spacer
spacer

PDBsum entry 1w6m

Go to PDB code: 
protein ligands Protein-protein interface(s) links
Sugar binding protein PDB id
1w6m

 

 

 

 

Loading ...

 
JSmol PyMol  
Contents
Protein chain
134 a.a. *
Ligands
BME ×5
SO4 ×2
GAL ×2
Waters ×131
* Residue conservation analysis
PDB id:
1w6m
Name: Sugar binding protein
Title: X-ray crystal structure of c2s human galectin-1 complexed with galactose
Structure: Galectin-1. Chain: a. Synonym: beta-galactoside-binding lectin l-14-i, hpl, lactose-binding lectin 1, s-lac lectin 1, galaptin, hbl. Engineered: yes. Mutation: yes. Galectin-1. Chain: b. Synonym: beta-galactoside-binding lectin l-14-i, lactose-binding
Source: Homo sapiens. Human. Organism_taxid: 9606. Expressed in: escherichia coli. Expression_system_taxid: 562.
Biol. unit: Dimer (from PDB file)
Resolution:
2.30Å     R-factor:   0.201     R-free:   0.241
Authors: M.I.F.Lopez-Lucendo,H.J.Gabius,A.Romero
Key ref:
M.F.López-Lucendo et al. (2004). Growth-regulatory human galectin-1: crystallographic characterisation of the structural changes induced by single-site mutations and their impact on the thermodynamics of ligand binding. J Mol Biol, 343, 957-970. PubMed id: 15476813 DOI: 10.1016/j.jmb.2004.08.078
Date:
19-Aug-04     Release date:   20-Oct-04    
PROCHECK
Go to PROCHECK summary
 Headers
 References

Protein chains
Pfam   ArchSchema ?
P09382  (LEG1_HUMAN) -  Galectin-1 from Homo sapiens
Seq:
Struc:
135 a.a.
134 a.a.*
Key:    PfamA domain  Secondary structure  CATH domain
* PDB and UniProt seqs differ at 3 residue positions (black crosses)

 

 
DOI no: 10.1016/j.jmb.2004.08.078 J Mol Biol 343:957-970 (2004)
PubMed id: 15476813  
 
 
Growth-regulatory human galectin-1: crystallographic characterisation of the structural changes induced by single-site mutations and their impact on the thermodynamics of ligand binding.
M.F.López-Lucendo, D.Solís, S.André, J.Hirabayashi, K.Kasai, H.Kaltner, H.J.Gabius, A.Romero.
 
  ABSTRACT  
 
Human galectin-1 is a potent multifunctional effector that participates in specific protein-carbohydrate and protein-protein (lipid) interactions. By determining its X-ray structure, we provide the basis to define the structure of its ligand-binding pocket and to perform rational drug design. We have also analysed whether single-site mutations introduced at some distance from the carbohydrate recognition domain can affect the lectin fold and influence sugar binding. Both the substitutions introduced in the C2S and R111H mutants altered the presentation of the loop, harbouring Asp123 in the common "jelly-roll" fold. The orientation of the side-chain was inverted 180 degrees and the positions of two key residues in the sugar-binding site of the R111H mutant were notably shifted, i.e. His52 and Trp68. Titration calorimetry was used to define the decrease in ligand affinity in both mutants and a significant increase in the entropic penalty was found to outweigh a slight enhancement of the enthalpic contribution. The position of the SH-groups in the galectin appeared to considerably restrict the potential to form intramolecular disulphide bridges and was assumed to be the reason for the unstable lectin activity in the absence of reducing agent. However, this offers no obvious explanation for the improved stability of the C2S mutant under oxidative conditions. The noted long-range effects in single-site mutants are relevant for the functional divergence of closely related galectins and in more general terms, the functionality definition of distinct amino acids.
 
  Selected figure(s)  
 
Figure 2.
Figure 2. Ribbon diagram of the homodimeric human galectin-1 prepared with MOLSCRIPT.70 The b-strands in the five-stranded (F1-F5) and six-stranded (S1-S6a/S6b) b-sheets are indicated by the letter-number code.
Figure 5.
Figure 5. The carbohydrate recognition site of hGal-1. (a) The binding site in free hGal-1, showing the position of bound water molecules as green spheres. The three water molecules are placed at the sites of interaction with the hydroxyl groups O4, O6 of galactose and O3 of glucose, when the ligand enters the binding site. (b) A view of the CRD of wt hGal-1 complexed with lactose. The carbohydrate-binding cleft is discernible in the concave face of the S4-S6a/S6b b-sheet. The lactose moiety and the side-chains of the sugar-binding residues are shown as stick-and-ball models.
 
  The above figures are reprinted by permission from Elsevier: J Mol Biol (2004, 343, 957-970) copyright 2004.  
  Figures were selected by the author.  

Literature references that cite this PDB file's key reference

  PubMed id Reference
21290613 H.Kaltner, D.Kübler, L.López-Merino, M.Lohr, J.C.Manning, M.Lensch, J.Seidler, W.D.Lehmann, S.André, D.Solís, and H.J.Gabius (2011).
Toward Comprehensive Analysis of the Galectin Network in Chicken: Unique Diversity of Galectin-3 and Comparison of its Localization Profile in Organs of Adult Animals to the Other Four Members of this Lectin Family.
  Anat Rec (Hoboken), 294, 427-444.  
21113146 H.Sanchez-Ruderisch, K.M.Detjen, M.Welzel, S.André, C.Fischer, H.J.Gabius, and S.Rosewicz (2011).
Galectin-1 sensitizes carcinoma cells to anoikis via the fibronectin receptor α5β1-integrin.
  Cell Death Differ, 18, 806-816.  
21539798 I.Echeverria, and L.M.Amzel (2011).
Disaccharide binding to galectin-1: free energy calculations and molecular recognition mechanism.
  Biophys J, 100, 2283-2292.  
20370609 E.M.Rapoport, T.V.Pochechueva, O.V.Kurmyshkina, G.V.Pazynina, V.V.Severov, E.A.Gordeeva, I.M.Belyanchikov, S.André, H.J.Gabius, and N.V.Bovin (2010).
Solid-phase assays for study of carbohydrate specificity of galectins.
  Biochemistry (Mosc), 75, 310-319.  
20878964 K.E.Kövér, E.Wéber, T.A.Martinek, E.Monostori, and G.Batta (2010).
(15)N and (13)C group-selective techniques extend the scope of STD NMR detection of weak host-guest interactions and ligand screening.
  Chembiochem, 11, 2182-2187.  
20053628 M.Dias-Baruffi, S.R.Stowell, S.C.Song, C.M.Arthur, M.Cho, L.C.Rodrigues, M.A.Montes, M.A.Rossi, J.A.James, R.P.McEver, and R.D.Cummings (2010).
Differential expression of immunomodulatory galectin-1 in peripheral leukocytes and adult tissues and its cytosolic organization in striated muscle.
  Glycobiology, 20, 507-520.  
20226765 M.Pasek, E.Boeggeman, B.Ramakrishnan, and P.K.Qasba (2010).
Galectin-1 as a fusion partner for the production of soluble and folded human beta-1,4-galactosyltransferase-T7 in E. coli.
  Biochem Biophys Res Commun, 394, 679-684.  
20930491 M.Tamura, T.Igarashi, K.Kasai, and Y.Arata (2010).
Side chain orientation of the amino acid substituted by a cysteine residue is important for successful crosslinking of galectin to its glycoprotein ligand using a photoactivatable sulfhydryl reagent.
  Yakugaku Zasshi, 130, 1375-1379.  
20939100 S.Kalkhof, S.Haehn, M.Paulsson, N.Smyth, J.Meiler, and A.Sinz (2010).
Computational modeling of laminin N-terminal domains using sparse distance constraints from disulfide bonds and chemical cross-linking.
  Proteins, 78, 3409-3427.  
20006954 C.Meynier, M.Feracci, M.Espeli, F.Chaspoul, P.Gallice, C.Schiff, F.Guerlesquin, and P.Roche (2009).
NMR and MD investigations of human galectin-1/oligosaccharide complexes.
  Biophys J, 97, 3168-3177.  
19763301 J.Tejler, B.Salameh, H.Leffler, and U.J.Nilsson (2009).
Fragment-based development of triazole-substituted O-galactosyl aldoximes with fragment-induced affinity and selectivity for galectin-3.
  Org Biomol Chem, 7, 3982-3990.  
19541770 M.C.Miller, A.Klyosov, and K.H.Mayo (2009).
The alpha-galactomannan Davanat binds galectin-1 at a site different from the conventional galectin carbohydrate binding domain.
  Glycobiology, 19, 1034-1045.  
19432560 M.C.Miller, I.V.Nesmelova, D.Platt, A.Klyosov, and K.H.Mayo (2009).
The carbohydrate-binding domain on galectin-1 is more extensive for a complex glycan than for simple saccharides: implications for galectin-glycan interactions at the cell surface.
  Biochem J, 421, 211-221.  
18977853 M.Nagae, N.Nishi, T.Murata, T.Usui, T.Nakamura, S.Wakatsuki, and R.Kato (2009).
Structural analysis of the recognition mechanism of poly-N-acetyllactosamine by the human galectin-9 N-terminal carbohydrate recognition domain.
  Glycobiology, 19, 112-117.
PDB codes: 2zhk 2zhl 2zhm 2zhn
19079321 M.Shimizu, J.Khoshnoodi, Y.Akimoto, H.Kawakami, H.Hirano, E.Higashihara, M.Hosoyamada, Y.Sekine, R.Kurayama, H.Kurayama, K.Joh, J.Hirabayashi, K.Kasai, K.Tryggvason, N.Ito, and K.Yan (2009).
Expression of galectin-1, a new component of slit diaphragm, is altered in minimal change nephrotic syndrome.
  Lab Invest, 89, 178-195.  
19171142 O.Roda, E.Ortiz-Zapater, N.Martínez-Bosch, R.Gutiérrez-Gallego, M.Vila-Perelló, C.Ampurdanés, H.J.Gabius, S.André, D.Andreu, F.X.Real, and P.Navarro (2009).
Galectin-1 is a novel functional receptor for tissue plasminogen activator in pancreatic cancer.
  Gastroenterology, 136, 1379.  
19823749 S.D'Auria, L.Petrova, C.John, G.Russev, A.Varriale, and V.Bogoeva (2009).
Tumor-specific protein human galectin-1 interacts with anticancer agents.
  Mol Biosyst, 5, 1331-1336.  
19128029 S.Di Lella, L.Ma, J.C.Ricci, G.A.Rabinovich, S.A.Asher, and R.M.Alvarez (2009).
Critical role of the solvent environment in galectin-1 binding to the disaccharide lactose.
  Biochemistry, 48, 786-791.  
19103599 S.R.Stowell, M.Cho, C.L.Feasley, C.M.Arthur, X.Song, J.K.Colucci, S.Karmakar, P.Mehta, M.Dias-Baruffi, R.P.McEver, and R.D.Cummings (2009).
Ligand reduces galectin-1 sensitivity to oxidative inactivation by enhancing dimer formation.
  J Biol Chem, 284, 4989-4999.  
18074341 A.D.Hill, and P.J.Reilly (2008).
A Gibbs free energy correlation for automated docking of carbohydrates.
  J Comput Chem, 29, 1131-1141.  
18455919 C.E.Maljaars, A.C.de Souza, K.M.Halkes, P.J.Upton, S.M.Reeman, S.André, H.J.Gabius, M.B.McDonnell, and J.P.Kamerling (2008).
The application of neoglycopeptides in the development of sensitive surface plasmon resonance-based biosensors.
  Biosens Bioelectron, 24, 60-65.  
18320588 D.Zhou, H.Ge, J.Sun, Y.Gao, M.Teng, and L.Niu (2008).
Crystal structure of the C-terminal conserved domain of human GRP, a galectin-related protein, reveals a function mode different from those of galectins.
  Proteins, 71, 1582-1588.
PDB code: 3b9c
18457568 E.M.Rapoport, O.V.Kurmyshkina, and N.V.Bovin (2008).
Mammalian galectins: structure, carbohydrate specificity, and functions.
  Biochemistry (Mosc), 73, 393-405.  
18433051 M.A.Wälti, S.Thore, M.Aebi, and M.Künzler (2008).
Crystal structure of the putative carbohydrate recognition domain of human galectin-related protein.
  Proteins, 72, 804-808.
PDB code: 2jj6
18570123 N.G.Than, O.Erez, D.E.Wildman, A.L.Tarca, S.S.Edwin, A.Abbas, J.Hotra, J.P.Kusanovic, F.Gotsch, S.S.Hassan, J.Espinoza, Z.Papp, and R.Romero (2008).
Severe preeclampsia is characterized by increased placental expression of galectin-1.
  J Matern Fetal Neonatal Med, 21, 429-442.  
18824694 N.G.Than, R.Romero, O.Erez, A.Weckle, A.L.Tarca, J.Hotra, A.Abbas, Y.M.Han, S.S.Kim, J.P.Kusanovic, F.Gotsch, Z.Hou, J.Santolaya-Forgas, K.Benirschke, Z.Papp, L.I.Grossman, M.Goodman, and D.E.Wildman (2008).
Emergence of hormonal and redox regulation of galectin-1 in placental mammals: implication in maternal-fetal immune tolerance.
  Proc Natl Acad Sci U S A, 105, 15819-15824.  
18796645 N.Nishi, A.Abe, J.Iwaki, H.Yoshida, A.Itoh, H.Shoji, S.Kamitori, J.Hirabayashi, and T.Nakamura (2008).
Functional and structural bases of a cysteine-less mutant as a long-lasting substitute for galectin-1.
  Glycobiology, 18, 1065-1073.
PDB code: 2zkn
18707901 O.Charvátová, B.L.Foley, M.W.Bern, J.S.Sharp, R.Orlando, and R.J.Woods (2008).
Quantifying protein interface footprinting by hydroxyl radical oxidation and molecular dynamics simulation: application to galectin-1.
  J Am Soc Mass Spectrom, 19, 1692-1705.  
18332142 R.Suzuki, J.Wada, T.Katayama, S.Fushinobu, T.Wakagi, H.Shoun, H.Sugimoto, A.Tanaka, H.Kumagai, H.Ashida, M.Kitaoka, and K.Yamamoto (2008).
Structural and thermodynamic analyses of solute-binding Protein from Bifidobacterium longum specific for core 1 disaccharide and lacto-N-biose I.
  J Biol Chem, 283, 13165-13173.
PDB codes: 2z8d 2z8e 2z8f
17961821 M.D.Disney, and J.L.Childs-Disney (2007).
"Supra"molecular recognition of Galectin 1.
  Chem Biol, 14, 1095-1097.  
  18007053 S.A.Scott, K.Scott, and H.Blanchard (2007).
Crystallization and preliminary crystallographic analysis of recombinant human galectin-1.
  Acta Crystallogr Sect F Struct Biol Cryst Commun, 63, 967-971.  
17535296 S.André, H.Sanchez-Ruderisch, H.Nakagawa, M.Buchholz, J.Kopitz, P.Forberich, W.Kemmner, C.Böck, K.Deguchi, K.M.Detjen, B.Wiedenmann, M.von Knebel Doeberitz, T.M.Gress, S.Nishimura, S.Rosewicz, and H.J.Gabius (2007).
Tumor suppressor p16INK4a--modulator of glycomic profile and galectin-1 expression to increase susceptibility to carbohydrate-dependent induction of anoikis in pancreatic carcinoma cells.
  FEBS J, 274, 3233-3256.  
16261331 K.Smetana, B.Dvoránková, M.Chovanec, J.Boucek, J.Klíma, J.Motlík, M.Lensch, H.Kaltner, S.André, and H.J.Gabius (2006).
Nuclear presence of adhesion-/growth-regulatory galectins in normal/malignant cells of squamous epithelial origin.
  Histochem Cell Biol, 125, 171-182.  
16740401 M.Lensch, M.Lohr, R.Russwurm, M.Vidal, H.Kaltner, S.André, and H.J.Gabius (2006).
Unique sequence and expression profiles of rat galectins-5 and -9 as a result of species-specific gene divergence.
  Int J Biochem Cell Biol, 38, 1741-1758.  
17013681 M.Martín-Pastor, M.Vega-Vázquez, A.De Capua, A.Canales, S.André, H.J.Gabius, and J.Jiménez-Barbero (2006).
Enhanced signal dispersion in saturation transfer difference experiments by conversion to a 1D-STD-homodecoupled spectrum.
  J Biomol NMR, 36, 103-109.  
16990264 M.Nagae, N.Nishi, T.Murata, T.Usui, T.Nakamura, S.Wakatsuki, and R.Kato (2006).
Crystal structure of the galectin-9 N-terminal carbohydrate recognition domain from Mus musculus reveals the basic mechanism of carbohydrate recognition.
  J Biol Chem, 281, 35884-35893.
PDB codes: 2d6k 2d6l 2d6m 2d6n 2d6o 2d6p
16566049 R.J.Pieters (2006).
Inhibition and detection of galectins.
  Chembiochem, 7, 721-728.  
16435123 S.Saussez, F.Lorfevre, D.Nonclercq, G.Laurent, S.André, F.Journé, R.Kiss, G.Toubeau, and H.J.Gabius (2006).
Towards functional glycomics by localization of binding sites for tissue lectins: lectin histochemical reactivity for galectins during diethylstilbestrol-induced kidney tumorigenesis in male Syrian hamster.
  Histochem Cell Biol, 126, 57-69.  
16105842 C.Fischer, H.Sanchez-Ruderisch, M.Welzel, B.Wiedenmann, T.Sakai, S.André, H.J.Gabius, L.Khachigian, K.M.Detjen, and S.Rosewicz (2005).
Galectin-1 interacts with the {alpha}5{beta}1 fibronectin receptor to restrict carcinoma cell growth via induction of p21 and p27.
  J Biol Chem, 280, 37266-37277.  
16247033 C.Seelenmeyer, S.Wegehingel, I.Tews, M.Künzler, M.Aebi, and W.Nickel (2005).
Cell surface counter receptors are essential components of the unconventional export machinery of galectin-1.
  J Cell Biol, 171, 373-381.  
15819890 S.André, S.Kojima, I.Prahl, M.Lensch, C.Unverzagt, and H.J.Gabius (2005).
Introduction of extended LEC14-type branching into core-fucosylated biantennary N-glycan.
  FEBS J, 272, 1986-1998.  
The most recent references are shown first. Citation data come partly from CiteXplore and partly from an automated harvesting procedure. Note that this is likely to be only a partial list as not all journals are covered by either method. However, we are continually building up the citation data so more and more references will be included with time. Where a reference describes a PDB structure, the PDB codes are shown on the right.

 

spacer

spacer