spacer
spacer

PDBsum entry 1was

Go to PDB code: 
protein links
Chemotaxis PDB id
1was

 

 

 

 

Loading ...

 
JSmol PyMol  
Contents
Protein chain
146 a.a. *
* Residue conservation analysis
PDB id:
1was
Name: Chemotaxis
Title: The three-dimensional structure of the ligand-binding domain of a wild-type bacterial chemotaxis receptor
Structure: Bacterial aspartate receptor. Chain: a. Engineered: yes
Source: Salmonella typhimurium. Organism_taxid: 602.
Resolution:
2.70Å     R-factor:   0.192    
Authors: S.-H.Kim
Key ref: J.I.Yeh et al. (1993). The three-dimensional structure of the ligand-binding domain of a wild-type bacterial chemotaxis receptor. Structural comparison to the cross-linked mutant forms and conformational changes upon ligand binding. J Biol Chem, 268, 9787-9792. PubMed id: 8486661
Date:
09-Mar-93     Release date:   20-Dec-94    
PROCHECK
Go to PROCHECK summary
 Headers
 References

Protein chain
Pfam   ArchSchema ?
P02941  (MCP2_SALTY) -  Methyl-accepting chemotaxis protein II from Salmonella typhimurium (strain LT2 / SGSC1412 / ATCC 700720)
Seq:
Struc:
 
Seq:
Struc:
553 a.a.
146 a.a.*
Key:    PfamA domain  Secondary structure  CATH domain
* PDB and UniProt seqs differ at 1 residue position (black cross)

 Enzyme reactions 
   Enzyme class: E.C.?
[IntEnz]   [ExPASy]   [KEGG]   [BRENDA]

 

 
J Biol Chem 268:9787-9792 (1993)
PubMed id: 8486661  
 
 
The three-dimensional structure of the ligand-binding domain of a wild-type bacterial chemotaxis receptor. Structural comparison to the cross-linked mutant forms and conformational changes upon ligand binding.
J.I.Yeh, H.P.Biemann, J.Pandit, D.E.Koshland, S.H.Kim.
 
  ABSTRACT  
 
The three-dimensional structures of the ligand-binding domain of the wild-type Salmonella typhimurium aspartate receptor have been determined in the absence (apo) and presence of bound aspartate (complex) and compared to a cross-linked mutant containing a cysteine at position 36 which does not change signaling behavior of the intact receptor. The structures of the wild-type forms were determined in order to assess the effects of cross-linking on the structure and its influence on conformational changes upon ligand binding. As in the case of the cross-linked mutant receptor, the non-cross-linked ligand-binding domain is dimeric and is composed of 4-alpha-helical bundle monomer subunits related by a crystallographic 2-fold axis in the unbound form and by a non-crystallographic axis in the aspartate-bound form. A comparative study between the non-cross-linked and cross-linked structures has led to the following observations: 1) The long N-terminal helices of the individual subunits in the cross-linked structures are bent toward each other to accommodate the disulfide bond. 2) The rest of the subunit conformation is very similar to that of the wild-type. 3) The intersubunit angle of the cross-linked apo structure is larger by about 13 degrees when compared to the wild-type apo structure. 4) The nature and magnitude of the aspartate-induced conformational changes in the non-cross-linked wild-type structures are very similar to those of the cross-linked structures.
 

Literature references that cite this PDB file's key reference

  PubMed id Reference
20864474 G.D.Glekas, J.R.Cates, T.M.Cohen, C.V.Rao, and G.W.Ordal (2011).
Site-specific methylation in Bacillus subtilis chemotaxis: effect of covalent modifications to the chemotaxis receptor McpB.
  Microbiology, 157, 56-65.  
19747079 Z.Li, and J.B.Stock (2009).
Protein carboxyl methylation and the biochemistry of memory.
  Biol Chem, 390, 1087-1096.  
17510965 M.E.Budiman, M.H.Knaggs, J.S.Fetrow, and R.W.Alexander (2007).
Using molecular dynamics to map interaction networks in an aminoacyl-tRNA synthetase.
  Proteins, 68, 670-689.  
16369945 M.D.Baker, P.M.Wolanin, and J.B.Stock (2006).
Signal transduction in bacterial chemotaxis.
  Bioessays, 28, 9.  
16973743 P.M.Wolanin, M.D.Baker, N.R.Francis, D.R.Thomas, D.J.DeRosier, and J.B.Stock (2006).
Self-assembly of receptor/signaling complexes in bacterial chemotaxis.
  Proc Natl Acad Sci U S A, 103, 14313-14318.  
15653746 W.Zhang, J.S.Olson, and G.N.Phillips (2005).
Biophysical and kinetic characterization of HemAT, an aerotaxis receptor from Bacillus subtilis.
  Biophys J, 88, 2801-2814.  
15516567 F.M.Antommattei, J.B.Munzner, and R.M.Weis (2004).
Ligand-specific activation of Escherichia coli chemoreceptor transmethylation.
  J Bacteriol, 186, 7556-7563.  
12657801 W.Zhang, and G.N.Phillips (2003).
Crystallization and X-ray diffraction analysis of the sensor domain of the HemAT aerotactic receptor.
  Acta Crystallogr D Biol Crystallogr, 59, 749-751.  
12962628 W.Zhang, and G.N.Phillips (2003).
Structure of the oxygen sensor in Bacillus subtilis: signal transduction of chemotaxis by control of symmetry.
  Structure, 11, 1097-1110.
PDB codes: 1or4 1or6
12193613 A.C.Lamanna, J.E.Gestwicki, L.E.Strong, S.L.Borchardt, R.M.Owen, and L.L.Kiessling (2002).
Conserved amplification of chemotactic responses through chemoreceptor interactions.
  J Bacteriol, 184, 4981-4987.  
12011417 J.J.Falke (2002).
Cooperativity between bacterial chemotaxis receptors.
  Proc Natl Acad Sci U S A, 99, 6530-6532.  
11910034 M.L.Peach, G.L.Hazelbauer, and T.P.Lybrand (2002).
Modeling the transmembrane domain of bacterial chemoreceptors.
  Protein Sci, 11, 912-923.  
12186970 S.H.Kim, W.Wang, and K.K.Kim (2002).
Dynamic and clustering model of bacterial chemotaxis receptors: structural basis for signaling and high sensitivity.
  Proc Natl Acad Sci U S A, 99, 11611-11615.  
10981636 J.J.Falke, and S.H.Kim (2000).
Structure of a conserved receptor domain that regulates kinase activity: the cytoplasmic domain of bacterial taxis receptors.
  Curr Opin Struct Biol, 10, 462-469.  
9687374 M.S.Jurica, and B.L.Stoddard (1998).
Mind your B's and R's: bacterial chemotaxis, signal transduction and protein recognition.
  Structure, 6, 809-813.  
  9041632 A.G.Hughson, G.F.Lee, and G.L.Hazelbauer (1997).
Analysis of protein structure in intact cells: crosslinking in vivo between introduced cysteines in the transmembrane domain of a bacterial chemoreceptor.
  Protein Sci, 6, 315-322.  
9442881 J.J.Falke, R.B.Bass, S.L.Butler, S.A.Chervitz, and M.A.Danielson (1997).
The two-component signaling pathway of bacterial chemotaxis: a molecular view of signal transduction by receptors, kinases, and adaptation enzymes.
  Annu Rev Cell Dev Biol, 13, 457-512.  
9305977 J.Li, G.Li, and R.M.Weis (1997).
The serine chemoreceptor from Escherichia coli is methylated through an inter-dimer process.
  Biochemistry, 36, 11851-11857.  
9048553 J.Wang, Y.S.Balazs, and L.K.Thompson (1997).
Solid-state REDOR NMR distance measurements at the ligand site of a bacterial chemotaxis membrane receptor.
  Biochemistry, 36, 1699-1703.  
9305978 X.Chen, and D.E.Koshland (1997).
Probing the structure of the cytoplasmic domain of the aspartate receptor by targeted disulfide cross-linking.
  Biochemistry, 36, 11858-11864.  
8942640 A.F.Kolodziej, T.Tan, and D.E.Koshland (1996).
Producing positive, negative, and no cooperativity by mutations at a single residue located at the subunit interface in the aspartate receptor of Salmonella typhimurium.
  Biochemistry, 35, 14782-14792.  
8876172 A.G.Hughson, and G.L.Hazelbauer (1996).
Detecting the conformational change of transmembrane signaling in a bacterial chemoreceptor by measuring effects on disulfide cross-linking in vivo.
  Proc Natl Acad Sci U S A, 93, 11546-11551.  
8901875 G.S.Prasad, D.E.McRee, E.A.Stura, D.G.Levitt, H.C.Lee, and C.D.Stout (1996).
Crystal structure of Aplysia ADP ribosyl cyclase, a homologue of the bifunctional ectozyme CD38.
  Nat Struct Biol, 3, 957-964.
PDB code: 1lbe
  8755897 J.W.Baumgartner, and G.L.Hazelbauer (1996).
Mutational analysis of a transmembrane segment in a bacterial chemoreceptor.
  J Bacteriol, 178, 4651-4660.  
8637911 S.A.Chervitz, and J.J.Falke (1996).
Molecular mechanism of transmembrane signaling by the aspartate receptor: a model.
  Proc Natl Acad Sci U S A, 93, 2545-2550.  
8973209 S.K.Seeley, G.K.Wittrock, L.K.Thompson, and R.M.Weis (1996).
Oligomers of the cytoplasmic fragment from the Escherichia coli aspartate receptor dissociate through an unfolded transition state.
  Biochemistry, 35, 16336-16345.  
8611504 S.K.Seeley, R.M.Weis, and L.K.Thompson (1996).
The cytoplasmic fragment of the aspartate receptor displays globally dynamic behavior.
  Biochemistry, 35, 5199-5206.  
8749361 A.M.Stock, and S.L.Mowbray (1995).
Bacterial chemotaxis: a field in motion.
  Curr Opin Struct Biol, 5, 744-751.  
7777522 G.F.Lee, D.P.Dutton, and G.L.Hazelbauer (1995).
Identification of functionally important helical faces in transmembrane segments by scanning mutagenesis.
  Proc Natl Acad Sci U S A, 92, 5416-5420.  
  7549874 G.F.Lee, and G.L.Hazelbauer (1995).
Quantitative approaches to utilizing mutational analysis and disulfide crosslinking for modeling a transmembrane domain.
  Protein Sci, 4, 1100-1107.  
7724572 G.F.Lee, M.R.Lebert, A.A.Lilly, and G.L.Hazelbauer (1995).
Transmembrane signaling characterized in bacterial chemoreceptors by using sulfhydryl cross-linking in vivo.
  Proc Natl Acad Sci U S A, 92, 3391-3395.  
7626643 S.A.Chervitz, C.M.Lin, and J.J.Falke (1995).
Transmembrane signaling by the aspartate receptor: engineered disulfides reveal static regions of the subunit interface.
  Biochemistry, 34, 9722-9733.  
7592603 S.A.Chervitz, and J.J.Falke (1995).
Lock on/off disulfides identify the transmembrane signaling helix of the aspartate receptor.
  J Biol Chem, 270, 24043-24053.  
  7721714 T.Iwama, I.Kawagishi, S.Gomi, M.Homma, and Y.Imae (1995).
In vivo sulfhydryl modification of the ligand-binding site of Tsr, the Escherichia coli serine chemoreceptor.
  J Bacteriol, 177, 2218-2221.  
7812134 J.Stock, M.Surette, and P.Park (1994).
Chemosensing and signal transduction in bacteria.
  Curr Opin Neurobiol, 4, 474-480.  
7910759 M.A.Danielson, H.P.Biemann, D.E.Koshland, and J.J.Falke (1994).
Attractant- and disulfide-induced conformational changes in the ligand binding domain of the chemotaxis aspartate receptor: a 19F NMR study.
  Biochemistry, 33, 6100-6109.  
7984776 M.A.Lemmon, and D.M.Engelman (1994).
Specificity and promiscuity in membrane helix interactions.
  Q Rev Biophys, 27, 157-218.  
  8003953 S.H.Kim (1994).
"Frozen" dynamic dimer model for transmembrane signaling in bacterial chemotaxis receptors.
  Protein Sci, 3, 159-165.  
7528103 T.Spivak-Kroizman, M.A.Lemmon, I.Dikic, J.E.Ladbury, D.Pinchasi, J.Huang, M.Jaye, G.Crumley, J.Schlessinger, and I.Lax (1994).
Heparin-induced oligomerization of FGF molecules is responsible for FGF receptor dimerization, activation, and cell proliferation.
  Cell, 79, 1015-1024.  
The most recent references are shown first. Citation data come partly from CiteXplore and partly from an automated harvesting procedure. Note that this is likely to be only a partial list as not all journals are covered by either method. However, we are continually building up the citation data so more and more references will be included with time. Where a reference describes a PDB structure, the PDB codes are shown on the right.

 

spacer

spacer