spacer
spacer

PDBsum entry 1xna

Go to PDB code: 
protein links
DNA binding protein PDB id
1xna

 

 

 

 

Loading ...

 
JSmol PyMol  
Contents
Protein chain
151 a.a. *
* Residue conservation analysis
PDB id:
1xna
Name: DNA binding protein
Title: Nmr solution structure of the single-strand break repair protein xrcc1-n-terminal domain
Structure: Protein (DNA-repair protein xrcc1). Chain: a. Fragment: n-terminal domain, residues 1-183. Residues 152-183 are disordered and not shown.. Synonym: xrcc1-ntd. Engineered: yes. Mutation: yes
Source: Homo sapiens. Human. Organism_taxid: 9606. Cellular_location: nucleus. Gene: xrcc1. Expressed in: escherichia coli. Expression_system_taxid: 562.
NMR struc: 1 models
Authors: A.Marintchev,G.P.Mullen
Key ref:
A.Marintchev et al. (1999). Solution structure of the single-strand break repair protein XRCC1 N-terminal domain. Nat Struct Biol, 6, 884-893. PubMed id: 10467102 DOI: 10.1038/12347
Date:
27-Feb-99     Release date:   01-Sep-99    
PROCHECK
Go to PROCHECK summary
 Headers
 References

Protein chain
Pfam   ArchSchema ?
P18887  (XRCC1_HUMAN) -  DNA repair protein XRCC1 from Homo sapiens
Seq:
Struc:
 
Seq:
Struc:
633 a.a.
151 a.a.
Key:    PfamA domain  Secondary structure  CATH domain

 

 
DOI no: 10.1038/12347 Nat Struct Biol 6:884-893 (1999)
PubMed id: 10467102  
 
 
Solution structure of the single-strand break repair protein XRCC1 N-terminal domain.
A.Marintchev, M.A.Mullen, M.W.Maciejewski, B.Pan, M.R.Gryk, G.P.Mullen.
 
  ABSTRACT  
 
XRCC1 functions in the repair of single-strand DNA breaks in mammalian cells and forms a repair complex with beta-Pol, ligase III and PARP. Here we describe the NMR solution structure of the XRCC1 N-terminal domain (XRCC1 NTD). The structural core is a beta-sandwich with beta-strands connected by loops, three helices and two short two-stranded beta-sheets at each connection side. We show, for the first time, that the XRCC1 NTD specifically binds single-strand break DNA (gapped and nicked). We also show that the XRCC1 NTD binds a gapped DNA-beta-Pol complex. The DNA binding and beta-Pol binding surfaces were mapped by NMR and found to be well suited for interaction with single-strand gap DNA containing a 90 degrees bend, and for simultaneously making contacts with the palm-thumb of beta-Pol in a ternary complex. The findings suggest a mechanism for preferential binding of the XRCC1 NTD to flexible single-strand break DNA.
 
  Selected figure(s)  
 
Figure 2.
Figure 2. The NMR solution structure of the XRCC1 NTD. a, Overlay of the 23 structural conformers for residues 3−151 in stereo. The superimposition utilized all -strands. Residues 1, 2 and 152−183 are disordered. b, Ribbon representation of the average solution structure for residues 3−151. c, Overlay of the 23 NMR conformers showing the packing of hydrophobic side chains. Structures were displayed using the molecular graphics program MOLMOL^46.
Figure 9.
Figure 9. Ribbon overlay of the -strands in the XRCC1 NTD (violet) and the galactose binding domain (yellow) from sialidase (accession code 1EUU). The XRCC1 NTD shows no sequence homology with the galactose binding domains. The bulged residue 89 in the XRCC1 NTD was not included in the superimposition. Dali (version 2.0) was used in the search for structural neighbors^47.
 
  The above figures are reprinted by permission from Macmillan Publishers Ltd: Nat Struct Biol (1999, 6, 884-893) copyright 1999.  
  Figures were selected by an automated process.  

Literature references that cite this PDB file's key reference

  PubMed id Reference
21307569 M.Kitami, T.Kadotani, K.Nakanishi, S.Atsumi, S.Higurashi, T.Ishizaka, A.Watanabe, and R.Sato (2011).
Bacillus thuringiensis Cry toxins bound specifically to various proteins via domain III, which had a galactose-binding domain-like fold.
  Biosci Biotechnol Biochem, 75, 305-312.  
21234761 T.Tahara, T.Shibata, M.Nakamura, M.Okubo, H.Yamashita, D.Yoshioka, J.Yonemura, I.Hirata, and T.Arisawa (2011).
Association between polymorphisms in the XRCC1 and GST genes, and CpG island methylation status in colonic mucosa in ulcerative colitis.
  Virchows Arch, 458, 205-211.  
21435086 T.Tahara, T.Shibata, M.Nakamura, M.Okubo, H.Yamashita, D.Yoshioka, J.Yonemura, T.Ishizuka, I.Hirata, and T.Arisawa (2011).
Polymorphisms of DNA repair and xenobiotic genes predispose to CpG island methylation in non-neoplastic gastric mucosa.
  Helicobacter, 16, 99.  
20385586 B.R.Berquist, D.K.Singh, J.Fan, D.Kim, E.Gillenwater, A.Kulkarni, V.A.Bohr, E.J.Ackerman, A.E.Tomkinson, and D.M.Wilson (2010).
Functional capacity of XRCC1 protein variants identified in DNA repair-deficient Chinese hamster ovary cell lines and the human population.
  Nucleic Acids Res, 38, 5023-5035.  
20351257 M.J.Cuneo, and R.E.London (2010).
Oxidation state of the XRCC1 N-terminal domain regulates DNA polymerase beta binding affinity.
  Proc Natl Acad Sci U S A, 107, 6805-6810.
PDB codes: 3k75 3k77 3lqc
19910369 M.Lu, R.S.Mani, F.Karimi-Busheri, M.Fanta, H.Wang, D.W.Litchfeld, and M.Weinfeld (2010).
Independent mechanisms of stimulation of polynucleotide kinase/phosphatase by phosphorylated and non-phosphorylated XRCC1.
  Nucleic Acids Res, 38, 510-521.  
  20625476 M.R.Gryk, J.Vyas, and M.W.Maciejewski (2010).
Biomolecular NMR data analysis.
  Prog Nucl Magn Reson Spectrosc, 56, 329-345.  
20939100 S.Kalkhof, S.Haehn, M.Paulsson, N.Smyth, J.Meiler, and A.Sinz (2010).
Computational modeling of laminin N-terminal domains using sparse distance constraints from disulfide bonds and chemical cross-linking.
  Proteins, 78, 3409-3427.  
19280628 R.El-Zein, C.M.Monroy, C.J.Etzel, A.C.Cortes, Y.Xing, A.L.Collier, and S.S.Strom (2009).
Genetic polymorphisms in DNA repair genes as modulators of Hodgkin disease risk.
  Cancer, 115, 1651-1659.  
19480393 R.L.Loeber, E.D.Michaelson-Richie, S.G.Codreanu, D.C.Liebler, C.R.Campbell, and N.Y.Tretyakova (2009).
Proteomic analysis of DNA-protein cross-linking by antitumor nitrogen mustards.
  Chem Res Toxicol, 22, 1151-1162.  
19034980 J.Geng, Y.W.Zhang, G.C.Huang, and L.B.Chen (2008).
XRCC1 genetic polymorphism Arg399Gln and gastric cancer risk: A meta-analysis.
  World J Gastroenterol, 14, 6733-6737.  
18166976 J.K.Horton, M.Watson, D.F.Stefanick, D.T.Shaughnessy, J.A.Taylor, and S.H.Wilson (2008).
XRCC1 and DNA polymerase beta in cellular protection against cytotoxic DNA single-strand breaks.
  Cell Res, 18, 48-63.  
18247046 Y.Uchiyama, Y.Suzuki, and K.Sakaguchi (2008).
Characterization of plant XRCC1 and its interaction with proliferating cell nuclear antigen.
  Planta, 227, 1233-1241.  
17337257 K.H.Almeida, and R.W.Sobol (2007).
A unified view of base excision repair: lesion-dependent protein complexes regulated by post-translational modification.
  DNA Repair (Amst), 6, 695-711.  
17706275 R.A.Sharma, and G.L.Dianov (2007).
Targeting base excision repair to improve cancer therapies.
  Mol Aspects Med, 28, 345-374.  
17899335 R.Monaco, R.Rosal, M.A.Dolan, M.R.Pincus, and P.W.Brandt-Rauf (2007).
Conformational effects of a common codon 399 polymorphism on the BRCT1 domain of the XRCC1 protein.
  Protein J, 26, 541-546.  
17650498 R.S.Mani, M.Fanta, F.Karimi-Busheri, E.Silver, C.A.Virgen, K.W.Caldecott, C.E.Cass, and M.Weinfeld (2007).
XRCC1 stimulates polynucleotide kinase by enhancing its damage discrimination and displacement from DNA repair intermediates.
  J Biol Chem, 282, 28004-28013.  
17486273 Z.Xu, L.X.Hua, L.X.Qian, J.Yang, X.R.Wang, W.Zhang, and H.F.Wu (2007).
Relationship between XRCC1 polymorphisms and susceptibility to prostate cancer in men from Han, Southern China.
  Asian J Androl, 9, 331-338.  
17922646 Z.h.K.Nazarkina, S.N.Khodyreva, S.Marsin, J.P.Radicella, and O.I.Lavrik (2007).
Study of interaction of XRCC1 with DNA and proteins of base excision repair by photoaffinity labeling technique.
  Biochemistry (Mosc), 72, 878-886.  
16251191 E.W.Odom, and G.R.Vasta (2006).
Characterization of a binary tandem domain F-type lectin from striped bass (Morone saxatilis).
  J Biol Chem, 281, 1698-1713.  
16550161 W.C.Ladiges (2006).
Mouse models of XRCC1 DNA repair polymorphisms and cancer.
  Oncogene, 25, 1612-1619.  
15971256 A.Kiuru, C.Lindholm, I.Heilimo, M.Ceppi, A.Koivistoinen, T.Ilus, A.Hirvonen, H.Norppa, and S.Salomaa (2005).
Influence of DNA repair gene polymorphisms on the yield of chromosomal aberrations.
  Environ Mol Mutagen, 46, 198-205.  
15838887 H.K.Wong, and D.M.Wilson (2005).
XRCC1 and DNA polymerase beta interaction contributes to cellular alkylating-agent resistance and single-strand break repair.
  J Cell Biochem, 95, 794-804.  
15987676 P.T.Beernink, M.Hwang, M.Ramirez, M.B.Murphy, S.A.Doyle, and M.P.Thelen (2005).
Specificity of protein interactions mediated by BRCT domains of the XRCC1 DNA repair protein.
  J Biol Chem, 280, 30206-30213.  
15877529 Y.Luo, and J.D.Leverson (2005).
New opportunities in chemosensitization and radiosensitization: modulating the DNA-damage response.
  Expert Rev Anticancer Ther, 5, 333-342.  
16417454 Z.h.K.Nazarkina, D.V.Pyshnyi, I.A.Pyshnaya, O.I.Lavrik, and S.N.Khodyreva (2005).
Use of modified flap structures for study of base excision repair proteins.
  Biochemistry (Mosc), 70, 1327-1334.  
15465324 G.R.Vasta, H.Ahmed, and E.W.Odom (2004).
Structural and functional diversity of lectin repertoires in invertebrates, protochordates and ectothermic vertebrates.
  Curr Opin Struct Biol, 14, 617-630.  
15107487 J.Fan, M.Otterlei, H.K.Wong, A.E.Tomkinson, and D.M.Wilson (2004).
XRCC1 co-localizes and physically interacts with PCNA.
  Nucleic Acids Res, 32, 2193-2201.  
15066279 J.I.Loizou, S.F.El-Khamisy, A.Zlatanou, D.J.Moore, D.W.Chan, J.Qin, S.Sarno, F.Meggio, L.A.Pinna, and K.W.Caldecott (2004).
The protein kinase CK2 facilitates repair of chromosomal DNA single-strand breaks.
  Cell, 117, 17-28.  
15020593 N.Leulliot, S.Quevillon-Cheruel, I.Sorel, M.Graille, P.Meyer, D.Liger, K.Blondeau, J.Janin, and H.van Tilbeurgh (2004).
Crystal structure of yeast allantoicase reveals a repeated jelly roll motif.
  J Biol Chem, 279, 23447-23452.
PDB code: 1sg3
15229895 Q.Xu, R.Schwarzenbacher, R.Page, E.Sims, P.Abdubek, E.Ambing, T.Biorac, L.S.Brinen, J.Cambell, J.M.Canaves, H.J.Chiu, X.Dai, A.M.Deacon, M.DiDonato, M.A.Elsliger, R.Floyd, A.Godzik, C.Grittini, S.K.Grzechnik, E.Hampton, L.Jaroszewski, C.Karlak, H.E.Klock, E.Koesema, J.S.Kovarik, A.Kreusch, P.Kuhn, S.A.Lesley, I.Levin, D.McMullan, T.M.McPhillips, M.D.Miller, A.Morse, K.Moy, J.Ouyang, K.Quijano, R.Reyes, F.Rezezadeh, A.Robb, G.Spraggon, R.C.Stevens, H.van den Bedem, J.Velasquez, J.Vincent, F.von Delft, X.Wang, B.West, G.Wolf, K.O.Hodgson, J.Wooley, and I.A.Wilson (2004).
Crystal structure of an allantoicase (YIR029W) from Saccharomyces cerevisiae at 2.4 A resolution.
  Proteins, 56, 619-624.
PDB code: 1o59
12527765 A.Marintchev, M.R.Gryk, and G.P.Mullen (2003).
Site-directed mutagenesis analysis of the structural interaction of the single-strand-break repair protein, X-ray cross-complementing group 1, with DNA polymerase beta.
  Nucleic Acids Res, 31, 580-588.  
12644712 H.Guo, and T.D.Tullius (2003).
Gapped DNA is anisotropically bent.
  Proc Natl Acad Sci U S A, 100, 3743-3747.  
12897160 J.B.Leppard, Z.Dong, Z.B.Mackey, and A.E.Tomkinson (2003).
Physical and functional interaction between DNA ligase IIIalpha and poly(ADP-Ribose) polymerase 1 in DNA single-strand break repair.
  Mol Cell Biol, 23, 5919-5927.  
12933815 S.Marsin, A.E.Vidal, M.Sossou, J.Ménissier-de Murcia, F.Le Page, S.Boiteux, G.de Murcia, and J.P.Radicella (2003).
Role of XRCC1 in the coordination and stimulation of oxidative DNA damage repair initiated by the DNA glycosylase hOGG1.
  J Biol Chem, 278, 44068-44074.  
14627802 S.Petrucco (2003).
Sensing DNA damage by PARP-like fingers.
  Nucleic Acids Res, 31, 6689-6699.  
12235149 H.M.Tseng, and A.E.Tomkinson (2002).
A physical and functional interaction between yeast Pol4 and Dnl4-Lif1 links DNA synthesis and ligation in nonhomologous end joining.
  J Biol Chem, 277, 45630-45637.  
12411511 H.Nilsen, T.Lindahl, and A.Verreault (2002).
DNA base excision repair of uracil residues in reconstituted nucleosome core particles.
  EMBO J, 21, 5943-5952.  
12091873 M.A.Bianchet, E.W.Odom, G.R.Vasta, and L.M.Amzel (2002).
A novel fucose recognition fold involved in innate immunity.
  Nat Struct Biol, 9, 628-634.
PDB code: 1k12
11909950 R.M.Taylor, A.Thistlethwaite, and K.W.Caldecott (2002).
Central role for the XRCC1 BRCT I domain in mammalian DNA single-strand break repair.
  Mol Cell Biol, 22, 2556-2563.  
12198176 T.Iftner, M.Elbel, B.Schopp, T.Hiller, J.I.Loizou, K.W.Caldecott, and F.Stubenrauch (2002).
Interference of papillomavirus E6 protein with single-strand break repair by interaction with XRCC1.
  EMBO J, 21, 4741-4748.  
11948190 V.Schreiber, J.C.Amé, P.Dollé, I.Schultz, B.Rinaldi, V.Fraulob, J.Ménissier-de Murcia, and G.de Murcia (2002).
Poly(ADP-ribose) polymerase-2 (PARP-2) is required for efficient base excision DNA repair in association with PARP-1 and XRCC1.
  J Biol Chem, 277, 23028-23036.  
11352725 A.Dulic, P.A.Bates, X.Zhang, S.R.Martin, P.S.Freemont, T.Lindahl, and D.E.Barnes (2001).
BRCT domain interactions in the heterodimeric DNA repair protein XRCC1-DNA ligase III.
  Biochemistry, 40, 5906-5913.  
11707423 A.E.Vidal, S.Boiteux, I.D.Hickson, and J.P.Radicella (2001).
XRCC1 coordinates the initial and late stages of DNA abasic site repair through protein-protein interactions.
  EMBO J, 20, 6530-6539.  
11317342 A.Ronen, and B.W.Glickman (2001).
Human DNA repair genes.
  Environ Mol Mutagen, 37, 241-283.  
11264462 C.J.Norbury, and I.D.Hickson (2001).
Cellular responses to DNA damage.
  Annu Rev Pharmacol Toxicol, 41, 367-401.  
11163244 C.J.Whitehouse, R.M.Taylor, A.Thistlethwaite, H.Zhang, F.Karimi-Busheri, D.D.Lasko, M.Weinfeld, and K.W.Caldecott (2001).
XRCC1 stimulates human polynucleotide kinase activity at damaged DNA termini and accelerates DNA single-strand break repair.
  Cell, 104, 107-117.  
11239003 G.W.Intano, C.A.McMahan, R.B.Walter, J.R.McCarrey, and C.A.Walter (2001).
Mixed spermatogenic germ cell nuclear extracts exhibit high base excision repair activity.
  Nucleic Acids Res, 29, 1366-1372.  
11400117 J.M.Lee, Y.C.Lee, S.Y.Yang, P.W.Yang, S.P.Luh, C.J.Lee, C.J.Chen, and M.T.Wu (2001).
Genetic polymorphisms of XRCC1 and risk of the esophageal cancer.
  Int J Cancer, 95, 240-246.  
11524682 K.S.Wendt, H.C.Vodermaier, U.Jacob, C.Gieffers, M.Gmachl, J.M.Peters, R.Huber, and P.Sondermann (2001).
Crystal structure of the APC10/DOC1 subunit of the human anaphase-promoting complex.
  Nat Struct Biol, 8, 784-788.
PDB code: 1jhj
11340626 K.W.Caldecott (2001).
Mammalian DNA single-strand break repair: an X-ra(y)ted affair.
  Bioessays, 23, 447-455.  
11685238 M.W.Maciejewski, R.Shin, B.Pan, A.Marintchev, A.Denninger, M.A.Mullen, K.Chen, M.R.Gryk, and G.P.Mullen (2001).
Solution structure of a viral DNA repair polymerase.
  Nat Struct Biol, 8, 936-941.
PDB code: 1jaj
10773072 A.Marintchev, A.Robertson, E.K.Dimitriadis, R.Prasad, S.H.Wilson, and G.P.Mullen (2000).
Domain specific interaction in the XRCC1-DNA polymerase beta complex.
  Nucleic Acids Res, 28, 2049-2059.  
10679469 A.Travers (2000).
Recognition of distorted DNA structures by HMG domains.
  Curr Opin Struct Biol, 10, 102-109.  
10858306 F.Dantzer, G.de La Rubia, J.Ménissier-De Murcia, Z.Hostomsky, G.de Murcia, and V.Schreiber (2000).
Base excision repair is impaired in mammalian cells lacking Poly(ADP-ribose) polymerase-1.
  Biochemistry, 39, 7559-7569.  
11058877 H.Shen, Y.Xu, Y.Qian, R.Yu, Y.Qin, L.Zhou, X.Wang, M.R.Spitz, and Q.Wei (2000).
Polymorphisms of the DNA repair gene XRCC1 and risk of gastric cancer in a Chinese population.
  Int J Cancer, 88, 601-606.  
10698952 J.Y.Lee, C.Chang, H.K.Song, J.Moon, J.K.Yang, H.K.Kim, S.T.Kwon, and S.W.Suh (2000).
Crystal structure of NAD(+)-dependent DNA ligase: modular architecture and functional implications.
  EMBO J, 19, 1119-1129.
PDB codes: 1dgs 1dgt 1v9p
10677679 L.H.Thompson, and M.G.West (2000).
XRCC1 keeps DNA from getting stranded.
  Mutat Res, 459, 1.  
11024166 U.Lakshmipathy, and C.Campbell (2000).
Mitochondrial DNA ligase III function is independent of Xrcc1.
  Nucleic Acids Res, 28, 3880-3886.  
The most recent references are shown first. Citation data come partly from CiteXplore and partly from an automated harvesting procedure. Note that this is likely to be only a partial list as not all journals are covered by either method. However, we are continually building up the citation data so more and more references will be included with time. Where a reference describes a PDB structure, the PDB codes are shown on the right.

 

spacer

spacer