spacer
spacer

PDBsum entry 1uoc

Go to PDB code: 
protein metals Protein-protein interface(s) links
Hydrolase PDB id
1uoc

 

 

 

 

Loading ...

 
JSmol PyMol  
Contents
Protein chains
263 a.a. *
Metals
_XE ×2
_CA ×2
Waters ×45
* Residue conservation analysis
PDB id:
1uoc
Name: Hydrolase
Title: X-ray structure of the rnase domain of the yeast pop2 protein
Structure: Pop2. Chain: a, b. Fragment: rnase d domain, residues 147-433. Synonym: ccr4-associated factor 1. Engineered: yes. Other_details: 2 residues added in n-terminal because of a tev cleavable tag.
Source: Saccharomyces cerevisiae. Baker's yeast. Organism_taxid: 4932. Expressed in: escherichia coli. Expression_system_taxid: 511693.
Resolution:
2.30Å     R-factor:   0.239     R-free:   0.265
Authors: S.Thore,F.Mauxion,B.Seraphin,D.Suck
Key ref:
S.Thore et al. (2003). X-ray structure and activity of the yeast Pop2 protein: a nuclease subunit of the mRNA deadenylase complex. EMBO Rep, 4, 1150-1155. PubMed id: 14618157 DOI: 10.1038/sj.embor.7400020
Date:
16-Sep-03     Release date:   20-Nov-03    
PROCHECK
Go to PROCHECK summary
 Headers
 References

Protein chains
Pfam   ArchSchema ?
P39008  (POP2_YEAST) -  Poly(A) ribonuclease POP2 from Saccharomyces cerevisiae (strain ATCC 204508 / S288c)
Seq:
Struc:
433 a.a.
263 a.a.
Key:    PfamA domain  Secondary structure  CATH domain

 Enzyme reactions 
   Enzyme class: E.C.3.1.13.4  - poly(A)-specific ribonuclease.
[IntEnz]   [ExPASy]   [KEGG]   [BRENDA]
      Reaction: Exonucleolytic cleavage of poly(A) to 5'-AMP.

 

 
DOI no: 10.1038/sj.embor.7400020 EMBO Rep 4:1150-1155 (2003)
PubMed id: 14618157  
 
 
X-ray structure and activity of the yeast Pop2 protein: a nuclease subunit of the mRNA deadenylase complex.
S.Thore, F.Mauxion, B.Séraphin, D.Suck.
 
  ABSTRACT  
 
In Saccharomyces cerevisiae, a large complex, known as the Ccr4-Not complex, containing two nucleases, is responsible for mRNA deadenylation. One of these nucleases is called Pop2 and has been identified by similarity with PARN, a human poly(A) nuclease. Here, we present the crystal structure of the nuclease domain of Pop2 at 2.3 A resolution. The domain has the fold of the DnaQ family and represents the first structure of an RNase from the DEDD superfamily. Despite the presence of two non-canonical residues in the active site, the domain displays RNase activity on a broad range of RNA substrates. Site-directed mutagenesis of active-site residues demonstrates the intrinsic ability of the Pop2 RNase D domain to digest RNA. This first structure of a nuclease involved in the 3'-5' deadenylation of mRNA in yeast provides information for the understanding of the mechanism by which the Ccr4-Not complex achieves its functions.
 
  Selected figure(s)  
 
Figure 1.
Figure 1 Structure of the nuclease domain of the Pop2 protein. (A) Ribbon plot representation with the secondary elements in the following colour code: -helix, red; -strands, green; and loops, yellow. (B) Crossed-eye stereo representation of the C trace is displayed with every 20th residue marked.
Figure 2.
Figure 2 Structural homology of Pop2 with members of the DEDD nuclease superfamily. (A) Structure-based sequence alignment of Pop2, the exonuclease domain of PolI and the epsilon -subunit of PolIII. Sequence conservation is shown by colour coding: invariant residues are highlighted in red. Yellow highlights residues that have similar properties. Secondary structure elements of Pop2 are shown above the sequences. Small arrowheads indicate the conserved DEDD residues forming the catalytic site of the epsilon -subunit. (B) The three structures shown in the same relative orientation. (C) The electrostatic surface potentials of Pop2 and the epsilon -subunit indicate the location of the active site; catalytic residues are highlighted. (D) Close-up view of the active site of the epsilon -subunit (salmon colour; with bound TMP in yellow) superimposed with the Pop2 (light green) structure and (E) side view of the secondary structure elements interacting with the bound nucleotide. Bold and italic labels correspond to the amino acids from Pop2 or the epsilon -subunit, respectively.
 
  The above figures are reprinted from an Open Access publication published by Macmillan Publishers Ltd: EMBO Rep (2003, 4, 1150-1155) copyright 2003.  
  Figures were selected by an automated process.  

Literature references that cite this PDB file's key reference

  PubMed id Reference
21245038 J.B.Poulsen, K.R.Andersen, K.H.Kjær, F.Durand, P.Faou, A.L.Vestergaard, G.H.Talbo, N.Hoogenraad, D.E.Brodersen, J.Justesen, and P.M.Martensen (2011).
Human 2'-phosphodiesterase localizes to the mitochondrial matrix with a putative function in mitochondrial RNA turnover.
  Nucleic Acids Res, 39, 3754-3770.  
21336257 N.Hosoda, Y.Funakoshi, M.Hirasawa, R.Yamagishi, Y.Asano, R.Miyagawa, K.Ogami, M.Tsujimoto, and S.Hoshino (2011).
Anti-proliferative protein Tob negatively regulates CPEB3 target by recruiting Caf1 deadenylase.
  EMBO J, 30, 1311-1323.  
20854710 W.Yang (2011).
Nucleases: diversity of structure, function and mechanism.
  Q Rev Biophys, 44, 1.  
20504953 C.Temme, L.Zhang, E.Kremmer, C.Ihling, A.Chartier, A.Sinz, M.Simonelig, and E.Wahle (2010).
Subunits of the Drosophila CCR4-NOT complex and their roles in mRNA deadenylation.
  RNA, 16, 1356-1370.  
20628353 H.Wang, M.Morita, X.Yang, T.Suzuki, W.Yang, J.Wang, K.Ito, Q.Wang, C.Zhao, M.Bartlam, T.Yamamoto, and Z.Rao (2010).
Crystal structure of the human CNOT6L nuclease domain reveals strict poly(A) substrate specificity.
  EMBO J, 29, 2566-2576.
PDB codes: 3ngn 3ngo 3ngq
19901075 I.Y.Morozov, M.G.Jones, A.A.Razak, D.J.Rigden, and M.X.Caddick (2010).
CUCU modification of mRNA promotes decapping and transcript degradation in Aspergillus nidulans.
  Mol Cell Biol, 30, 460-469.  
19934260 M.Banerjee, M.Datta, P.Majumder, D.Mukhopadhyay, and N.P.Bhattacharyya (2010).
Transcription regulation of caspase-1 by R393 of HIPPI and its molecular partner HIP-1.
  Nucleic Acids Res, 38, 878-892.  
19828319 F.Mauxion, C.Y.Chen, B.Séraphin, and A.B.Shyu (2009).
BTG/TOB factors impact deadenylases.
  Trends Biochem Sci, 34, 640-647.  
19307292 K.R.Andersen, A.T.Jonstrup, L.B.Van, and D.E.Brodersen (2009).
The activity and selectivity of fission yeast Pop2p are affected by a high affinity for Zn2+ and Mn2+ in the active site.
  RNA, 15, 850-861.
PDB codes: 3g0z 3g10
19276069 M.Horiuchi, K.Takeuchi, N.Noda, N.Muroya, T.Suzuki, T.Nakamura, J.Kawamura-Tsuzuku, K.Takahasi, T.Yamamoto, and F.Inagaki (2009).
Structural Basis for the Antiproliferative Activity of the Tob-hCaf1 Complex.
  J Biol Chem, 284, 13244-13255.
PDB code: 2d5r
19221201 N.Suh, S.L.Crittenden, A.Goldstrohm, B.Hook, B.Thompson, M.Wickens, and J.Kimble (2009).
FBF and its dual control of gld-1 expression in the Caenorhabditis elegans germline.
  Genetics, 181, 1249-1260.  
19065152 W.Liang, C.Li, F.Liu, H.Jiang, S.Li, J.Sun, X.Wu, and C.Li (2009).
The Arabidopsis homologs of CCR4-associated factor 1 show mRNA deadenylation activity and play a role in plant defence responses.
  Cell Res, 19, 307-316.  
18334997 A.C.Goldstrohm, and M.Wickens (2008).
Multifunctional deadenylase complexes diversify mRNA control.
  Nat Rev Mol Cell Biol, 9, 337-344.  
19032786 D.Zhang, H.Xiong, J.Shan, X.Xia, and V.L.Trudeau (2008).
Functional insight into Maelstrom in the germline piRNA pathway: a unique domain homologous to the DnaQ-H 3'-5' exonuclease, its lineage-specific expansion/loss and evolutionarily active site switch.
  Biol Direct, 3, 48.  
17090538 A.C.Goldstrohm, D.J.Seay, B.A.Hook, and M.Wickens (2007).
PUF protein-mediated deadenylation is catalyzed by Ccr4p.
  J Biol Chem, 282, 109-114.  
17452359 A.T.Jonstrup, K.R.Andersen, L.B.Van, and D.E.Brodersen (2007).
The 1.4-A crystal structure of the S. pombe Pop2p deadenylase subunit unveils the configuration of an active enzyme.
  Nucleic Acids Res, 35, 3153-3164.
PDB code: 2p51
17389596 B.A.Hook, A.C.Goldstrohm, D.J.Seay, and M.Wickens (2007).
Two yeast PUF proteins negatively regulate a single mRNA.
  J Biol Chem, 282, 15430-15438.  
17557331 D.Takeshita, S.Zenno, W.C.Lee, K.Saigo, and M.Tanokura (2007).
Crystal structure of the PIN domain of human telomerase-associated protein EST1A.
  Proteins, 68, 980-989.
PDB code: 2dok
17264117 S.Takahashi, K.Kontani, Y.Araki, and T.Katada (2007).
Caf1 regulates translocation of ribonucleotide reductase by releasing nucleoplasmic Spd1-Suc22 assembly.
  Nucleic Acids Res, 35, 1187-1197.  
17439972 T.Ohn, Y.C.Chiang, D.J.Lee, G.Yao, C.Zhang, and C.L.Denis (2007).
CAF1 plays an important role in mRNA deadenylation separate from its contact to CCR4.
  Nucleic Acids Res, 35, 3002-3015.  
18056425 Y.Funakoshi, Y.Doi, N.Hosoda, N.Uchida, M.Osawa, I.Shimada, M.Tsujimoto, T.Suzuki, T.Katada, and S.Hoshino (2007).
Mechanism of mRNA deadenylation: evidence for a molecular interplay between translation termination factor eRF3 and mRNA deadenylases.
  Genes Dev, 21, 3135-3148.  
17437714 Y.Zuo, H.Zheng, Y.Wang, M.Chruszcz, M.Cymborowski, T.Skarina, A.Savchenko, A.Malhotra, and W.Minor (2007).
Crystal structure of RNase T, an exoribonuclease involved in tRNA maturation and end turnover.
  Structure, 15, 417-428.
PDB codes: 2f96 2is3
16715093 A.C.Goldstrohm, B.A.Hook, D.J.Seay, and M.Wickens (2006).
PUF proteins bind Pop2p to regulate messenger RNAs.
  Nat Struct Mol Biol, 13, 533-539.  
16793769 A.L.Finoux, and B.Séraphin (2006).
In vivo targeting of the yeast Pop2 deadenylase subunit to reporter transcripts induces their rapid degradation and generates new decay intermediates.
  J Biol Chem, 281, 25940-25947.  
16549795 E.Minskaia, T.Hertzig, A.E.Gorbalenya, V.Campanacci, C.Cambillau, B.Canard, and J.Ziebuhr (2006).
Discovery of an RNA virus 3'->5' exoribonuclease that is critically involved in coronavirus RNA synthesis.
  Proc Natl Acad Sci U S A, 103, 5108-5113.  
17029243 K.H.Chin, C.Y.Yang, C.C.Chou, A.H.Wang, and S.H.Chou (2006).
The crystal structure of XC847 from Xanthomonas campestris: a 3'-5' oligoribonuclease of DnaQ fold family with a novel opposingly shifted helix.
  Proteins, 65, 1036-1040.
PDB code: 2gbz
16793774 M.Jeske, S.Meyer, C.Temme, D.Freudenreich, and E.Wahle (2006).
Rapid ATP-dependent deadenylation of nanos mRNA in a cell-free system from Drosophila embryos.
  J Biol Chem, 281, 25124-25133.  
16882719 S.F.Midtgaard, J.Assenholt, A.T.Jonstrup, L.B.Van, T.H.Jensen, and D.E.Brodersen (2006).
Structure of the nuclear exosome component Rrp6p reveals an interplay between the active site and the HRDC domain.
  Proc Natl Acad Sci U S A, 103, 11898-11903.
PDB codes: 2hbj 2hbk 2hbl 2hbm
15466434 A.Traven, A.Hammet, N.Tenis, C.L.Denis, and J.Heierhorst (2005).
Ccr4-not complex mRNA deadenylase activity contributes to DNA damage responses in Saccharomyces cerevisiae.
  Genetics, 169, 65-75.  
15769875 C.Bianchin, F.Mauxion, S.Sentis, B.Séraphin, and L.Corbo (2005).
Conservation of the deadenylase activity of proteins of the Caf1 family in human.
  RNA, 11, 487-494.  
16281054 M.Wu, M.Reuter, H.Lilie, Y.Liu, E.Wahle, and H.Song (2005).
Structural insight into poly(A) binding and catalytic mechanism of human PARN.
  EMBO J, 24, 4082-4093.
PDB codes: 2a1r 2a1s
15199137 C.Berthet, A.M.Morera, M.J.Asensio, M.A.Chauvin, A.P.Morel, F.Dijoud, J.P.Magaud, P.Durand, and J.P.Rouault (2004).
CCR4-associated factor CAF1 is an essential factor for spermatogenesis.
  Mol Cell Biol, 24, 5808-5820.  
15215893 C.Temme, S.Zaessinger, S.Meyer, M.Simonelig, and E.Wahle (2004).
A complex containing the CCR4 and CAF1 proteins is involved in mRNA deadenylation in Drosophila.
  EMBO J, 23, 2862-2871.  
15044470 P.Viswanathan, T.Ohn, Y.C.Chiang, J.Chen, and C.L.Denis (2004).
Mouse CAF1 can function as a processive deadenylase/3'-5'-exonuclease in vitro but in yeast the deadenylase function of CAF1 is not required for mRNA poly(A) removal.
  J Biol Chem, 279, 23988-23995.  
14749774 R.Parker, and H.Song (2004).
The enzymes and control of eukaryotic mRNA turnover.
  Nat Struct Mol Biol, 11, 121-127.  
The most recent references are shown first. Citation data come partly from CiteXplore and partly from an automated harvesting procedure. Note that this is likely to be only a partial list as not all journals are covered by either method. However, we are continually building up the citation data so more and more references will be included with time. Where a reference describes a PDB structure, the PDB codes are shown on the right.

 

spacer

spacer