virus: divide and conquer.
|
| |
Curr Opin Struct Biol,
9,
231-243.
|
 |
|
|
|
|
 |
A.Borsetti,
A.Ohagen,
and
H.G.Göttlinger
(1998).
The C-terminal half of the human immunodeficiency virus type 1 Gag precursor is sufficient for efficient particle assembly.
|
| |
J Virol,
72,
9313-9317.
|
 |
|
|
|
|
 |
G.S.Ogg,
T.Dong,
P.Hansasuta,
L.Dorrell,
J.Clarke,
R.Coker,
G.Luzzi,
C.Conlon,
A.P.McMichael,
and
S.Rowland-Jones
(1998).
Four novel cytotoxic T-lymphocyte epitopes in the highly conserved major homology region of HIV-1 Gag, restricted through B*4402, B*1801, A*2601, B*70 (B*1509)
|
| |
AIDS,
12,
1561-1563.
|
 |
|
|
|
|
 |
H.Garoff,
R.Hewson,
and
D.J.Opstelten
(1998).
Virus maturation by budding.
|
| |
Microbiol Mol Biol Rev,
62,
1171-1190.
|
 |
|
|
|
|
 |
H.Reil,
A.A.Bukovsky,
H.R.Gelderblom,
and
H.G.Göttlinger
(1998).
Efficient HIV-1 replication can occur in the absence of the viral matrix protein.
|
| |
EMBO J,
17,
2699-2708.
|
 |
|
|
|
|
 |
I.M.Jones,
and
Y.Morikawa
(1998).
The molecular basis of HIV capsid assembly.
|
| |
Rev Med Virol,
8,
87-95.
|
 |
|
|
|
|
 |
M.A.Accola,
S.Höglund,
and
H.G.Göttlinger
(1998).
A putative alpha-helical structure which overlaps the capsid-p2 boundary in the human immunodeficiency virus type 1 Gag precursor is crucial for viral particle assembly.
|
| |
J Virol,
72,
2072-2078.
|
 |
|
|
|
|
 |
M.Yeager,
E.M.Wilson-Kubalek,
S.G.Weiner,
P.O.Brown,
and
A.Rein
(1998).
Supramolecular organization of immature and mature murine leukemia virus revealed by electron cryo-microscopy: implications for retroviral assembly mechanisms.
|
| |
Proc Natl Acad Sci U S A,
95,
7299-7304.
|
 |
|
|
|
|
 |
U.K.von Schwedler,
T.L.Stemmler,
V.Y.Klishko,
S.Li,
K.H.Albertine,
D.R.Davis,
and
W.I.Sundquist
(1998).
Proteolytic refolding of the HIV-1 capsid protein amino-terminus facilitates viral core assembly.
|
| |
EMBO J,
17,
1555-1568.
|
 |
|
|
|
|
 |
Y.Gao,
K.Kaluarachchi,
and
D.P.Giedroc
(1998).
Solution structure and backbone dynamics of Mason-Pfizer monkey virus (MPMV) nucleocapsid protein.
|
| |
Protein Sci,
7,
2265-2280.
|
 |
|
PDB code:
|
 |
|
|
 |
 |
|
The most recent references are shown first.
Citation data come partly from CiteXplore and partly
from an automated harvesting procedure. Note that this is likely to be
only a partial list as not all journals are covered by
either method. However, we are continually building up the citation data
so more and more references will be included with time.
Where a reference describes a PDB structure, the PDB
codes are
shown on the right.
|
');
}
}
 |