spacer
spacer

PDBsum entry 1z6t

Go to PDB code: 
protein ligands Protein-protein interface(s) links
Apoptosis PDB id
1z6t

 

 

 

 

Loading ...

 
JSmol PyMol  
Contents
Protein chain
576 a.a. *
Ligands
ADP ×4
Waters ×803
* Residue conservation analysis
PDB id:
1z6t
Name: Apoptosis
Title: Structure of the apoptotic protease-activating factor 1 bound to adp
Structure: Apoptotic protease activating factor 1. Chain: a, b, c, d. Fragment: apaf-1, residues 1-591. Synonym: apaf-1. Engineered: yes
Source: Homo sapiens. Human. Organism_taxid: 9606. Expressed in: escherichia coli bl21(de3). Expression_system_taxid: 469008.
Resolution:
2.21Å     R-factor:   0.192     R-free:   0.244
Authors: S.J.Riedl,W.Li,Y.Chao,R.Schwarzenbacher,Y.Shi
Key ref:
S.J.Riedl et al. (2005). Structure of the apoptotic protease-activating factor 1 bound to ADP. Nature, 434, 926-933. PubMed id: 15829969 DOI: 10.1038/nature03465
Date:
23-Mar-05     Release date:   19-Apr-05    
PROCHECK
Go to PROCHECK summary
 Headers
 References

Protein chains
Pfam   ArchSchema ?
O14727  (APAF_HUMAN) -  Apoptotic protease-activating factor 1 from Homo sapiens
Seq:
Struc:
 
Seq:
Struc:
 
Seq:
Struc:
1248 a.a.
576 a.a.
Key:    PfamA domain  Secondary structure  CATH domain

 

 
DOI no: 10.1038/nature03465 Nature 434:926-933 (2005)
PubMed id: 15829969  
 
 
Structure of the apoptotic protease-activating factor 1 bound to ADP.
S.J.Riedl, W.Li, Y.Chao, R.Schwarzenbacher, Y.Shi.
 
  ABSTRACT  
 
Apoptosis is executed by caspases, which undergo proteolytic activation in response to cell death stimuli. The apoptotic protease-activating factor 1 (Apaf-1) controls caspase activation downstream of mitochondria. During apoptosis, Apaf-1 binds to cytochrome c and in the presence of ATP/dATP forms an apoptosome, leading to the recruitment and activation of the initiator caspase, caspase-9 (ref. 2). The mechanisms underlying Apaf-1 function are largely unknown. Here we report the 2.2-A crystal structure of an ADP-bound, WD40-deleted Apaf-1, which reveals the molecular mechanism by which Apaf-1 exists in an inactive state before ATP binding. The amino-terminal caspase recruitment domain packs against a three-layered alpha/beta fold, a short helical motif and a winged-helix domain, resulting in the burial of the caspase-9-binding interface. The deeply buried ADP molecule serves as an organizing centre to strengthen interactions between these four adjoining domains, thus locking Apaf-1 in an inactive conformation. Apaf-1 binds to and hydrolyses ATP/dATP and their analogues. The binding and hydrolysis of nucleotides seem to drive conformational changes that are essential for the formation of the apoptosome and the activation of caspase-9.
 
  Selected figure(s)  
 
Figure 1.
Figure 1: Overall structure of the WD40-deleted Apaf-1 bound to ADP. a, A ribbon diagram of the structure of Apaf-1 (residues 1 -591) bound to ADP. Apaf-1 sequentially comprises five distinct domains: CARD (coloured green), an / fold (blue), helical domain I (cyan), a winged-helix domain (magenta) and helical domain II (red). These five domains pack against one another to generate a relatively compact structure. ADP binds to the hinge region between the / fold and helical domain I but is also coordinated by two critical residues from the winged-helix domain. b, The structure of Apaf-1 in another orientation. Relative to a, Apaf-1 is rotated 90° along a vertical axis within the plane of paper. c, A stereo view showing the binding of ADP in the Apaf-1 structure. The |F[o] - F[c]| omit electron density map, contoured at 2.0 , is calculated with the omission of ADP and shown in red around ADP. Figures 1 -3 and 5 were prepared using MOLSCRIPT29 and GRASP30.
Figure 3.
Figure 3: ADP serves as an organizing centre for the adjoining three domains and locks Apaf-1 in an inactive conformation. a, ADP is deeply buried and inaccessible to even small molecules unless the surrounding domains undergo conformational changes. Left, a cross-section of Apaf-1, with its van der Waals surface represented by a colour-coded mesh. Right, the CARD domain (green) blocks the only solvent channel to the ADP-binding pocket. b, A stereo representation of the coordination of ADP by residues from three domains. As in other AAA + ATPases16, ADP is bound primarily in the hinge region between the / fold (blue) and helical domain I (cyan). In Apaf-1, the winged-helix domain also contributes a direct hydrogen bond (from His 438) to the -phosphate group and a water-mediated hydrogen bond (from Ser 422) to the ribose.
 
  The above figures are reprinted by permission from Macmillan Publishers Ltd: Nature (2005, 434, 926-933) copyright 2005.  
  Figures were selected by an automated process.  

Literature references that cite this PDB file's key reference

  PubMed id Reference
21358811 J.M.Doolittle, and S.M.Gomez (2011).
Mapping Protein Interactions between Dengue Virus and Its Human and Insect Hosts.
  PLoS Negl Trop Dis, 5, e954.  
20585889 S.Głowacki, V.K.Macioszek, and A.K.Kononowicz (2011).
R proteins as fundamentals of plant innate immunity.
  Cell Mol Biol Lett, 16, 1.  
21371431 S.Karimpour, J.Davoodi, and M.H.Ghahremani (2011).
Integrity of ATP binding site is essential for effective inhibition of the intrinsic apoptosis pathway by NAIP.
  Biochem Biophys Res Commun, 407, 158-162.  
21220123 S.Yuan, X.Yu, M.Topf, L.Dorstyn, S.Kumar, S.J.Ludtke, and C.W.Akey (2011).
Structure of the Drosophila apoptosome at 6.9 å resolution.
  Structure, 19, 128-140.
PDB codes: 1vt4 3iz8
20022954 D.Zhai, E.Yu, C.Jin, K.Welsh, C.W.Shiau, L.Chen, G.S.Salvesen, R.Liddington, and J.C.Reed (2010).
Vaccinia virus protein F1L is a caspase-9 inhibitor.
  J Biol Chem, 285, 5569-5580.  
20198502 F.Van Herreweghe, N.Festjens, W.Declercq, and P.Vandenabeele (2010).
Tumor necrosis factor-mediated cell death: to break or to burst, that's the question.
  Cell Mol Life Sci, 67, 1567-1579.  
20545845 O.Danot (2010).
The inducer maltotriose binds in the central cavity of the tetratricopeptide-like sensor domain of MalT, a bacterial STAND transcription factor.
  Mol Microbiol, 77, 628-641.  
20817427 P.D.Mace, and S.J.Riedl (2010).
Molecular cell death platforms and assemblies.
  Curr Opin Cell Biol, 22, 828-836.  
20804457 S.Brunner, S.Hurni, P.Streckeisen, G.Mayr, M.Albrecht, N.Yahiaoui, and B.Keller (2010).
Intragenic allele pyramiding combines different specificities of wheat Pm3 resistance alleles.
  Plant J, 64, 433-445.  
20462491 S.Yuan, X.Yu, M.Topf, S.J.Ludtke, X.Wang, and C.W.Akey (2010).
Structure of an apoptosome-procaspase-9 CARD complex.
  Structure, 18, 571-583.
PDB codes: 3iyt 3iza
20434981 X.Teng, and J.M.Hardwick (2010).
The apoptosome at high resolution.
  Cell, 141, 402-404.  
20096590 Y.Kadota, K.Shirasu, and R.Guerois (2010).
NLR sensors meet at the SGT1-HSP90 crossroad.
  Trends Biochem Sci, 35, 199-207.  
  20676046 Y.Mei, J.Yong, A.Stonestrom, and X.Yang (2010).
tRNA and cytochrome c in cell death and beyond.
  Cell Cycle, 9, 2936-2939.  
20227371 Y.Mei, J.Yong, H.Liu, Y.Shi, J.Meinkoth, G.Dreyfuss, and X.Yang (2010).
tRNA binds to cytochrome c and inhibits caspase activation.
  Mol Cell, 37, 668-678.  
19423813 F.L.Takken, and W.I.Tameling (2009).
To nibble at plant resistance proteins.
  Science, 324, 744-746.  
19014346 K.Shirasu (2009).
The HSP90-SGT1 chaperone complex for NLR immune sensors.
  Annu Rev Plant Biol, 60, 139-164.  
19152031 L.Mondragón, L.Galluzzi, S.Mouhamad, M.Orzáez, J.M.Vicencio, I.Vitale, A.Moure, A.Messeguer, E.Perez-Paya, and G.Kroemer (2009).
A chemical inhibitor of Apaf-1 exerts mitochondrioprotective functions and interferes with the intra-S-phase DNA damage checkpoint.
  Apoptosis, 14, 182-190.  
19132868 M.R.Swiderski, D.Birker, and J.D.Jones (2009).
The TIR Domain of TIR-NB-LRR Resistance Proteins Is a Signaling Domain Involved in Cell Death Induction.
  Mol Plant Microbe Interact, 22, 157-165.  
19398031 M.Rafiqi, M.Bernoux, J.G.Ellis, and P.N.Dodds (2009).
In the trenches of plant pathogen recognition: Role of NB-LRR proteins.
  Semin Cell Dev Biol, 20, 1017-1024.  
19217388 O.Danot, E.Marquenet, D.Vidal-Ingigliardi, and E.Richet (2009).
Wheel of Life, Wheel of Death: A Mechanistic Insight into Signaling by STAND Proteins.
  Structure, 17, 172-182.  
19089981 Q.Xu, C.L.Rife, D.Carlton, M.D.Miller, S.S.Krishna, M.A.Elsliger, P.Abdubek, T.Astakhova, H.J.Chiu, T.Clayton, L.Duan, J.Feuerhelm, S.K.Grzechnik, J.Hale, G.W.Han, L.Jaroszewski, K.K.Jin, H.E.Klock, M.W.Knuth, A.Kumar, D.McMullan, A.T.Morse, E.Nigoghossian, L.Okach, S.Oommachen, J.Paulsen, R.Reyes, H.van den Bedem, K.O.Hodgson, J.Wooley, A.M.Deacon, A.Godzik, S.A.Lesley, and I.A.Wilson (2009).
Crystal structure of a novel archaeal AAA+ ATPase SSO1545 from Sulfolobus solfataricus.
  Proteins, 74, 1041-1049.
PDB code: 2fna
19337385 R.N.Wagner, M.Proell, T.A.Kufer, and R.Schwarzenbacher (2009).
Evaluation of Nod-like receptor (NLR) effector domain interactions.
  PLoS ONE, 4, e4931.  
19465386 S.J.Suhrer, M.Wiederstein, M.Gruber, and M.J.Sippl (2009).
COPS--a novel workbench for explorations in fold space.
  Nucleic Acids Res, 37, W539-W544.  
19720556 S.M.Collier, and P.Moffett (2009).
NB-LRRs work a "bait and switch" on pathogens.
  Trends Plant Sci, 14, 521-529.  
19801675 T.F.Reubold, S.Wohlgemuth, and S.Eschenburg (2009).
A new model for the transition of APAF-1 from inactive monomer to caspase-activating apoptosome.
  J Biol Chem, 284, 32717-32724.  
19479377 T.Kitevska, D.M.Spencer, and C.J.Hawkins (2009).
Caspase-2: controversial killer or checkpoint controller?
  Apoptosis, 14, 829-848.  
19043417 U.Pannicke, M.Hönig, I.Hess, C.Friesen, K.Holzmann, E.M.Rump, T.F.Barth, M.T.Rojewski, A.Schulz, T.Boehm, W.Friedrich, and K.Schwarz (2009).
Reticular dysgenesis (aleukocytosis) is caused by mutations in the gene encoding mitochondrial adenylate kinase 2.
  Nat Genet, 41, 101-105.  
18511454 K.Rose, S.Pallast, S.Klumpp, and J.Krieglstein (2008).
ATP-binding on fibroblast growth factor 2 partially overlaps with the heparin-binding domain.
  J Biochem, 144, 343-347.  
18446235 M.Proell, S.J.Riedl, J.H.Fritz, A.M.Rojas, and R.Schwarzenbacher (2008).
The Nod-like receptor (NLR) family: a tale of similarities and differences.
  PLoS ONE, 3, e2119.  
20477588 O.Gaide, and H.M.Hoffman (2008).
Insight into the inflammasome and caspase-activating mechanisms.
  Expert Rev Clin Immunol, 4, 61-77.  
17962813 S.Hoffarth, A.Zitzer, R.Wiewrodt, P.S.Hähnel, V.Beyer, A.Kreft, S.Biesterfeld, and M.Schuler (2008).
pp32/PHAPI determines the apoptosis response of non-small-cell lung cancer.
  Cell Death Differ, 15, 161-170.  
17349957 B.Faustin, L.Lartigue, J.M.Bruey, F.Luciano, E.Sergienko, B.Bailly-Maitre, N.Volkmann, D.Hanein, I.Rouiller, and J.C.Reed (2007).
Reconstituted NALP1 inflammasome reveals two-step mechanism of caspase-1 activation.
  Mol Cell, 25, 713-724.  
17964259 E.Marquenet, and E.Richet (2007).
How integration of positive and negative regulatory signals by a STAND signaling protein depends on ATP hydrolysis.
  Mol Cell, 28, 187-199.  
17367271 G.van Ooijen, H.A.van den Burg, B.J.Cornelissen, and F.L.Takken (2007).
Structure and function of resistance proteins in solanaceous plants.
  Annu Rev Phytopathol, 45, 43-72.  
17201679 H.H.Park, Y.C.Lo, S.C.Lin, L.Wang, J.K.Yang, and H.Wu (2007).
The death domain superfamily in intracellular signaling of apoptosis and inflammation.
  Annu Rev Immunol, 25, 561-586.  
17393462 I.Aksentijevich, C.D Putnam, E.F.Remmers, J.L.Mueller, J.Le, R.D.Kolodner, Z.Moak, M.Chuang, F.Austin, R.Goldbach-Mansky, H.M.Hoffman, and D.L.Kastner (2007).
The clinical continuum of cryopyrinopathies: novel CIAS1 mutations in North American patients and a new cryopyrin model.
  Arthritis Rheum, 56, 1273-1285.  
17418785 J.M.Bruey, N.Bruey-Sedano, F.Luciano, D.Zhai, R.Balpai, C.Xu, C.L.Kress, B.Bailly-Maitre, X.Li, A.Osterman, S.Matsuzawa, A.V.Terskikh, B.Faustin, and J.C.Reed (2007).
Bcl-2 and Bcl-XL regulate proinflammatory caspase-1 activation by interaction with NALP1.
  Cell, 129, 45-56.  
17693089 L.Sanchez-Pulido, A.Valencia, and A.M.Rojas (2007).
Are promyelocytic leukaemia protein nuclear bodies a scaffold for caspase-2 programmed cell death?
  Trends Biochem Sci, 32, 400-406.  
17907762 M.J.Vicent (2007).
Polymer-drug conjugates as modulators of cellular apoptosis.
  AAPS J, 9, E200-E207.  
16645639 M.Srivastava, H.Scherr, M.Lackey, D.Xu, Z.Chen, J.Lu, and A.Bergmann (2007).
ARK, the Apaf-1 related killer in Drosophila, requires diverse domains for its apoptotic activity.
  Cell Death Differ, 14, 92.  
17173864 N.P.Coussens, J.C.Mowers, C.McDonald, G.Nuñez, and S.Ramaswamy (2007).
Crystal structure of the Nod1 caspase activation and recruitment domain.
  Biochem Biophys Res Commun, 353, 1-5.
PDB code: 2nsn
17244527 Q.Bao, W.Lu, J.D.Rabinowitz, and Y.Shi (2007).
Calcium blocks formation of apoptosome by preventing nucleotide exchange in Apaf-1.
  Mol Cell, 25, 181-192.  
16977332 Q.Bao, and Y.Shi (2007).
Apoptosome: a platform for the activation of initiator caspases.
  Cell Death Differ, 14, 56-65.  
17853890 Q.H.Shen, and P.Schulze-Lefert (2007).
Rumble in the nuclear jungle: compartmentalization, trafficking, and nuclear action of plant immune receptors.
  EMBO J, 26, 4293-4301.  
17377525 S.J.Riedl, and G.S.Salvesen (2007).
The apoptosome: signalling platform of cell death.
  Nat Rev Mol Cell Biol, 8, 405-413.  
17110940 B.J.DeYoung, and R.W.Innes (2006).
Plant NBS-LRR proteins in pathogen sensing and host defense.
  Nat Immunol, 7, 1243-1249.  
16676004 C.Garrido, L.Galluzzi, M.Brunet, P.E.Puig, C.Didelot, and G.Kroemer (2006).
Mechanisms of cytochrome c release from mitochondria.
  Cell Death Differ, 13, 1423-1433.  
16814719 D.Chandra, S.B.Bratton, M.D.Person, Y.Tian, A.G.Martin, M.Ayres, H.O.Fearnhead, V.Gandhi, and D.G.Tang (2006).
Intracellular nucleotides act as critical prosurvival factors by binding to cytochrome C and inhibiting apoptosome.
  Cell, 125, 1333-1346.  
16823444 E.Meylan, J.Tschopp, and M.Karin (2006).
Intracellular pattern recognition receptors in the host response.
  Nature, 442, 39-44.  
16339882 E.Z.Bagci, Y.Vodovotz, T.R.Billiar, G.B.Ermentrout, and I.Bahar (2006).
Bistability in apoptosis: roles of bax, bcl-2, and mitochondrial permeability transition pores.
  Biophys J, 90, 1546-1559.  
16713729 F.L.Takken, M.Albrecht, and W.I.Tameling (2006).
Resistance proteins: molecular switches of plant defence.
  Curr Opin Plant Biol, 9, 383-390.  
16231040 J.Harlan, Y.Chen, E.Gubbins, R.Mueller, J.M.Roch, K.Walter, M.Lake, T.Olsen, P.Metzger, S.Dorwin, U.Ladror, D.A.Egan, J.Severin, R.W.Johnson, T.F.Holzman, K.Voelp, C.Davenport, A.Beck, J.Potter, M.Gopalakrishnan, A.Hahn, B.B.Spear, D.N.Halbert, J.P.Sullivan, V.Abkevich, C.D.Neff, M.H.Skolnick, D.Shattuck, and D.A.Katz (2006).
Variants in Apaf-1 segregating with major depression promote apoptosome function.
  Mol Psychiatry, 11, 76-85.  
16689629 J.P.Erzberger, and J.M.Berger (2006).
Evolutionary relationships and structural mechanisms of AAA+ proteins.
  Annu Rev Biophys Biomol Struct, 35, 93.  
16498449 J.P.Ting, D.L.Kastner, and H.M.Hoffman (2006).
CATERPILLERs, pyrin and hereditary immunological disorders.
  Nat Rev Immunol, 6, 183-195.  
16818228 J.Yuan (2006).
Divergence from a dedicated cellular suicide mechanism: exploring the evolution of cell death.
  Mol Cell, 23, 1.  
16677430 L.McHale, X.Tan, P.Koehl, and R.W.Michelmore (2006).
Plant NBS-LRR proteins: adaptable guards.
  Genome Biol, 7, 212.  
16889647 L.Michael Weaver, M.R.Swiderski, Y.Li, and J.D.Jones (2006).
The Arabidopsis thaliana TIR-NB-LRR R-protein, RPP1A; protein localization and constitutive activation of defence by truncated alleles in tobacco and Arabidopsis.
  Plant J, 47, 829-840.  
16574901 L.Zhou, A.Azfer, J.Niu, S.Graham, M.Choudhury, F.M.Adamski, C.Younce, P.F.Binkley, and P.E.Kolattukudy (2006).
Monocyte chemoattractant protein-1 induces a novel transcription factor that causes cardiac myocyte apoptosis and ventricular dysfunction.
  Circ Res, 98, 1177-1185.  
16895469 N.Festjens, S.Cornelis, M.Lamkanfi, and P.Vandenabeele (2006).
Caspase-containing complexes in the regulation of cell death and inflammation.
  Biol Chem, 387, 1005-1016.  
16167070 W.D.Fairlie, M.A.Perugini, M.Kvansakul, L.Chen, D.C.Huang, and P.M.Colman (2006).
CED-4 forms a 2 : 2 heterotetrameric complex with CED-9 until specifically displaced by EGL-1 or CED-13.
  Cell Death Differ, 13, 426-434.  
17046227 Y.Shi (2006).
Mechanical aspects of apoptosome assembly.
  Curr Opin Cell Biol, 18, 677-684.  
16251271 H.E.Kim, F.Du, M.Fang, and X.Wang (2005).
Formation of apoptosome is initiated by cytochrome c-induced dATP hydrolysis and subsequent nucleotide exchange on Apaf-1.
  Proc Natl Acad Sci U S A, 102, 17545-17550.  
16208361 N.Yan, J.Chai, E.S.Lee, L.Gu, Q.Liu, J.He, J.W.Wu, D.Kokel, H.Li, Q.Hao, D.Xue, and Y.Shi (2005).
Structure of the CED-4-CED-9 complex provides insights into programmed cell death in Caenorhabditis elegans.
  Nature, 437, 831-837.
PDB code: 2a5y
16262685 P.K.Ho, and C.J.Hawkins (2005).
Mammalian initiator apoptotic caspases.
  FEBS J, 272, 5436-5453.  
16271896 X.Yu, D.Acehan, J.F.Ménétret, C.R.Booth, S.J.Ludtke, S.J.Riedl, Y.Shi, X.Wang, and C.W.Akey (2005).
A structure of the human apoptosome at 12.8 A resolution provides insights into this cell death platform.
  Structure, 13, 1725-1735.  
The most recent references are shown first. Citation data come partly from CiteXplore and partly from an automated harvesting procedure. Note that this is likely to be only a partial list as not all journals are covered by either method. However, we are continually building up the citation data so more and more references will be included with time. Where a reference describes a PDB structure, the PDB codes are shown on the right.

 

spacer

spacer